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Problem Statement

Optimization on Manifolds with Structure:

min
x∈M

F (x) = f (x) + g(x),

M is a Riemannian manifold;

f is continuously differentiable and may be nonconvex; and

g is continuous, but may be not differentiable.

M

R
f

Applications: sparse PCA, sparse blind deconvolution, sparse low rank
image representation, etc [JTU03, GHT15, SQ16, ZLK+17]

A sparse PCA optimization model:1

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,

1a penalized version of the ScoTLASS introduced in [JTU03].
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Existing Nonsmooth Optimization on Manifolds

F :M→ R is Lipschitz continuous

Huang (2013), Gradient sampling method without convergence
analysis.

Grohs and Hosseini (2015), Two ε-subgradient-based optimization
methods using line search strategy and trust region strategy,
respectively. Any limit point is a critical point.

Hosseini and Uschmajew (2017), Gradient sampling method and any
limit point is a critical point.

Hosseini and Huang and Yousefpour (2018), Merge
ε-subgradient-based and quasi-Newton ideas and show any limit
point is a critical point.
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Existing Nonsmooth Optimization on Manifolds

F :M→ R is convex

Zhang and Sra (2016), subgradient-based method and function
value converges to the optimal O(1/

√
k).

Ferreira and Oliveira (2002) proximal point method, convergence
using convexity
Bento, da Cruz Neto and Oliveira (2011), convergence using
Kurdyka- Lojasiewicz (KL); and
Bento, Ferreira and Melo (2017), function value converges to the
optimal O(1/k) on Hadamard manifold using convexity
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Existing Nonsmooth Optimization on Manifolds

F = f + g , where f is L-con, and g is non-smooth

Chen, Ma, So, and Zhang (2018), A proximal gradient method with
global convergence

Huang and Wei (2019), A Riemannian proximal gradient method
with convergence rate analyses
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A Euclidean Proximal Gradient Method

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + g(x), (1)

A proximal gradient method2:

initial iterate:x0,{
dk = arg minp∈Rn 〈∇f (xk), p〉 + L

2‖p‖
2
F + g(xk + p), (Proximal mapping)

xk+1 = xk + dk . (Update iterates)

g = 0: reduce to steepest descent method;

L: greater than the Lipschitz constant of ∇f ;

Proximal mapping: easy to compute;

Any limit point is a critical point;

2

The update rule: xk+1 = arg minx 〈∇f (xk ), x − xk 〉+ L
2
‖x − xk‖2 + g(x).
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Convergence Rates

Assumption

minx∈Rn×m F (x) = f (x) + g(x), with convex f and g ;

O(1/k) sublinear convergence rate:

F (xk)− F (x∗) ≤ C/k , for a constant C ;

Optimal gradient method: O(1/k2) [Dar83, Nes83]

For example: FISTA [BT09]

initial iterate: x0 and let y0 = x0, t0 = 1,
dk = arg minp∈Rn×m 〈∇f (yk), p〉 + L

2‖p‖
2
F + g(yk + p),

xk+1 = yk + dk ,

tk+1 =
1+
√

4t2
k+1

2 ,
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk).
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Local Convergence Rates

Assumption

minx∈Rn×m F (x) = f (x) + g(x), with F satisfying the
Kurdyka- Lojasiewicz (KL) property with exponent θ ∈ (0, 1];

Reference [BST14]:

Only one accumulation point;

if θ = 1, then the proximal gradient method terminates in finite
steps;

if θ ∈ [0.5, 1), then ‖xk − x∗‖ < C1d
k for C1 > 0 and d ∈ (0, 1);

if θ ∈ (0, 0.5), then ‖xk − x∗‖ < C2k
−1

1−2θ for C2 > 0;
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Difficulties in the Riemannian Setting

Euclidean proximal mapping

dk = arg min
p∈Rn×m

〈∇f (xk), p〉 +
L

2
‖p‖2

F + g(xk + p)

In the Riemannian setting:

How to define the proximal mapping?

Can be solved cheaply?

Share the same convergence rate?
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A Riemannian Proximal Gradient Method in [CMMCSZ20]

Euclidean proximal mapping

dk = arg min
p∈Rn×m

〈∇f (xk), p〉 +
L

2
‖p‖2

F + g(xk + p)

A Riemannian proximal mapping [CMMCSZ20]

1 ηk = arg minη∈Txk
M 〈∇f (xk), η〉 + L

2‖η‖
2
F + g(xk + η);

2 xk+1 = Rxk (αkηk) with an appropriate step size αk ;

Only works for embedded submanifold;

Proximal mapping is defined in tangent space;

Convex programming;

Solved efficiently for the Stiefel manifold by a semi-Newton
algorithm [XLWZ18];

Step size 1 is not necessary decreasing;

M

x
η

TxM

Rx(η)

2[CMSZ18]: S. Chen, S. Ma, M. C. So, and T. Zhang, Proximal gradient method
for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization,
30(1):210-239, 2020
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New Riemannian Proximal Gradient Methods

GOAL: Develop a Riemannian proximal gradient method with
convergence rate analysis and good numerical performance for some
instances

A New Riemannian Proximal Gradient Method

1 ηk = arg minη∈Txk
M 〈∇f (xk), η〉xk +

L

2
‖η‖2

xk︸ ︷︷ ︸
Riemannian metric

+g( Rxk (η)︸ ︷︷ ︸
replace xk + η

);

2 xk+1 = Rxk (ηk);

General framework for Riemannian optimization;

Step size can be fixed to be 1;
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Assumptions and Convergence Result

Assumption:

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

This assumption hold if, for example, F is continuous and M is compact.

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,
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A function h :M→ R is called L-retraction-smooth with respect to a
retraction R in N ⊆M if for any x ∈ N and any Sx ⊆ TxM such that
Rx(Sx) ⊆ N , we have that

h(Rx(η)) ≤ h(x) + 〈grad h(x), η〉x +
L

2
‖η‖2

x , ∀η ∈ Sx .
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M is a compact Riemannian submanifold of a Euclidean space Rn;

the retraction R is globally defined;

f : Rn → R is L-smooth in the convex hull of M;
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Assumptions and Convergence Result

Assumption:

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

Theoretical results:

For any accumulation point x∗ of {xk}, x∗ is a stationary point, i.e.,
0 ∈ ∂F (x∗).
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Assumptions and Convergence Rate

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Definition

A function h :M→ R is called retraction-convex with respect to a
retraction R in N ⊆M if for any x ∈ N and any Sx ⊆ TxM such that
Rx(Sx) ⊆ N , there exists a tangent vector ζ ∈ TxM such that qx = h ◦ Rx

satisfies
qx(η) ≥ qx(ξ) + 〈ζ, η − ξ〉x ∀η, ξ ∈ Sx . (2)

Note that ζ = grad qx(ξ) if h is differentiable; otherwise, ζ is any
subgradient of qx at ξ.
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Assumptions and Convergence Rate

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Lemma

Given x ∈M and a twice continuously differentiable function h :M→ R,
if one of the following conditions holds:

Hess h is positive definite at x, and the retraction is second order;

The manifold M is an embedded submanifold of Rn endowed with the
Euclidean metric; W is an open subset of Rn; x ∈ W;
h :W ⊂ Rn → R is a µ-strongly convex function in the Euclidean
setting for a sufficient large µ; the retraction is second order;

then there exists a neighborhood of x, denoted by Nx , such that the
function h :M→ R is retraction-convex in Nx .
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Assumptions and Convergence Rate

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Nonsmooth? Example: g(x) = ‖x‖1 with exponential mapping

unit sphere: {x ∈ Rn | xT x = 1}, n = 100

Poincaré ball model [GBH18]: {x ∈ Rn | xT x < 1}, n = 100

g(Expx(tηx)) versus t

-0.01 -0.005 0 0.005 0.01

t

7.865

7.866

7.867

7.868

g
(E

x
p
(t

 e
ta

))

Unit sphere

-0.01 -0.005 0 0.005 0.01

t

4.8175

4.818

4.8185

4.819

4.8195

g
(E

x
p
(t

 e
ta

))

Poincare ball

[GBH18] Ganea et al., Hyperbolic entailment cones for learning hierarchical embedding,

ICML, 2018.
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Assumptions and Convergence Rate

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Retraction approximately satisfies the triangle relation in Ω: for all
x , y , z ∈ Ω,∣∣‖ξx − ηx‖2

x − ‖ζy‖2
y

∣∣ ≤κ‖ηx‖2
x , for a constant κ

where ηx = R−1
x (y), ξx = R−1

x (z), ζy = R−1
y (z).

In the Euclidean setting: ηx = R−1
x (y) = y − x , ξx = R−1

x (z) = z − x ,
ζy = R−1

y (z) = z − y :

ξx − ηx = (z − x)− (y − x) = z − y = ζy .

Holds on the unit sphere.
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Assumptions and Convergence Rate
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Retraction approximately satisfies the triangle relation in Ω: for all
x , y , z ∈ Ω,∣∣‖ξx − ηx‖2

x − ‖ζy‖2
y

∣∣ ≤κ‖ηx‖2
x , for a constant κ

where ηx = R−1
x (y), ξx = R−1

x (z), ζy = R−1
y (z).

Table: Exponential mapping on the Stiefel manifold with the Euclidean metric
〈ηx , ξx〉x = trace(ηTx ξx). Left =

∣∣‖ξx − ηx‖2
x − ‖ζy‖2

y

∣∣
(n, p) = (10, 1) (n, p) = (10, 4) (n, p) = (10, 10)
‖ηx‖ Left ‖ηx‖ Left ‖ηx‖ Left

5.00−2 7.83−5 5.00−2 1.83−5 5.00−2 2.14−6

2.50−2 1.80−5 2.50−2 4.27−6 2.50−2 4.72−7

1.25−2 4.25−6 1.25−2 1.01−6 1.25−2 1.11−7

6.25−3 1.03−6 6.25−3 2.46−7 6.25−3 2.68−8
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x , y , z ∈ Ω,∣∣‖ξx − ηx‖2

x − ‖ζy‖2
y

∣∣ ≤κ‖ηx‖2
x , for a constant κ

where ηx = R−1
x (y), ξx = R−1

x (z), ζy = R−1
y (z).

Table: Exponential mapping on the Stiefel manifold with the canonical metric
〈ηx , ξx〉x = trace(ηTx (I − XXT/2)ξx). Left =

∣∣‖ξx − ηx‖2
x − ‖ζy‖2

y

∣∣
(n, p) = (10, 2) (n, p) = (10, 4) (n, p) = (10, 9)
‖ηx‖ Left ‖ηx‖ Left ‖ηx‖ Left

5.00−2 3.55−5 5.00−2 1.15−5 5.00−2 8.39−6

2.50−2 8.06−6 2.50−2 2.58−6 2.50−2 1.89−6

1.25−2 1.90−6 1.25−2 6.08−7 1.25−2 4.45−7

6.25−3 4.61−7 6.25−3 1.47−7 6.25−3 1.08−7
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Assumptions and Convergence Rate

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Retraction approximately satisfies the triangle relation in Ω: for all
x , y , z ∈ Ω,∣∣‖ξx − ηx‖2

x − ‖ζy‖2
y

∣∣ ≤κ‖ηx‖2
x , for a constant κ

where ηx = R−1
x (y), ξx = R−1

x (z), ζy = R−1
y (z).

Theoretical results:

Convergence rate O(1/k):

F (xk)− F (x∗) ≤
1

k

(
L

2
‖R−1

x0
(x∗)‖2

x0
+

LκC

2
(F (x0)− F (x∗))

)
.
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Riemannian FISTA Method with O(1/k2)?

FISTA initial iterate: x0 and let y0 = x0, t0 = 1

1 dk = arg minp∈Rn×m 〈∇f (yk), p〉 + L
2‖p‖

2
F + g(yk + p)

2 xk+1 = yk + dk

3 tk+1 =
1+
√

4t2
k+1

2

4 yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk)

Possible Riemannian generalizations:

Step 1: Riemannian proximal mapping

Step 2: Retraction

Step 4: multiple generalizations

Difficulties for O(1/k2) convergence rate, e.g.,∣∣‖ωx + ξx − ηx‖2
x − ‖ωx + ζy‖2

y

∣∣ ≤κ‖ηx‖2
x , for a constant κ
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Assumptions and Local Convergence Result

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BCNO11]

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,
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Assumptions and Local Convergence Result

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BCNO11]

Definition ( [AMS08, 7.4.3])

A function f on M is Lipschitz continuously differentiable if it is
differentiable and if there exists β1 such that, for all x , y in M with
dist(x , y) < i(M), it holds that

‖P0←1
γ grad f (y)− grad f (x)‖x ≤ β1 dist(x , y),

where γ is the unique minimizing geodesic with γ(0) = x and γ(1) = y .
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Assumptions and Local Convergence Result

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BCNO11]

If f is smooth and the manifold M is compact, then the function f is
Lipschitz continuously differentiable. [AMS08, Proposition 7.4.5 and
Corollary 7.4.6].

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,
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Assumptions and Local Convergence Result

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BCNO11]

Definition

A continuous function f :M→ R is said to have the Riemannian KL property at x ∈ M if and only
if there exists ε ∈ (0,∞], a neighborhood U ⊂M of x , and a continuous concave function
ς : [0, ε]→ [0,∞) such that

ς(0) = 0, ς is C 1 on (0, ε), and ς′ > 0 on (0, η),

For every y ∈ U with f (x) < f (y) < f (x) + ε, we have

ς
′(f (y)− f (x)) dist(0, ∂f (y)) ≥ 1,

where dist(0, ∂f (y)) = inf{‖v‖y : v ∈ ∂f (y)} and ∂ denotes the Riemannian generalized
subdifferential. The function ς is called the desingularising function.
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Assumptions and Local Convergence Result

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BCNO11]

Theoretical results:

it holds that

∞∑
k=0

dist(xk , xk+1) <∞.

Therefore, there exists only a unique accumulation point.
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Assumptions and Local Convergence Result

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BCNO11]

Theoretical results:

If the desingularising function has the form ς(t) = C
θ t
θ for C > 0 and

θ ∈ (0, 1] for all x ∈ Ωx0 , then

if θ = 1, then the Riemannian proximal gradient method terminates in
finite steps;
if θ ∈ [0.5, 1), then ‖xk − x∗‖ < C1d

k for C1 > 0 and d ∈ (0, 1);

if θ ∈ (0, 0.5), then ‖xk − x∗‖ < C2k
−1

1−2θ for C2 > 0;
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Riemannian KL property

How to verify if a function satisfies the Riemannian KL property?

Theorem

Given x ∈M, let (φ,U) denote a chart of M covering x, i.e., x ∈ U .
We assume that F ◦ φ−1 : Rd → R satisfies the Euclidean KL property at
φ(x) with the desingularising function ς̃x , then F satisfies the Riemannian
KL property at x with the desingularising function ς̃x/Cx , where Cx is a
constant.

Similar result is given in [BCNO11]: F is a C-function =⇒ F satisfies the
Riemannian KL property.

Riemannian Proximal Gradient Methods 17



Riemannian KL property
Semialgebraic sets, mappings, and functions

Definition (Semialgebraic sets, mappings and functions)

1 A subset S of Rn is called semialgebraic if there exists a finite
number of polynomial function gij , hij : Rn → R such that

S = ∪pj=1 ∩
q
i=1 {u ∈ Rn | gij(u) = 0 and hij(u) < 0}.

2 Let A ⊆ Rm and B ⊆ Rn be two semialgebraic sets. A mapping
: A → B is semialgebraic if its graph is semialgebraic in Rm+n. If
n = 1, then the mapping is also called a semialgebraic function.

Continuous semialgebraic functions satisfy the Euclidean KL property
with desingularising function in the form of ς(t) = C

θ t
θ, where θ ∈ (0, 1]

and C > 0.
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Riemannian KL property on the Stiefel manifold

Restriction of a semialgebraic Function onto Stiefel manifold satisfies the
Riemannian KL property

1 For any point x ∈ St(p, n), construct a chart (φ,U) such that x ∈ U
and φ is a semialgebraic mapping

2 Inverse of φ is semialgebraic mapping

3 The composition function f ◦ φ−1 is a semialgebraic function

4 f ◦ φ−1 satisfies the Euclidean KL property with desingularising
function ς(t) = C

θ t
θ

5 f :M→ R satisfies the Riemannian KL property with

desingularising function ς(t) = C̃
θ t
θ

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,

Riemannian Proximal Gradient Methods 19



Riemannian KL property on the Stiefel manifold

Restriction of a semialgebraic Function onto Stiefel manifold satisfies the
Riemannian KL property

1 For any point x ∈ St(p, n), construct a chart (φ,U) such that x ∈ U
and φ is a semialgebraic mapping

2 Inverse of φ is semialgebraic mapping

3 The composition function f ◦ φ−1 is a semialgebraic function

4 f ◦ φ−1 satisfies the Euclidean KL property with desingularising
function ς(t) = C

θ t
θ

5 f :M→ R satisfies the Riemannian KL property with

desingularising function ς(t) = C̃
θ t
θ

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,
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Verify Assumptions for sparse PCA models

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,

Therefore, all assumptions for global convergence and local convergence
hold for the two sparse PCA models.

All accumulation points are critical

Local convergence:

Accumulation point is unique;
if θ = 1, then the method terminates in finite steps;
if θ ∈ [0.5, 1), then ‖xk − x∗‖ < C1d

k for C1 > 0 and d ∈ (0, 1);

if θ ∈ (0, 0.5), then ‖xk − x∗‖ < C2k
−1

1−2θ for C2 > 0;
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Riemannian subproblem

ηx = arg min
η∈TxM

`x(η) := 〈∇f (x), η〉x +
L

2
‖η‖2

x + g(Rx(η))

In some cases, the subproblem can be solved by exploiting the structure of
the manifold;

Solving the Riemannian Proximal Mapping

initial iterate: η0 ∈ TxM, σ ∈ (0, 1), k = 0;

1 yk = Rx(ηk);

2 Compute

ξ∗k = arg min
ξ∈Tyk

M
〈T −]Rηk

(grad f (x) + L̃ηk), ξ〉x +
L̃

4
‖ξ‖2

F + g(yk + ξ);

3 Find α > 0 such that `x(ηk + αT −1
Rηk

ξ∗k ) < `x(ηk)− σα‖ξ∗k‖2
x ;

4 ηk+1 = ηk + αT −1
Rηk

ξ∗k , k ← k + 1 and goto Step 1;

Above algorithm is used if the ambient space is Rn

An application of [CMMCSZ20] if R−1
x (y) exists.
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Numerical Experiments

Two sparse PCA models:

first model: [GHT15]

min
X∈OB(p,n)

‖XTATAX − D2‖2
F + λ‖X‖1,

where A ∈ Rm×n is a data matrix, D is the diagonal matrix with
dominant singular values of A,
OB(p, n) = {X ∈ Rn×p | diag(XTX ) = Ip}, p ≤ m;

second model

min
X∈St(p,n)

− trace(XTATAX ) + λ‖X‖1.
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Numerical Experiments

Table: An average result of 10 random tests. n = 128, m = 20, r = 4.
δ = (L‖xk+1 − xk‖)2. The subscript k indicates a scale of 10k .

λ Algo iter time f δ spar. navar

3

ManPG 11791 1.40 8.331 5.11−6 0.54 0.86
RPG 11679 0.94 8.331 5.11−6 0.54 0.86

ManPG-Ada 1398 0.30 8.331 1.67−3 0.54 0.86
A-ManPG 273 0.09 8.331 9.19−4 0.54 0.86

A-RPG 263 0.06 8.331 1.12−3 0.54 0.86

ManPG: the method in [CMMCSZ20];

RPG: the new Riemannian proximal gradient without acceleration;

A-ManPG: Use similar technique to accelerate ManPG;

A-RPG: the new Riemannian proximal gradient with acceleration;
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Numerical Experiments
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Figure: Two typical runs of ManPG, RPG, A-ManPG, and A-RPG for the
Sparse PCA problem. n = 1024, p = 4, λ = 2, m = 20.
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Numerical Experiments

Sparse PCA problem

min
X∈St(p,n)

− trace(XTATAX ) + λ‖X‖1,

where A ∈ Rm×n is a data matrix.
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Numerical Experiments
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Figure: Two typical runs of ManPG, RPG, A-ManPG, and A-RPG for the
Sparse PCA problem. n = 1024, p = 4, λ = 2, m = 20.
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Summary

Propose a Riemannian proximal gradient method;

Global convergence to critical points

O(1/k) convergence rate using retraction-convexity

Local convergence rate using Riemannian KL property

Retraction of a semialgebraic functiono onto the Stiefel manifold
satisfies the Riemannian KL property

Apply the methods to sparse PCA problems on the oblique manifold
and the Stiefel manifold;
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Wen Huang, Ke Wei, Riemannian Proximal Gradient Methoods,
arxiv:1909.06065, 2019

Thank you

Riemannian Proximal Gradient Methods 28



References I

P.-A. Absil, R. Mahony, and R. Sepulchre.

Optimization algorithms on matrix manifolds.
Princeton University Press, Princeton, NJ, 2008.

Nicolas Boumal, P-A Absil, and Coralia Cartis.

Global rates of convergence for nonconvex optimization on manifolds.
IMA Journal of Numerical Analysis, 39(1):1–33, 02 2018.

G. C. Bento, J. X. Cruz Neto, and P. R. Oliveira.

Convergence of inexact descent methods for nonconvex optimization on Riemannian manifold.
arXiv preprint arXiv:1103.4828, 2011.
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