Riemannian quasi-Newton methods,
implementation techniques, and applications

Speaker: Wen Huang

Xiamen University

January 7, 2021

Nanjing

Speaker: Wen Huang Riemannian quasi-Newton methods



Outline:

@ Introduction

@ Riemannian Quasi-Newton Methods
@ Implementation Techniques
@ Limited-memory Versions

@ Applications

Speaker: Wen Huang Riemannian quasi-Newton methods



Outline:

@ Introduction

@ Riemannian Quasi-Newton Methods
@ Implementation Techniques
@ Limited-memory Versions

@ Applications

Speaker: Wen Huang Riemannian quasi-Newton methods



Introduction

Riemannian Optimization

Problem: Given f(x) : M — R, ¥
solve T T

in f
R

D

where M is a Riemannian manifold.

Unconstrained optimization problem on a constrained space.

Riemannian manifold = manifold + Riemannian metric
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Introduction

Riemannian Manifold

Manifolds: Riemannian metric:

M R
9 ‘\ &8

o Stiefel manifold: St(p,n) = '
{X e R™PIXTX = Ip};
@ Grassmann manifold Gr(p, n):
all p-dimensional subspaces of A Riemannian metric, denoted by g,

n.
R; is a smoothly-varying inner product
@ And many more. on the tangent spaces;
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Riemannian Quasi-Newton Methods
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Riemannian Quasi-Newton Methods

Euclidean Quasi-Newton Methods

A line search quasi-Newotn algorithm A trust region quasi-Newotn algorithm

Require: Initial iterate xo; Require: Initial iterate xo;
1, Set k + 0 1, Set k + 0;
while not accurate enough do while not accurate enough do
2, Compute px from 2, Compute
Pk = —Bk_IVf(xk); P A argmin, <a, Vf(xk)Ter %pTka;
3, Xk+1 % Xk Jr.ozkpk with 3, pi %;
appropriate o, _ Xk + Pk if px > 1
4, Compute By1 by certain 4, Xpy1 < X otherwise.
formula 5, update radius to get Axy1
5 k <_ k+1; 6, Compute By by certain formula
end while 7. k< k+1

end while

Update formula: Byi1 = @(Bk, Xk11, - - - X0, VI (Xks1), - - -, VF(X0))



Riemannian Quasi-Newton Methods Review Eucli quasi-Newton methods
R nnian <

R nnian

Euclidean Quasi-Newton Methods

Secant condition: 1-dimension example

An 1 dimension example to show the idea of the secant condition.

gradf(z) = 4a®

flx)=a" gradf(z) = 4a®

oradf(z) = 4a*

update of Newton method update of Secant idea

o Newton: xx 1 = xx — (Hess f(xx)) "t grad f(xx)

@ Secant: xxi11 = Xk — Bk_1 grad f(x),
Bi(xx — xx—1) = grad f(xx) — grad f(xxk—1)
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Riemannian Quasi-Newton Methods Review Euclidean quasi-Newton methods
methods

Euclidean Quasi-Newton Methods

Secant condition

Secant condition

Br+15k = Yk

where sg = xk11 — xk and yx = grad f(xk11) — grad £(xk);

@ By is not uniquely defined for d > 1;
@ Extra conditions required

@ Minimum change:

Bij1=a i B-B
e =arg . min | Al
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Riemannian Quasi-Newton Methods Review Euclidean quasi-Newton methods
Riemannian
Riemannian SR

Euclidean Quasi-Newton Methods
BFGS and SR1

e Symmetric Rank-one (SR1) update

e Minimum rank update:

o Formula: -
(yx — Bisi)(yk — Bisk)

Bii1 =B
k+1 k + (k — Bise) Tk

@ Broyden, Fletcher, Goldfarb, Shanno (BFGS) update:

o Minimum change:
Byi1 = arg mBin HB_1 — B,(_1||W, such that Bsx = yx, BT = B,
where W is SPD satisfying yx = Ws, and ||A||w = ||[W2AWY2||¢.

e Formula: . .
Bisksi B | yiyx

Byi1 = Bk —
T T
Sk Bksk Yie Sk
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Riemannian Quasi-Newton Methods c F
Riemannian BFGS methods
Riemannian SR1 Method

Riemannian BFGS Methods

BFGS quasi-Newton algorithm: from Euclidean to Riemannian

e Update formula:

YTk

Xk+1 = Xk + Qi

@ Search direction: A

nk = —B " grad f(xk)
@ By update:

Optimization on a Manifold

Bisksy Bk . vy

Bii1= B —
+1 k T T_
Sy Bisk Yie Sk

where s = xx11 — Xk, and yx = grad f(xc41) — grad £(xx)
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Riemannian Quasi-Newton Methods

Riemannian BFGS Methods

BFGS quasi-Newton algorithm: from Euclidean to Riemannian

replace by Ry, (1)
o Update formula: l

YTk

Xk+1 = Xk + Qi

@ Search direction: A

nk = — B grad f(xk)
@ By update:

Optimization on a Manifold

Bisksy Bk . vy

Bii1 = Bk —
+1 k T T )
Sy Brsk Vi Sk

where s = xx11 — Xk, and yx = grad f(xc41) — grad £(xx)

1

replaced by Ry *(xk+1)
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Riemannian Quasi-Newton Methods

Riemannian BFGS Methods

BFGS quasi-Newton algorithm: from Euclidean to Riemannian

replace by Ry, (1)
o Update formula: l

YTk

Xk+1 = Xk + Qi

@ Search direction: A

nk = — B grad f(xk)
@ By update:

Optimization on a Manifold

Bisksy Bk . vy

Bk+1 = By — <— use vector transport

T T
Sy Brsk Vi Sk

where s = xx11 — Xk, and yx = grad f(xc41) — grad £(xx)

i 1

replaced by Rx_kl(ka) use vector transport
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Riemannian Quasi-Newton Methods e clidean quas ton methods
Riemannian BFGS methods
Riemannian SR1 Method

Riemannian BFGS Methods

Retraction and vector transport

Retraction: R: T M — M A vector transport:
T:TMxTM—TM:
Euclidean Riemannian (0, &) — T Ex:

Xiy1 = Xk + ouedic | Xip1 = Ry (arni)

Two retractions:R and R

Speaker: Wen Huang Riemannian quasi-Newton methods



Riemannian Quasi-Newton Methods

Riemannian BFGS Methods

BFGS quasi-Newton algorithm: from Euclidean to Riemannian

ik

e Update formula: Xip1 = R (ki)

@ Search direction:
Nk = —B;l grad f(xx)

@ By update:

s —1 Optimization on a Manifold
Bk _TYk’lk o Bk o 7:yk’r/k7

5 5 b

= BusisiBi | ykyp

Biy1 =B — — = + ==,
SkBkSk Y Sk

where s, = T, 0, (i), and yie = grad f(xiy1) — Taun, grad f(x);
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Riemannian Quasi-Newton Methods

Riemannian BFGS Methods

BFGS quasi-Newton algorithm: from Euclidean to Riemannian

@ Update formula:
P Xk+1 = Ry, (i) il

@ Search direction: S\
Nk = —B;l grad f(xx)
@ By update:

5 — o o nA8 .7 fold
Bk =Taun, © Bk o T, !+ matrix matrix multiplication

QMK ?

~ éksksb Bk ykyb
Bip1 =B — — = — + =&,
s, Bisk Vi Sk

where s, = T, 0, (i), and yie = grad f(xiy1) — Taun, grad f(x);

1 1

matrix vector multiplication matrix vector multiplication

Extra cost on vector transports!
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Riemannian Quasi-Newton Methods

Riemannian BFGS Methods

Existing generic Riemannian BFGS methods

e Qi [Qill]: exponential mapping, parallel translation;
o ldea: imitate the Euclidean setting;
o Exponential mapping: along the geodesic;
o Parallel translation: move tangent vector parallelly;
o Problem: maybe unknown to users, maybe expensive to compute;

T M
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Riemannian Quasi-Newton Methods

Riemannian BFGS Methods

Existing generic Riemannian BFGS methods

@ Ring and Wirth [RW12]: retraction, vector transport by
differentiated retraction, isometric vector transport;

o |dea: quasi-Newton update in tangent space, then transport to
new tangent space isometrically;

o Retraction: no constraints;

e Two vector transport: VT by differentiated retraction, and
isometric VT;

e Problem: vector transport by differentiated retraction maybe
unknown to users, maybe expensive to compute;

TM

Speaker: Wen Huang Riemannian quasi-Newton methods



Riemannian Quasi-Newton Methods e Euclidean qua: vton methods
methods
Riemannian SR1 Method

Riemannian BFGS Methods

Existing generic Riemannian BFGS methods

@ Ring and Wirth [RW12]: retraction, vector transport by
differentiated retraction, isometric vector transport;

o foR,, is defined on T,, M
e Secant condition is defined as that in the Euclidean setting
o Vector transport by differentiated retraction is needed

Yk :'TSWk (grad(f o Ry, )(nx,) — grad(f o Ry, )(0x,))
=Ts (mw grad f(Xk+1) — grad f(Xk))

)

where Tg, & = < R(nx + t&«)|e=0 is the vector transport by
differentiated retract|on

Speaker: Wen Huang Riemannian quasi-Newton methods



Riemannian Quasi-Newton Methods

Riemannian BFGS Methods

Existing generic Riemannian BFGS methods

e Huang, Absil, Gallivan [HGA15, HAG18]: retraction, isometric
vector transport consistent with VT by differentiated retraction
along a direction

o ldea: quasi-Newton update in tangent space, then transport to
new tangent space isometrically;

o Retraction: no constraints;

o Vector transport: Isometric VT consistent with VT by
differentiated retraction along a direction;

T M
M

A
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Riemannian Quasi-Newton Methods Review Euclidean quasi-Newton methods
Riemannian BFG
Riemannian SR1 Method

Riemannian BFGS Methods

Existing generic Riemannian BFGS methods

Huang, Absil, Gallivan [HGA15, HAG18]: retraction, isometric vector
transport consistent with VT by differentiated retraction along a direction

Euclidean setting: (Wolfe second condition —> skTyk > 0)
o Define h(t) = f(xq + tpk). 9 (ou) > 292(0), c2 € (0,1)
() = pd VF(xei1)

4h(0) = pJ VF(x«) = 5/ Vf(xks1) > 8! VF(xk)
Sk = Qi Pk

== SkTYk = SIZ—(Vf(Xk+1) - Vf(xk)) > ax(c — 1)PkTVf(Xk) > 0.

® B =045y > 0= Bis1 = 0= pry1 = —B 1 VF(xiq1) is
descent
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Riemannian Quasi-Newton Methods

Riemannian BFGS Methods

Existing generic Riemannian BFGS methods

Riemannian setting: (Wolfe second condition 7 = skTyk > 0)
o Define h(t) = f(Ry(tpx)). (o) > 292(0), c2 € (0,1)

G (i) = &(Tra, p, P> grad f(xicr1)
9(0) = g(px, grad f(x)) }
Sk = TS p, OkPK
= 8(TRay p, @kPk> grad f(x11) 2 c2g(okpi, grad f(xi))

RW:  g(TRa,p, @kPi; grad fu) = glapi, Tg,,, ,, rad f(xie))
— 1L
HGA: g(TRakPk oy pk, grad f(xk1) = glawpk, By lTSalkpk grad f(xk+1))
[l o pcl

grad f(xx), where Sy = T o

o Py aepxll

o yi = B grad f(xuy1) — TS,
and 7Tg satisfies the “locking condition”:

Tse& = BTrE, B = %, for all £ € T, M and all x € M.

e Wolfe second condition = g(sk, yx) > 0

Speaker: Wen Huang Riemannian quasi-Newton methods



Riemannian Quasi-Newton Methods
Ri B m
Riemannian SR1 Metho:

Riemannian SR1 Method

Trust region SR1 method: from Euclidean to Riemannian

@ Approximately solve a local model: Wik

. 1
Nk ~ argmin grad f(xk)Tn + §?7T5k77? A

Il <Ak . .
e Quality measurement pj = %;

@ Update radius Ay, and update iterate:

Optimization on a Manifold

xx +ni i p is sufficient large

X =
ke X otherwise.
@ By update:
- B - B T
Bis1 = By + (Vk ks ) (Y % Sk)

(vk — Brsk) T sk

where s, = 7, and y = grad f(x, 1) — grad f(x);
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Riemannian Quasi-Newton Methods

Riemannian SR1 Method

Trust region SR1 method: from Euclidean to Riemannian

@ Approximately solve a local model: Wik

. 1
Nk ~ argmin grad f(xk)Tn + §?7T5k77? A

Il <Ak . .
e Quality measurement pj = %;

@ Update radius Ay, and update iterate:

Optimization on a Manifold

xk + i if pg is sufficient large <— replace by Ry, (k)

Xk+1 = .
X otherwise.
@ By update:
— Bys — Bysi) T
Biky1 = By + (v ks )i ksk) <— use vector transport

(vk — Bisi) T sk

where s, = 7, and y = grad f(x, 1) — grad f(x);
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Riemannian Quasi-Newton Methods
Ri B m
Riemannian SR1 Metho:

Riemannian SR1 method

Trust region SR1 method: from Euclidean to Riemannian

@ Approximately solve a local model: -~

. 1
me~  argmin grad f(x)’n + EUkaTI A

Inl|<AkneT,, M Fo)—F (R (1))
e Quality measurement py, = W;

@ Update radius Ak, and update iterate:

Optimization on a Manifold

Ry, (1K) if pk is sufficient large
Xpp1 = ———F .
k1 X otherwise.
@ By update:
ék =T, 0Bk o 7;:1, Extra cost on vector transports!

Bi+1 =B + (v — Bisi) (v — Bisi) T /((vk — Brsk) "s)

where s, = T,, (1), and yx = grad f(xeq1) — Ty, grad £ (x);
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Riemannian Quasi-Newton Methods

R nni S ds
Riemannian SR1 Method

Riemannian SR1 Method

Existing generic Riemannian SR1 method

e Huang, Absil, Gallivan [HAG15]: retraction, isometric vector
transport

o |dea: quasi-Newton update in tangent space, then transport to
new tangent space isometrically;

TM

Y,
a
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Riemannian Quasi-Newton Methods

R nni S ds
Riemannian SR1 Method

Riemannian SR1 Method

Existing generic Riemannian SR1 method

e Huang, Absil, Gallivan [HAG15]: retraction, isometric vector
transport

o |dea: quasi-Newton update in tangent space, then transport to
new tangent space isometrically;
o Retraction: no constraints;

TM

Y,
a
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Riemannian Quasi-Newton Methods

R nni S ds
Riemannian SR1 Method

Riemannian SR1 Method

Existing generic Riemannian SR1 method

e Huang, Absil, Gallivan [HAG15]: retraction, isometric vector

transport
o |dea: quasi-Newton update in tangent space, then transport to
new tangent space isometrically;
o Retraction: no constraints;
o Vector transport: Isometric VT;

TM

A
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Riemannian Quasi-Newton Methods
nian

Riemannian SR1 Method 7

Outline:

@ Introduction

@ Riemannian Quasi-Newton Methods
@ Implementation Techniques

@ Limited-memory Versions

@ Applications
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Impl ion Techni epresentation of t
mplementation Techniques = e DJVIJH\»‘ o

Implementation Techniques

Summary:
@ Isometric vector transport is needed [RW12, HGA15, HAG18];

@ An efficient vector transport is crucial;
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Implementation Techniques

Implementation Techniques

Summary:
@ Isometric vector transport is needed [RW12, HGA15, HAG18];

@ An efficient vector transport is crucial;

An efficient isometric vector transport:
@ Representative manifold:

o the Stiefel manifold St(p, n) = {X € R™P|XTX = I,};
e canonical metric: g(nx,&x) = trace (n; (I,, — %XXT) §x);

@ The idea in this talk can be used for more algorithms and many
commonly-encountered manifolds.

Speaker: Wen Huang Riemannian quasi-Newton methods



ic representation of tangent vectors

Implementation Techniques or transport by parallel translation

Implementation Techniques

Representations of Tangent Vectors

o £ =R", o Stiefel manifold: £ = R"*P;

@ Dimension of M is d; o Stiefel manifold: d = np — p(p+1)/2;
&

Figure: An embedded submanifold

@ Extrinsic: mx € RY; (Tx = {XQ+ X K| Q" = -Q, X" X, =0})
@ Intrinsic: 7, € RY such that Nx = Byfjx, where By is smooth;

Speaker: Wen Huang Riemannian quasi-Newton methods



ic representation of tangent vectors

Implementation Techniques or transport by parallel translation

Implementation Techniques

Representations of Tangent Vectors

o £ =R", o Stiefel manifold: £ = R"*P;

@ Dimension of M is d; o Stiefel manifold: d = np — p(p+1)/2;
&

Figure: An embedded submanifold

@ Extrinsic: mx € RY; (Tx = {XQ+ X K| Q" = -Q, X" X, =0})
@ Intrinsic: 7, € RY such that Nx = Byfjx, where By is smooth;
How to find a basis B?

Speaker: Wen Huang Riemannian quasi-Newton methods



Intrinsic representation of tangent vectors

Implementation Techniques Vector transport by parallel translation

Implementation Techniques

Extrinsic Representation and Intrinsic Representation on the Stiefel Manifold

Tx St(p,n) = {XQ+ X, K | Q" =-Q,XTX, =0};

0 1 0 0 0 0
-1 0 0 0 0 0
0 0 0 0 0 0
Be=q[X Xi] 15— ol o X Xt .
0 0 0 0 0 0
[0 0 0 ] [0 0 0
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Intrinsic representation of tangent vectors

Implementation Techniques Vector transport by parallel translation

Implementation Techniques

Extrinsic Representation and Intrinsic Representation on the Stiefel Manifold

TXSt(p,n) :{XQ"_XJ_K ‘ QT: —Q,XTXJ_ :0};

Extrinsic nx: Intrinsic 7jx:
Q e
et 1 [2 o
[ P o
I 0 a1 e aip i as3
—di2 0 ‘e a2p
PR PR e e ﬁX — a(pil)p
—ai —ar ce 0
=X X P P b1
[ 1] by by ... by by
by b bop
LBn-pt Binprz -+ b(o—p)p] Lb(n—pe]
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N . Intrinsic representation of tangent vectors
Implementation Techniques

Implementation Techniques

Extrinsic Representation and Intrinsic Representation on the Stiefel Manifold

Extrinsic representation 7x <= Intrinsic representation 7jx

o mx = [X X m o m & iix

Speaker: Wen Huang Riemannian quasi-Newton methods



Intnnslc representation of tangent vectors

Implementation Techniques o deneer by pereltl ten

Implementation Techniques

Extrinsic Representation and Intrinsic Representation on the Stiefel Manifold

Extrinsic representation 7x <= Intrinsic representation 7jx

o mx = [X X m o m & iix

e Apply Householder transformation to X, (Done in retraction)

Q Q) 1. QX =R=lnxp.
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Intrinsic representation of tangent vectors

Implementation Techniques Vector transport by parallel translation

Implementation Techniques

Extrinsic Representation and Intrinsic Representation on the Stiefel Manifold

Extrinsic representation 7x <= Intrinsic representation 7jx

o mx = [X X m o m & iix

e Apply Householder transformation to X, (Done in retraction)
Q Q) 1. QX =R=lnxp.
o [X X.]=Q:iQ...Q, (Do not compute)
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ic representation of tangent vectors

Implementation Techniques ransport by parallel translation

Implementation Techniques

Extrinsic Representation and Intrinsic Representation on the Stiefel Manifold

Extrinsic representation 7x <= Intrinsic representation 7jx
Q Q o
o nx = [X Xi] [K] & [K} < fix
e Apply Householder transformation to X, (Done in retraction)

Q Q) 1. QX =R=lnxp.
o [X X.]=Q:iQ...Q, (Do not compute)

e Extrinsic to Intrinsic: Q7 Q[ ;... Q[ nx = {2] and reshape to fix;
(4np? — 2p3) flops

@ Intrinsic to Extrinsic: reshape 7jx and nx = Q1 Q2. .. Qp [2}
(4np® — 2p3) flops
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Intnnslc representation of tangent vectors

Implementation Techniques ansport by parallel translation

Implementation Techniques

Benefits of Intrinsic Representation

o Operations on tangent vectors are cheaper since d < w;

o If the basis is orthonormal, then the Riemannian metric reduces to
the Euclidean metric:

g(77><a §X) = g(BXﬁm BXEX) = ﬁngx
Stiefel: trace (77; (I,, — %XXT) EX) — ﬁ;gx

@ A vector transport has identity implementation, i.e., % =id.
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Intrinsic representation of tangent vectors

Implementation Techniques Vector transport by parallel translation

Implementation Techniques

Vector Transport by Parallelization

@ Vector transport by parallelization:
Tobx = ByBlai
where y = R,(nx) and T denotes pseudo-inverse, has identity
implementation [HAG16]:
%xgx = gx-
Example:
Extrinsic:

¢= 7;75 = ByBif

B.=[& &] &= a1+ b

\ ¢ =aC+ b(e

T,M

Intrinsic:

¢ =T
=B]B,BIB,¢
=¢
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. . Intrinsic representation of tangent v
Implementation Techniques

Vector transport by parallel translation

QOutline:

@ Introduction

@ Riemannian quasi-Newton methods: RBFGS and RTR-SR1

Implementation techniques

Limited-memory versions

o LRBFGS
e LRTR-SR1

Applications
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A limited-memory Riemannian BFGS method
P N A limited-mem mannian trust-region SR1 method
Limited-memory Versions

Limited-memory Versions

A limited-memory Riemannian BFGS method

Search direction: nx = B, * grad f(xx)

@ Follow the same idea of the Euclidean limited-memory BFGS
method

@ Inverse Hessian approximation update

@ Two-loop recursion
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A limited-memory Riemannian BFGS method

L N A limited-merr iemannian trust-region SR1 method
Limited-memory Versions

Limited-memory Versions

A limited-memory Riemannian BFGS method

Sherman-Morrison formula = Inverse update (Hx = B, *):

Heir = V,EI:Ika + pksksz, where p, = and Vy =id fpkyksz.

g (YK, sk)

If the number of latest s, and yx we use is m+ 1, then

Heen = ViV VAR Ve Vi Vi

+ pk-mViVi 1V m+15;(<k+n})51(<k+n3 Vieme - Ve Vi
_|_ e
k+1) (k+1)
RGNS
O K k
where V; = id —p,'y,-( +1)s,-( +1)? and HY | = gg;i% id.
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A limited-memory Riemannian BFGS method

L N A limited-mem emannian trust-region SR1 method
Limited-memory Versions

Limited-memory Versions

A limited-memory Riemannian BFGS method

Given compute Hyy1 grad f(xk11):

Algorithm 1 LRBFGS two-loop recursion
1. g« VFf(Xk41):
fori=k k—1,...,k—m-+1do
aj < pis;q;
q < q—Qiyi;
end for0
re H/E+)1q;
fori=k—-m+1,k—m+2, ..., kdo
B piylr;
r+ r+si(a;—B);
end for
11: return r;

©COND RO

=
=4

Computational complexity O(md)
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A limited-memory Riemannian BFGS method

e 1 A limited-memory Riemannian trust-region SR1 method
Limited-memory Versions ’

Limited-memory Versions

A limited-memory Riemannian trust-region SR1 method

1
Solve the subproblem: 7, = argmin  grad f(x)’n + =1’ Ben;
Il <AknETs, M 2

@ Intrinsic representation using orthonormal basis
@ Reduce to the subproblem of Euclidean TR-SR1
@ Solved efficient [BEM17, HG21]

Speaker: Wen Huang Riemannian quasi-Newton methods



A limited-memory Riemannian BFGS method

e 1 A limited-memory Riemannian trust-region SR1 method
Limited-memory Versions ’

Limited-memory Versions

A limited-memory Riemannian trust-region SR1 method

Subproblem:

1
= argmin  grad f(x)’n + 2o’ B
lnll <Ak,nETx M 2
e B, = Yk id +wkva1]<L,mw'lj<,m

° v € R, My m € R™™ and Wy ,, consists of m tangent vectors,
related to (s;,y;),i=k—1,....k—m

Using intrinsic representation:

. 1
¢* = argmin g c+ =c"We;
llell<Ax 2
o W=l + &M, o €RIX
o 7k €R, My » € R™™ and &, € RI*Xm



A limited-mer emannian BFGS method

e ! A limited-mem emannian trust-region SR1 method
Limited-memory Versions 2

Limited-memory Versions

A limited-memory Riemannian trust-region SR1 method

The vector p* is a global solution of the trust region subproblem

1

. T T
min c+ =c' Wc
HPHSAq 2

if and only if c* is feasible and there is a scalar A > 0 such that the
following conditions hold:

(W + A\)p* = — g, \(& — [|c*]|) = 0, (W + AI) is SPSD.

o Eigenvalues of W: inexpensive
o (A) = —(W + Aly)Tg and 6(A) = 1/[le(N)l2 — 1/A
e Complexity O(md)



A limited-memory Riemannian method
A limited-memory Riemannian trust-region SR1 method

Limited-memory Versions

Outline:

@ Introduction
@ Riemannian quasi-Newton methods: RBFGS and RTR-SR1
@ Implementation techniques

@ Limited-memory versions

(]

Applications
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Geometric mean of SPD matrices
Matr ompletion

Applications

Geometric mean of SPD matrices

Motivation of averaging SPD matrices

@ Possible applications of SPD matrices

- Diffusion tensors in medical imaging
[CSV12, FJO7, RTMO7]

- Describing images and video

[LWM13, SFD02, ASF*05, TPMO6,
HWSC15]

@ Motivation of averaging SPD matrices
- denoising / interpolation

- clustering / classification
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Geometric mean of SPD matrices
Matrix completion

Applications

Geometric mean of SPD matrices

Karcher mean

Karcher mean [Kar77]:

G(Ay, ..., Ax) = argmm—ZéZ(x A)) (1)
Xesh,

where §(X, Y) = || log(X~Y/2YX~1/2)||¢ is the geodesic distance under
the affine-invariant metric

g(nx,&x) = trace(nXXflng*l)
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Geometric mean of SPD matrices

Matrix completion

Applications

Geometric mean of SPD matrices

Numerical experiments

@ Richardson-like iteration [BI13]
e RSD-QR [RAL]]
e Riemannian BB method [IP18]
e Majorization [Zhal7]
1007 ~A-RL Tteration]
RSD-QR
&IIBB
E =
210 1o
g ri 10° “A-RL Tteration]
] B2 RSD-QR
-5-RBB
-5-LRBFGS: 2
LRBI“'(%S 4
10710 R 10710 zi{fﬂ(’s

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
time (s) time (s)

Figure: K =30, n =60, 10 < x(A;) < 60; Bottom right: K = 30, n = 60,
10° < k(A < 10°%;
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Matrix completion
A model

movies meta-user meta-movie
ann E by b
a4 by1 b
_ b b Ci1 G2 Ci3 Cia
93 I o1 2 O3 Cu
an bar  ba
asy  as3 bs1  bsy

@ Minimize the cost function
f:R™" 5 R: X = f(X) = | PaM — PoX|2.

@ R " is the set of m-by-n matrices with rank r.

Speaker: Wen Huang Riemannian quasi-Newton methods



ric mean of SPD matrices
completion

Applications

Matrix completion

Numerical experiments

Table: An average of 50 random runs of (i) LRBFGS, (ii) RCG, (iii) RNewton,
and (iv) RTRNewton methods in ROPTLIB. OS = 3

m = 100, n = 200, 7 = 10 m = 1000, n — 2000, r = 10
® ) @) 6) 5 N ) N )
fter 34 40 12 13 57 67 19 18
nf 37 53 14 14 61 99 23 19
ng 35 a1 13 14 58 68 20 19
nR 36 52 13 13 60 98 2 18
v 257 81 0 0 445 135 0 0
nH 0 0 64 58 0 0 108 94
el | 672, 738, 8725 471 | 7507 759 8335 1327
t | 284, 324, 768, 717, | 425, 527, 134 117
f [ 150, 129, 7531 553 10 | 1495 121, 6025 123
er | 312, 255 256, 135 ; | 1.63.5 1515 124, 173
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Riemannian BFGS and SR1 methods

Intrinsic representation of tangent vectors and operators

Vector transport by parallelization

Limited-memory versions of Riemannian BFGS and SR1 methods

Geometric mean of SPD matrices and matrix completion
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