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Riemannian Optimization

Problem: Given f (x) :M→ R,
solve

min
x∈M

f (x)

where M is a Riemannian manifold.
M

R
f

Unconstrained optimization problem on a constrained space.

Riemannian manifold = manifold + Riemannian metric

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Riemannian Manifold

Manifolds:

Sphere

Stiefel manifold: St(p, n) =
{X ∈ Rn×p|XTX = Ip};
Grassmann manifold Gr(p, n):
all p-dimensional subspaces of
Rn;

And many more.

Riemannian metric:

M

x

ξ

η

R

gx(η, ξ)
TxM

A Riemannian metric, denoted by g ,
is a smoothly-varying inner product
on the tangent spaces;

Speaker: Wen Huang Tangent Vectors and Vector Transport
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BFGS Quasi-Newton Algorithm: from Euclidean to Riemannian

replace by Rxk (ηk)

Update formula:

y

xk+1 = xk + αkηk

Search direction:
ηk = −B−1

k grad f (xk)

Bk update:

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bksk
+

yky
T
k

yT
k sk

,

← use vector transport

forspace
where sk = xk+1 − xk , and yk = grad f (xk+1)− grad f (xk)

x

x

replaced by R−1
xk (xk+1)

use vector transport

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Retraction and Vector Transport

Retraction: R : TM→M

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk (αkηk)

M

x
η

TxM

Rx(η)R̃x(η)

Two retractions:R and R̃

A vector transport:
T : TM× TM→ TM :
(ηx , ξx) 7→ Tηx ξx :

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Speaker: Wen Huang Tangent Vectors and Vector Transport
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BFGS Quasi-Newton Algorithm: from Euclidean to Riemannian

Update formula: xk+1 = Rxk (αkηk)

Search direction:
ηk = −B−1

k grad f (xk)

Bk update:

B̃k =Tαkηk
◦ Bk ◦ T −1

αkηk
,

← matrix matrix multiplication

Bk+1 =B̃k −
B̃ksks

T
k B̃k

sTk B̃ksk
+

yky
T
k

yT
k sk

,

where sk = Tαkηk
(αkηk), and yk = grad f (xk+1)− Tαkηk

grad f (xk);

x

x

matrix vector multiplication matrix vector multiplication

Extra cost on vector transports!

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Existing Generic Riemannian BFGS methods

Qi [Qi11]: exponential mapping, parallel translation;

Idea: imitate the Euclidean setting;

Exponential mapping: along the geodesic;
Parallel translation: move tangent vector parallelly;
Problem: maybe unknown to users, maybe expensive to compute;

M

x
η

TxM

Rx(η)R̃x(η)

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Existing Generic Riemannian BFGS methods

Ring and Wirth [RW12]: retraction, vector transport by
differentiated retraction, isometric vector transport;

Idea: quasi-Newton update in tangent space, then transport to
new tangent space isometrically;

Retraction: no constraints;
Two vector transport: VT by differentiated retraction, and
isometric VT;
Problem: vector transport by differentiated retraction maybe
unknown to users, maybe expensive to compute;

M

x
η

TxM

Rx(η)R̃x(η)

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx
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Existing Generic Riemannian BFGS methods

Huang, Absil, Gallivan [HGA15, HAG18]: retraction, isometric
vector transport

Idea: quasi-Newton update in tangent space, then transport to
new tangent space isometrically;

Retraction: no constraints;
Vector transport: Isometric VT or VT by differentiated retraction
along a direction;

M

x
η

TxM

Rx(η)R̃x(η)

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx
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Implementation of an isometric vector transport

Summary:

Isometric vector transport is needed [RW12, HGA15, HAG18];

An efficient vector transport is crucial;

An efficient isometric vector transport:

Representative manifold:

the Stiefel manifold St(p, n) = {X ∈ Rn×p|XTX = Ip};
canonical metric: g(ηX , ξX ) = trace

(
ηTX
(
In − 1

2
XXT

)
ξX
)
;

The idea in this talk can be used for more algorithms and many
commonly-encountered manifolds.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Representations of Tangent Vectors

E = Rw ;

Dimension of M is d ;

Stiefel manifold: E = Rn×p;

Stiefel manifold: d = np − p(p + 1)/2;

M

x

E

Figure: An embedded submanifold

Extrinsic: ηx ∈ Rw ; (TX = {XΩ + X⊥K | ΩT = −Ω,XTX⊥ = 0})
Intrinsic: η̃x ∈ Rd such that ηx = Bx η̃x , where Bx is smooth;

How to find a basis B?

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Extrinsic Representation and Intrinsic Representation on
the Stiefel Manifold

TX St(p, n) = {XΩ + X⊥K | ΩT = −Ω,XTX⊥ = 0};

Bx =


[
X X⊥

]


0 1 . . . 0
−1 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0


, . . . ,

[
X X⊥

]


0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0
1 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0





Speaker: Wen Huang Tangent Vectors and Vector Transport
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Extrinsic Representation and Intrinsic Representation on
the Stiefel Manifold

TX St(p, n) = {XΩ + X⊥K | ΩT = −Ω,XTX⊥ = 0};

Extrinsic ηX :

ηX =
[
X X⊥

] [Ω
K

]

=
[
X X⊥

]


0 a12 . . . a1p

−a12 0 . . . a2p

. . . . . . . . . . . .
−a1p −a2p . . . 0
b11 b12 . . . b1p

b21 b22 . . . b2p

. . . . . . . . . . . .
b(n−p)1 b(n−p)2 . . . b(n−p)p



Intrinsic η̃X :

η̃X =



a12

a13

a23

...
a(p−1)p

b11

b21

...
b(n−p)p


Speaker: Wen Huang Tangent Vectors and Vector Transport
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Extrinsic Representation and Intrinsic Representation on
the Stiefel Manifold

Question

Extrinsic representation ηX ⇐⇒ Intrinsic representation η̃X

ηX =
[
X X⊥

] [Ω
K

]
⇔
[

Ω
K

]
⇔ η̃X

Apply Householder transformation to X , (Done in retraction)

QT
p QT

p−1 . . .Q
T
1 X = R = In×p.[

X X⊥
]

= Q1Q2 . . .Qp (Do not compute)

Extrinsic to Intrinsic: QT
p QT

p−1 . . .Q
T
1 ηX =

[
Ω
K

]
and reshape to η̃X ;

(4np2 − 2p3) flops

Intrinsic to Extrinsic: reshape η̃X and ηX = Q1Q2 . . .Qp

[
Ω
K

]
;

(4np2 − 2p3) flops

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Benefits of Intrinsic Representation

Operations on tangent vectors are cheaper since d ≤ w ;

If the basis is orthonormal, then the Riemannian metric reduces to
the Euclidean metric:

g(ηx , ξx) = g(Bx η̃x ,Bx ξ̃x) = η̃Tx ξ̃x .

Stiefel: trace
(
ηTX
(
In − 1

2XX
T
)
ξX
)
−→ η̃TX ξ̃X

A vector transport has identity implementation, i.e., T̃η = id.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Vector Transport by Parallelization

Vector transport by parallelization:

Tηx ξx = ByB
†
x ξx ;

where y = Rx(ηx) and † denotes pseudo-inverse, has identity
implementation [HAG16]:

Tη̃x ξ̃x = ξ̃x .

Example:

Extrinsic:

ζ = Tηξ = ByB
†
x ξ

Intrinsic:

ζ̃ =T̃ηξ
=B†yByB

†
xBx ξ̃

=ξ̃

M

x
ξ1

TxM

y

ζ1

ξ2

ζ2

TyM

Bx =
[
ξ1 ξ2

]

By =
[
ζ1 ζ2

]

ξ = aξ1 + bξ2

ζ = aζ1 + bζ2

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Sparse Eigenvalue Problem

Problem

Fine eigenvalues and eigenvectors of a sparse symmetric matrix A.

The Brockett cost function:

f : St(p, n)→ R : X 7→ trace(XTAXD);

D = diag(µ1, µ2, . . . , µp) with µ1 > · · · > µp > 0;

Unique minimizer: X ∗ are eigenvectors for the p smallest
eigenvalues.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Setting and Complexities

f : St(p, n)→ R : X 7→ trace(XTAXD);

Setting

A = diag(1, 2, . . . , n) + B + BT , where entries of B has probability
1/n to be nonzero;

D = diag(p, p − 1, . . . , 1);

Complexities

Function evaluation: ≈ 8np

Euclidean gradient evaluation: np (After function evaluation)

Retraction evaluation (QR): 6np2

Extrinsic:

(10 + 8m)np2 +O(p3) +O(np);

Intrinsic:

14np2 + O(p3) + O(np);

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Results

Table: An average of 100 random runs. Note that m is the upper bound of the
limited-memory size m. n = 1000 and p = 8.

m 2 8 32
Extr Intr Extr Intr Extr Intr

iter 1027 915 933 830 877 745
nf 1052 937 941 837 883 751
ng 1028 916 934 831 878 746
nR 1051 936 940 836 882 750
nV 1027 915 933 830 877 745

gf/gf0 9.00−7 9.11−7 9.24−7 9.25−7 9.52−7 9.49−7

t 2.94−1 2.50−1 4.84−1 2.74−1 1.27 4.31−1

t/iter 2.86−4 2.73−4 5.18−4 3.31−4 1.45−3 5.79−4

Intrinsic representation yields faster LRBFGS implementation.

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Conclusion

Framework of Riemannian BFGS method;

Review recent generic Riemannian BFGS methods;

Intrinsic representation and vector transport by parallelization

Numerical evidences of low complexity

Speaker: Wen Huang Tangent Vectors and Vector Transport
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Riemannian Manifold Optimization Library

Most state-of-the-art methods;

Commonly-encountered manifolds;

Written in C++;

Interfaces with Matlab, Julia and R;

BLAS and LAPACK;

www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

Users need only provide a cost function, gradient function, an action of
Hessian (if a Newton method is used) in Matlab, Julia, R or C++ and
parameters to control the optimization, e.g., the domain manifold, the
algorithm, stopping criterion.

Speaker: Wen Huang Tangent Vectors and Vector Transport

www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html
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Thank you

Thank you!

Speaker: Wen Huang Tangent Vectors and Vector Transport
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