A limited-memory Riemannian symmetric rank-one trust-region method with a restart strategy

Speaker: Wen Huang

Xiamen University

November 12, 2022

Joint work with Kyle Gallivan

Problem Statement Nonexhaustive Review

Riemannian Optimization

Problem Statement

Problem: Given $f(x) : \mathcal{M} \to \mathbb{R}$, solve

$$\min_{x\in\mathcal{M}}f(x)$$

where \mathcal{M} is a Riemannian manifold.

Unconstrained optimization problem on a constrained space.

Riemannian manifold = manifold + Riemannian metric

Problem Statement Nonexhaustive Review

Riemannian Manifold

Problem Statement

Manifolds:

- Stiefel manifold: $St(p, n) = {X \in \mathbb{R}^{n \times p} | X^T X = I_p};$
- Grassmann manifold Gr(p, n): all p-dimensional subspaces of ⁿ;
- And many more.

Riemannian metric:

A Riemannian metric, denoted by g, is a smoothly-varying inner product on the tangent spaces;

Problem Statement Nonexhaustive Review

Riemannian Manifold

A Nonexhaustive Review

- Steepest descent: Smith 1994; Helmke-Moore 1994; lannazzo-Porcelli 2019;
- Conjugate gradient: Smith 1994; Gallivan-Absil 2010; Ring-Wirth 2012; Sato-Iwai 2015;
- Trust region Newton: Absil-Baker-Gallivan 2007;
- Quasi-Newton:
 - BFGS Ring-Wirth 2012;
 - Trust-region SR1 Huang-Absil-Gallivan 2015;
 - Broyden family (including BFGS) Huang-Absil-Gallivan 2015;
 - BFGS, LBFGS Huang-Absil-Gallivan 2018;
 - Limited-memory trust-region SR1 Huang-Gallivan 2022;

Problem Statement Nonexhaustive Review

Riemannian Manifold

A Nonexhaustive Review

- Steepest descent: Smith 1994; Helmke-Moore 1994; lannazzo-Porcelli 2019;
- Conjugate gradient: Smith 1994; Gallivan-Absil 2010; Ring-Wirth 2012; Sato-Iwai 2015;
- Trust region Newton: Absil-Baker-Gallivan 2007;
- Quasi-Newton:
 - BFGS Ring-Wirth 2012;
 - Trust-region SR1 Huang-Absil-Gallivan 2015;
 - Broyden family (including BFGS) Huang-Absil-Gallivan 2015;
 - BFGS, LBFGS Huang-Absil-Gallivan 2018;
 - Limited-memory trust-region SR1 Huang-Gallivan 2022;

.SR Subproblem ntrinsic Representation Riemannian LSR1 Update Algorithm

A Limited-memory Trust-region Symmetric Rank-One Update Method with a Restart Strategy (LRTRSR1-R)

The idea is based on

- Intrinsic representation of tangent vectors¹;
- An efficient solver for the Euclidean LSR1 subproblem²;
- Slight modifications to LRTRSR1;

¹W. Huang, P.-A. Absil, and K. A. Gallivan. Intrinsic representation of tangent vectors and vector transport on matrix manifolds. Numerische Mathematik, 136(2):523-543, 2017.

²Johannes Brust, Jennifer B. Erway, and Roummel F. Marcia. On solving L-SR1 trust- region subproblems. Computational Optimization and Applications, 66(2):245-266, Mar 2017

SR Subproblem htrinsic Representation liemannian LSR1 Update lgorithm

Euclidean TRSR1 to Riemannian TRSR1

Euclidean trust region SR1

Require: Initial iterate x₀;

1, Set $k \leftarrow 0$;

while not accurate enough do

2, Compute s_k by approximately solving

$$\operatorname*{argmin}_{\|s\| \leq \Delta_k} \nabla f(x_k)^T s + \frac{1}{2} s^T B_k s;$$

3,
$$\rho_k \leftarrow \frac{f(x_k) - f(x_k + s_k)}{m_k(0) - m_k(s_k)}$$
;
4, $x_{k+1} \leftarrow \begin{cases} x_k + s_k & \text{if } \rho_k > c \\ x_k & \text{otherwise} \end{cases}$
5, Update radius to get Δ_{k+1} ;
6, Update B_k to get B_{k+1} ;
7, $k \leftarrow k + 1$;
end while

Riemannian trust region SR1

Require: Initial iterate x_0 ; 1. Set $k \leftarrow 0$: while not accurate enough do 2. Compute \mathfrak{s}_{k} by approximately solving argmin $g(\operatorname{grad} f(x_k), \mathfrak{s}) + \frac{1}{2}g(\mathfrak{s}, \mathcal{B}_k \mathfrak{s});$ $\|\mathfrak{s}\| \leq \Delta_k, \mathfrak{s} \in \mathbf{T}_{x_k} \mathcal{M}$ 3, $\rho_k \leftarrow \frac{f(x_k) - f(R_{x_k}(\mathfrak{s}_k))}{m_k(0) - m_k(\mathfrak{s}_k)};$ 4, $x_{k+1} \leftarrow \begin{cases} R_{x_k}(\mathfrak{s}_k) & \text{if } \rho_k > c \\ x_k & \text{otherwise.} \end{cases}$ 5. Update radius to get Δ_{k+1} ; 6. Update \mathcal{B}_k to get \mathcal{B}_{k+1} ; 7. $k \leftarrow k + 1$: end while

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Trust-region LSR Subproblem

Euclidean Version

Local problem in Euclidean trust region:

$$\min_{\|s\|\leq\Delta} m(s) = s^T g + \frac{1}{2} s^T B s;$$

at k-th iteration: Δ = Δ_k, g = ∇f(x_k) and B = B_k;
SR1 update: (y_k = ∇f(x_{k+1}) - ∇f(x_k))

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k};$$

• Compact representation:

$$B_{k+1} = B_{k-m+1} + (Y_{k+1} - B_{k-m+1}S_{k+1}) (D_{k+1} + L_{k+1} + L_{k+1}^{T} - S_{k+1}^{T}B_{k-m+1}S_{k+1})^{-1}(Y_{k+1} - B_{k-m+1}S_{k+1})^{T}; = \gamma I + \Phi M^{-1}\Phi^{T};$$

where
$$Y_{k+1} = [y_{k-m+1}, \dots, y_k], S_{k+1} = [s_{k-m+1}, \dots, s_k]$$
, and $\gamma I = B_{k-m+1}$.

7/37

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Trust-region LSR Subproblem

Local problem in Euclidean trust region:

$$\min_{\|s\|\leq\Delta} m(s) = s^{\mathsf{T}}g + \frac{1}{2}s^{\mathsf{T}}Bs;$$

Theorem ([NW06])

The vector s* is a global solution of the trust region subproblem

$$\min_{\|s\|\leq\Delta}\nabla f(x)^{\mathsf{T}}s + \frac{1}{2}s^{\mathsf{T}}Bs$$

if and only if s^* is feasible and there is a scalar $\lambda \ge 0$ such that the following conditions hold:

$$(B + \lambda I)s^* = -\nabla f(x), \quad \lambda(\Delta - \|s^*\|) = 0, \quad (B + \lambda I) \succeq 0.$$

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Trust-region LSR Subproblem

Local problem in Euclidean trust region:

$$\min_{|s||\leq\Delta} m(s) = s^T g + \frac{1}{2} s^T B s;$$

Eigenvalue decomposition

$$B = \gamma I + \Phi M^{-1} \Phi^{T} = \begin{bmatrix} P & P_{\perp} \end{bmatrix} \begin{pmatrix} \gamma I + \begin{bmatrix} S & \\ & 0_{(n-m)\times(n-m)} \end{bmatrix} \end{pmatrix} \begin{bmatrix} P & P_{\perp} \end{bmatrix}^{T},$$

where $\Phi = QR$ is qr decomposition, $RM^{-1}R^{T} = USU^{T}$ is eigenvalue decomposition, P = QU and $[P, P_{\perp}]$ is orthonormal.

- Eigenvalues of $B: \Lambda = \gamma + \operatorname{diag}(s_1, \ldots, s_m, 0, \ldots, 0);$
- $s(\lambda) = -(B + \lambda I)^{-1}g$ for finding the solution s^* ;
- $h(\lambda) = \frac{1}{\||s(\lambda)\|} \frac{1}{\Delta}$ for finding the appropriate λ ;
- Complexity: $O(nm) + O(m^3)$;

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Trust-region LSR Subproblem

Riemannian Version

Local problem in Riemannian trust region:

$$\min_{\|\mathfrak{s}\|\leq\Delta,\mathfrak{s}\in\mathrm{T}_{\times}\mathcal{M}}m(\mathfrak{s})=g_{x}(\mathfrak{s},g)+\frac{1}{2}g_{x}(\mathfrak{s},\mathcal{B}\mathfrak{s});$$

Turn Riemannian LSR1 subproblem into Euclidean version:

- Q_x : an orthonormal basis of $T_x \mathcal{M}$;
- $T_x \mathcal{M} = \{Q_x c : c \in \mathbb{R}^d\};$
- Replace \mathfrak{s} by $Q_x c$:

$$\min_{\|Q_xc\|\leq\Delta}c^{\mathsf{T}}Q_x^\flat g+\frac{1}{2}c^{\mathsf{T}}(Q_x^\flat \mathcal{B}Q)c=\min_{\|c\|\leq\Delta}c^{\mathsf{T}}\hat{g}+\frac{1}{2}c^{\mathsf{T}}\hat{\mathcal{B}}c;$$

• Solved by Euclidean version algorithm

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Trust-region LSR Subproblem

Riemannian Version

Local problem in Riemannian trust region:

$$\min_{\|\mathfrak{s}\|\leq\Delta,\mathfrak{s}\in\mathrm{T}_{x}\mathcal{M}}m(\mathfrak{s})=g_{x}(\mathfrak{s},g)+\frac{1}{2}g_{x}(\mathfrak{s},\mathcal{B}\mathfrak{s});$$

Turn Riemannian LSR1 subproblem into Euclidean version:

- Q_x : an orthonormal basis of $T_x \mathcal{M}$;
- $T_x \mathcal{M} = \{Q_x c : c \in \mathbb{R}^d\};$
- Replace \mathfrak{s} by $Q_x c$:

$$\min_{\|Q_xc\|\leq\Delta}c^{\mathsf{T}}Q_x^\flat g+\frac{1}{2}c^{\mathsf{T}}(Q_x^\flat\mathcal{B}Q)c=\min_{\|c\|\leq\Delta}c^{\mathsf{T}}\hat{g}+\frac{1}{2}c^{\mathsf{T}}\hat{\mathcal{B}}c;$$

Solved by Euclidean version algorithm

Orthonormal basis Q_x is crucial!

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Intrinsic Representation of Tangent Vector

- Given $\eta_x \in T_x \mathcal{M}$, compute $c_x = Q_x^{\flat} \eta_x$, i.e., find $c_x \in \mathbb{R}^d$ such that $\eta_x = Q_x c_x$;
- Given $c_x \in \mathbb{R}^d$, compute $\eta_x = Q_x c_x$;
- Stiefel manifold as an example: $St(p, n) = \{X \in \mathbb{R}^{n \times p} : X^T X = I_p\}.$
- Tangent space at $X \in T_X \mathcal{M}$ is $T_X \operatorname{St}(p, n) = \{X\Omega + X_{\perp}K \mid \Omega^T = -\Omega, X^T X_{\perp} = 0\};$

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Intrinsic Representation of Tangent Vector

$$T_X \operatorname{St}(p, n) = \{ X\Omega + X_{\perp}K \mid \Omega^{T} = -\Omega, X^{T}X_{\perp} = 0 \};$$

Extrinsic η_X :

Intrinsic c_X:

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Intrinsic Representation of Tangent Vector

Question

Extrinsic representation $\eta_X \iff$ Intrinsic representation c_X

•
$$\eta_X = \begin{bmatrix} X & X_{\perp} \end{bmatrix} \begin{bmatrix} \Omega \\ K \end{bmatrix} \Leftrightarrow \begin{bmatrix} \Omega \\ K \end{bmatrix} \Leftrightarrow c_X$$

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Intrinsic Representation of Tangent Vector

Question

Extrinsic representation $\eta_X \iff$ Intrinsic representation c_X

•
$$\eta_X = \begin{bmatrix} X & X_{\perp} \end{bmatrix} \begin{bmatrix} \Omega \\ K \end{bmatrix} \Leftrightarrow \begin{bmatrix} \Omega \\ K \end{bmatrix} \Leftrightarrow c_X$$

• Apply Householder transformation to X, (Done in retraction)

$$Q_p^T Q_{p-1}^T \dots Q_1^T X = R = I_{n \times p}$$

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Intrinsic Representation of Tangent Vector

Question

Extrinsic representation $\eta_X \iff$ Intrinsic representation c_X

•
$$\eta_X = \begin{bmatrix} X & X_{\perp} \end{bmatrix} \begin{bmatrix} \Omega \\ K \end{bmatrix} \Leftrightarrow \begin{bmatrix} \Omega \\ K \end{bmatrix} \Leftrightarrow c_X$$

• Apply Householder transformation to X, (Done in retraction)

$$Q_p^T Q_{p-1}^T \dots Q_1^T X = R = I_{n \times p}.$$

•
$$\begin{bmatrix} X & X_{\perp} \end{bmatrix} = Q_1 Q_2 \dots Q_p$$
 (Do not compute)

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Intrinsic Representation of Tangent Vector

Question

Extrinsic representation $\eta_X \iff$ Intrinsic representation c_X

•
$$\eta_X = \begin{bmatrix} X & X_{\perp} \end{bmatrix} \begin{bmatrix} \Omega \\ K \end{bmatrix} \Leftrightarrow \begin{bmatrix} \Omega \\ K \end{bmatrix} \Leftrightarrow c_X$$

• Apply Householder transformation to X, (Done in retraction)

$$Q_p^T Q_{p-1}^T \dots Q_1^T X = R = I_{n \times p}.$$

• $\begin{bmatrix} X & X_{\perp} \end{bmatrix} = Q_1 Q_2 \dots Q_p$ (Do not compute)

• Extrinsic to Intrinsic: $Q_p^T Q_{p-1}^T \dots Q_1^T \eta_X = \begin{bmatrix} \Omega \\ K \end{bmatrix}$ and reshape to c_X ; $(4np^2 - 2p^3)$ flops

• Intrinsic to Extrinsic: reshape c_X and $\eta_X = Q_1 Q_2 \dots Q_p \begin{bmatrix} \Omega \\ K \end{bmatrix}$; $(4np^2 - 2p^3)$ flops

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Intrinsic Representation of Tangent Vector

• The basis Q_x is orthonormal with respect to the canonical metric:

$$g_X(\eta_X,\xi_X) = \operatorname{trace}\left(\eta_X^{\mathsf{T}}\left(I_n - \frac{1}{2}XX^{\mathsf{T}}\right)\xi_X\right), \forall \eta_X,\xi_X \in \mathrm{T}_X\operatorname{St}(p,n).$$

- The above idea can be applied to
 - Fixed-rank real matrices $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\};$
 - Fixed-rank symmetric positive semidefinite matrices: $S_r^n = \{X \in \mathbb{R}^{n \times n} : X = X^T, X \succeq 0, \operatorname{rank}(X) = r\};$
 - Fixed-rank complex matrices;
 - Fixed-rank Hermitian positive semidefinite matrices;

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Riemannian LSR1 Update

$$\min_{\|Q_x c\| \leq \Delta} c^T Q_x^\flat g + \frac{1}{2} c^T (Q_x^\flat \mathcal{B} Q_x) c = \min_{\|c\| \leq \Delta} c^T \hat{g} + \frac{1}{2} c^T \hat{\mathcal{B}} c;$$

$$\begin{split} \tilde{\mathcal{B}}_{k} = & \mathcal{B}_{k-1} + \frac{(\mathfrak{y}_{k-1} - \mathcal{B}_{k-1}\mathfrak{s}_{k-1})(\mathfrak{y}_{k-1} - \mathcal{B}_{k-1}\mathfrak{s}_{k-1})^{\flat}}{g(\mathfrak{s}_{k-1}, \mathfrak{y}_{k-1} - \mathcal{B}_{k-1}\mathfrak{s}_{k-1})}, \\ & \mathcal{B}_{k} = & \mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-1}}} \circ \tilde{\mathcal{B}}_{k} \circ \mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-1}}}^{-1}, \end{split}$$

where $\mathfrak{y}_{k-1} = \mathcal{T}_{S_{s_{k-1}}}^{-1} \operatorname{grad} f(R_{x_{k-1}}(\mathfrak{s}_{k-1})) - \operatorname{grad} f(x_{k-1}) \in \operatorname{T}_{x_{k-1}} \mathcal{M},$ $\mathfrak{s}_{k-1} \in \operatorname{T}_{x_{k-1}} \mathcal{M}, \mathcal{B}_k$ is a linear operator on $\operatorname{T}_{x_k} \mathcal{M}$ and \mathcal{T}_S is an isometric vector transport.

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Riemannian LSR1 Update

Compact representation

Theorem

Let $\mathcal{B}_{k-\ell}$ be a symmetric linear operator on $T_{x_{k-\ell}} \mathcal{M}$ and \mathcal{T}_S is an isometric vector transport. Suppose $g(\mathfrak{s}_{k-i}^{(k)}, \mathfrak{y}_{k-i}^{(k)} - \mathcal{B}_{k-i}^{(k)}\mathfrak{s}_{k-i}^{(k)}) \neq 0$ for $i = 1, \ldots, \ell$. Then the linear operator $\mathcal{B}_k^{(k)}$ is given by

$$\begin{split} \mathcal{B}_{k}^{(k)} &= \mathcal{B}_{k-\ell}^{(k)} + \left(\mathcal{Y}_{\ell}^{(k)} - \mathcal{B}_{k-\ell}^{(k)} \mathcal{S}_{\ell}^{(k)}\right) \left(M_{\ell}^{(k)}\right)^{-1} \left(\mathcal{Y}_{\ell}^{(k)} - \mathcal{B}_{k-\ell}^{(k)} \mathcal{S}_{\ell}^{(k)}\right)^{\flat},\\ \text{where } D_{\ell}^{(k)} &= \text{diag}((\mathfrak{s}_{k-\ell}^{(k)})^{\flat} \mathfrak{y}_{k-\ell}^{(k)} \dots, (\mathfrak{s}_{k-1}^{(k)})^{\flat} \mathfrak{y}_{k-1}^{(k)}), \, \mathcal{S}_{\ell}^{(k)} &= [\mathfrak{s}_{k-\ell}^{(k)}, \dots, \mathfrak{s}_{k-1}^{(k)}],\\ \mathcal{Y}_{\ell}^{(k)} &= [\mathfrak{y}_{k-\ell}^{(k)}, \dots, \mathfrak{y}_{k-1}^{(k)}], \, (L_{\ell})_{i,j}^{(k)} &= (\mathfrak{s}_{k-\ell-1+i}^{(k)})^{\flat} \mathfrak{y}_{k-\ell-1+i}^{(k)} \text{ if } i > j, \, (L_{\ell})_{i,j}^{(k)} &= 0\\ \text{otherwise, and } M_{\ell}^{(k)} &= D_{\ell}^{(k)} + L_{\ell}^{(k)} + (L_{\ell}^{(k)})^{T} - (\mathcal{S}_{\ell}^{(k)})^{\flat} \mathcal{B}_{k-\ell}^{(k)} \mathcal{S}_{\ell}^{(k)} \text{ is nonsingular.} \end{split}$$

•
$$\mathcal{B}_{k-i}^{(k)}$$
 denotes $\mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-1}}} \circ \ldots \circ \mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-i}}} \circ \mathcal{B}_{k-i} \circ \mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-i}}}^{-1} \circ \ldots \circ \mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-i}}}^{-1};$

•
$$\mathfrak{y}_{k-i}^{(k)}$$
 denotes $\mathcal{T}_{S_{\mathfrak{s}_{k-1}}} \circ \ldots \circ \mathcal{T}_{S_{\mathfrak{s}_{k-i}}} \mathfrak{y}_{k-i}$;
• $\mathfrak{s}_{k-i}^{(k)}$ denotes $\mathcal{T}_{S_{\mathfrak{s}_{k-1}}} \circ \ldots \circ \mathcal{T}_{S_{\mathfrak{s}_{k-i}}} \mathfrak{s}_{k-i}$.

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Riemannian LSR1 Update

Compact representation

Vector transport by parallelization:

$$\mathcal{T}_{\mathrm{S}_{\eta_x}}\xi_x = Q_y Q_x^{\flat}\xi_x$$

where $y = R_x(\eta_x)$;

• We have

$$\begin{aligned} \mathcal{B}_{k-i}^{(k)} = & \mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-1}}} \circ \ldots \circ \mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-i}}} \circ \mathcal{B}_{k-i} \circ \mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-i}}}^{-1} \circ \ldots \circ \mathcal{T}_{\mathrm{S}_{\mathfrak{s}_{k-1}}}^{-1} \\ = & Q_{x_{k}} Q_{x_{k-1}}^{\flat} \ldots Q_{x_{k-i+1}} Q_{x_{k-i}}^{\flat} \mathcal{B}_{k-i} Q_{x_{k-i}} Q_{x_{k-i+1}}^{\flat} \ldots Q_{x_{k-1}} Q_{x_{k}}^{\flat} \\ = & Q_{x_{k}} Q_{x_{k-i}}^{\flat} \mathcal{B}_{k-i} Q_{x_{k-i}} Q_{x_{k}}^{\flat}; \end{aligned}$$

• Similarly, $\mathfrak{y}_{k-i}^{(k)} = Q_{x_k} Q_{x_{k-i}}^{\flat} \mathfrak{y}_{k-i}$ and $\mathfrak{s}_{k-i}^{(k)} = Q_{x_k} Q_{x_{k-i}}^{\flat} \mathfrak{s}_{k-i}$.

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Riemannian LSR1 Update

Compact representation

Compact representation:

$$\mathcal{B}_{k+1} = \mathcal{Q}_{\mathsf{x}_{k+1}} \left(\gamma_{k+1} \mathit{I} + \Phi_k (\mathcal{M}_m^{(k+1)})^{-1} \Phi_k^\mathsf{T}
ight) \mathcal{Q}_{\mathsf{x}_{k+1}}^\flat$$

where
$$\Phi_k = [Q_{x_{k-m+1}}^{\flat}(\mathfrak{y}_{k-m+1} - \gamma_{k+1}\mathfrak{s}_{k-m+1}), \dots, Q_{x_k}^{\flat}(\mathfrak{y}_k - \gamma_{k+1}\mathfrak{s}_k)].$$

$$\min_{\|Q_x c\| \le \Delta} c^T Q_x^{\flat} g + \frac{1}{2} c^T (Q_x^{\flat} \mathcal{B} Q_x) c = \min_{\|c\| \le \Delta} c^T \hat{g} + \frac{1}{2} c^T \left(\gamma I + \Phi M^{-1} \Phi^T \right) c$$

- $s_k = Q_{x_k}^{\flat} \mathfrak{s}_k;$
- $g_k = Q_{x_k}^{\flat} \operatorname{grad} f(x_k);$
- $y_k = g_{k+1} g_k;$
- Compute B_k as the Euclidean version using s_k, y_k ;

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Riemannian LSR1 Update

Initial Hessian Approximation γ

Set

$$\gamma = \operatorname{sign}(g(\mathfrak{y},\mathfrak{s})) \min\left(\tau_{\gamma} \frac{|g(\mathfrak{y},\mathfrak{s})|}{g(\mathfrak{s},\mathfrak{s})}, \frac{g(\mathfrak{y},\mathfrak{y})}{|g(\mathfrak{y},\mathfrak{s})|}\right),$$

where au_{γ} is a prescribed parameter;

- LBFGS: Initial inverse Hessian approximation is g(s, n) g(n, n);
- LSR1: Initial Hessian approximation is ^{g(ŋ,ŋ)}/_{g(σ, η)};
- If $\|\mathfrak{y}\| \leq L\|\mathfrak{s}\|$, then
 - $\left|\frac{g(\mathfrak{y},\mathfrak{s})}{g(\mathfrak{s},\mathfrak{s})}\right|$ bounded above;
 - $\left|\frac{g(\eta,\eta)}{g(s,\eta)}\right|$ may not bounded above;
- Bounded above: for theoretical analysis

Intrinsic Representation Riemannian LSR1 Update Algorithm

LRTRSR1-R (Part I)

- **Input:** Riemannian manifold \mathcal{M} with Riemannian metric g; retraction R; isometric vector transport by parallelization \mathcal{T}_{S} ; smooth function f on \mathcal{M} ; initial iterate $x_0 \in \mathcal{M}$;
 - 1: Choose an integer m > 0 and real numbers $\overline{\Delta} > 0$, $\Delta_0 \in (0, \overline{\Delta})$, $\nu \in (0, 1)$, $c \in (0, 0.25)$, $\tau_1 \in (0, 1)$, and $\tau_2 > 1$;
- 2: Compute grad^d $f(x_0) = Q_{x_0}^{\flat} \operatorname{grad} f(x_0) \in \mathbb{R}^d$; Set $k \leftarrow 0, \ell \leftarrow 0, \gamma_0 \leftarrow 1$;
- 3: Obtain $s_k \in \mathbb{R}^d$ by (approximately) solving

$$s_k \approx \underset{\|s\|_2 \leq \Delta_k}{\operatorname{arg\,min}} f(x_k) + s^T \operatorname{grad}^{\mathrm{d}} f(x_k) + \frac{1}{2} s^T B_k s.$$

4: Compute $\mathfrak{s}_k = Q_{x_k} s_k;$ 5: Set $\rho_k \leftarrow \frac{\widetilde{f(x_k)} - \widetilde{f(R_{x_k}(\mathfrak{s}_k))}}{m_k(0) - m_k(\mathfrak{s}_k)};$ 6: Set $y_k \leftarrow Q_{R_{x_k}}^{\flat}(\mathfrak{s}_k) \operatorname{grad} f(R_{x_k}(\mathfrak{s}_k)) - \operatorname{grad}^{\mathrm{d}} f(x_k);$ 7: if $|s_k^T(y_k - B_k s_k)| \ge \nu ||s_k||_2 ||y_k - B_k s_k||_2$ then if $\ell = m$ then 8: $\gamma_{k+1} \leftarrow \operatorname{sign}(y_k^T s_k \min\left(\tau_\gamma \frac{|y_k^T s_k|}{s_k^T s_k}, \frac{y_k^T y_k}{|y_k^T s_k|}\right) \text{ if } |y_k^T s_k| \le \epsilon, \text{ and } \gamma_{k+1} \leftarrow 0 \text{ otherwise,}$ 9: where ϵ denotes the machine epsilon; Set $\Psi_{k,\ell}$ and $M_{k,\ell}$ to be empty matrices; 10: else 11: $\gamma_{k+1} \leftarrow \gamma_k;$ 12:end if Set $\tilde{\Psi}_{k+1,\ell+1} = [\tilde{\Psi}_{k,\ell}, y_k - \gamma_{k+1}s_k]$; Computing $M_{k+1,\ell+1}$ by updating $M_{k,\ell}$; Set $\ell \leftarrow$ 13: $\ell + 1$:

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

LRTRSR1-R (Part II)

```
14: else
15:
           Set \gamma_{k+1} \leftarrow \gamma_k, M_{k+1,\ell} \leftarrow M_{k,\ell};
16: end if
17: if \rho_k > c then
         x_{k+1} \leftarrow R_{x_k}(\mathfrak{s}_k);
18:
19: else
20:
         x_{k+1} \leftarrow x_k;
21: end if
22: if \rho_k > \frac{3}{4} then
           If \|\eta_k\| \ge 0.8\Delta_k, then \Delta_{k+1} \leftarrow \min(\tau_2\Delta_k, \overline{\Delta}); otherwise \Delta_{k+1} \leftarrow \Delta_k;
23:
24: else if \rho_k < 0.1 then
25:
          \Delta_{k+1} \leftarrow \tau_1 \Delta_k;
26: else
         \Delta_{k+1} \leftarrow \Delta_k;
27:
28: end if
29: k \leftarrow k+1, goto 2 until convergence.
```

Complexity:

$$f_f + g_f + r_f + \theta_f + \vartheta_f + 10md + O(m^3),$$

where f_f , g_f , r_f , θ_f , ϑ_f respectively denote the computational cost of one function evaluation, one gradient evaluation, one retraction evaluation, one $Q_x c$ evaluation and one $Q_x^{\flat} \eta_x$ evaluation.

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Theoretical Results

Assumption

There exists a positive constant δ_r , such that the function f is Lipschitz continuously differentiable with respect to the vector transport \mathcal{T}_S in Ω_{δ_r} , where the Lipschitz continuous differentiability is defined by

$$\|\mathcal{T}_{\xi_{x}}^{-1}\eta_{y}-\eta_{x}\|_{x}\leq L_{v}\|\xi_{x}\|_{x},$$

and $\Omega_{\delta_r} = \{R_x(\eta_x) : x \in \Omega, \|\eta_x\| \le \delta_r\}.$

Theorem

Suppose above Assumption holds and the parameter $\overline{\Delta}$ in LRTRSR1-R satisfies $\overline{\Delta} \leq \delta_r$. Then there exists a constant β such that the sequence $\{\mathcal{B}_k\}$ generated by LRTRSR1-R satisfies that $\|\mathcal{B}_k\| \leq \beta$ for all k.

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Theoretical Results

Lemma

Suppose that $\mathcal{T}_{S} \in C^{1}$, $f \in C^{2}$ in \mathcal{U} , and \mathcal{U} is compact. Further suppose that there exists a positive constant M_{r} such that for any $x \in \mathcal{U}$, it holds that $\{R_{x}(\eta_{x}) : ||\eta_{x}|| > M_{r}\} \cap \mathcal{U} = \emptyset$ or $\{R_{x}(\eta_{x}) : ||\eta_{x}|| \le M_{r}\} \supseteq \mathcal{U}$. Then there exists a constant L_{v} such that the inequality

$$\|\mathcal{T}_{\eta_x}^{-1}\operatorname{grad} f(y) - \operatorname{grad} f(x)\|_x \leq L_v \|\eta_x\|_x,$$

holds for all $x \in U$, $\eta_x \in T_x \mathcal{M}$ satisfying $R_x(t\eta_x) \in U$ for all $t \in [0, 1]$, where $y = R_x(\eta_x)$.

LSR Subproblem Intrinsic Representation Riemannian LSR1 Update Algorithm

Theoretical Results

The global convergence follows from [HAG15, Theorem 1].

Corollary

Under reasonable assumptions and the parameter $\overline{\Delta}$ in LRTRSR1-R satisfies $\overline{\Delta} \leq \delta_r$. Then (i) if $f \in C^2$ is bounded below on the sublevel set Ω , then $\lim_{k\to\infty} \operatorname{grad} f(x_k) = 0$; (ii) if $f \in C^2$, \mathcal{M} is compact, then $\lim_{k\to\infty} \operatorname{grad} f(x_k) = 0$, $\{x_k\}$ has at least one limit point, and every limit point of $\{x_k\}$ is a stationary point of f; and (iii) if $f \in C^2$, the sublevel set Ω is compact, f has a unique stationary point x^* in Ω , then $\{x_k\}$ converges to x^* .

Numerical Experiments

- Convex quadratic problem
- Matrix completion
- Joint diagonalization
- Phase retrieval

Numerical Experiments

Convex Quadratic Problem

Problem:

$$\min_{x\in\mathbb{R}^n}\frac{1}{2}x^TAx$$

where $A = A^T$ and $A \succ 0$;

- Compare with LRBFGS, LRBFGS-R, LRTRSR1, LRTRSR1-R;
- Two types of matrices A;
 - Type 1: $A \in \mathbb{R}^{200 \times 200}$, 4 different eigenvalues, condition number \approx 100;
 - Type 2: $A \in \mathbb{R}^{1000 \times 1000}$, random matrices, condition number $\approx 10^6$;

Numerical Experiments

Convex Quadratic Problem

Table: An average result of 20 random runs for the convex quadratic problem with the two types of matrices A.

		LRBFGS		LRBFGS-R		LRTRSR1		LRTRSR1-R	
	m	2	4	2	4	2	4	2	4
	iter	27	23	30	24	37	5	37	5
Type 1	nf	31	26	34	28	38	6	38	6
	ng	28	24	31	25	38	6	38	6
	$\frac{\ \mathbf{gf}_f\ }{\ \mathbf{gf}_0\ }$	5.76_7	5.19_{-7}	6.01_7	5.26_{-7}	5.05_{-7}	3.25_{-9}	4.67_7	2.83_9
	f	6.97_10	2.26_{-9}	4.07_9	1.84_{-9}	4.59_9	7.96_{-12}	4.08_9	4.34_{-12}
Type 2	iter	830	733	837	815	1323	1475	747	680
	nf	887	772	920	883	1324	1476	748	681
	ng	831	734	838	816	1324	1476	748	681
	$\frac{\ \mathbf{gf}_f\ }{\ \mathbf{gf}_0\ }$	9.25_7	9.18_{-7}	9.09_7	9.14_{-7}	9.53_7	9.54_{-7}	9.17_7	9.05_{-7}
	f	3.12_4	1.73_{-4}	3.49_4	2.92_{-4}	7.13_{-4}	5.77_{-4}	5.51_{-4}	6.33_{-4}

Numerical Experiments Matrix Completion

Optimization formulation in [Van13]:

$$\min_{X\in\mathbb{R}_r^{m\times n}}f(X):=\frac{1}{2}\|P_{\Omega}(X-A)\|_F^2,$$

where $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}$ is the manifold of fixed-rank matrices, Ω is a given index set, $P_{\Omega}(A)$ is the given sparse matrix, and $P_{\Omega}(Z_{i,j}) = Z_{i,j}$ if $(i,j) \in \Omega$; $P_{\Omega}(Z_{i,j}) = 0$ otherwise,

• Compare with LRBFGS, RCGR [Van13], and LMAFit [WYZ12];

Numerical Experiments

Matrix Completion

Table: An average result of 20 random runs of LRBFGS (i), LRTRSR1-R (ii), RCGR (iii), and LMAFit (iv) with multiple sizes and ranks are reported. *rel* denotes the relative residual $rel = ||P_{\Omega}(X - A)||_F / ||P_{\Omega}(A)$.

		n = m = 2000			n =	= m = 40	000	n = m = 8000		
	r	10	20	30	10	20	30	10	20	30
(i)	iter	132	97	101	145	99	93	165	107	93
	nf	159	112	115	172	118	109	195	125	111
	rel	8.11_{-11}	7.13_{-11}	6.67_{-11}	8.71_{-11}	7.30_{-11}	7.10_{-11}	8.59-11	7.69_{-11}	7.16_{-11}
	time	9.47_1	1.50	2.74	1.99	3.63	6.18	5.20	9.09	1.43_{1}
(ii)	iter	124	106	96	143	110	105	169	133	112
	nf	125	107	97	144	111	106	170	134	113
	rel	6.13_{-11}	6.66_{-11}	7.53_{-11}	7.30-11	6.60_{-11}	6.53_{-11}	6.96-11	6.66_{-11}	7.51_{-11}
	time	7.18_{-1}	1.41	2.29	1.62	3.39	6.26	4.77	9.76	1.45_{1}
(iii)	iter	80	62	57	89	66	61	101	72	64
	nf	81	63	58	90	67	62	102	73	65
	rel	9.17_{-11}	8.46_{-11}	7.94_{-11}	9.34_11	8.92_{-11}	8.19_{-11}	9.51_{-11}	9.09_{-11}	8.49_{-11}
	time	9.06_1	1.55	2.40	2.02	4.35	7.02	5.96	1.10_{1}	1.81_{1}
(iv)	iter	338	197	164	402	228	185	491	252	206
	nf	339	198	165	403	229	186	492	253	207
	rel	9.61_{-11}	9.42_{-11}	9.05_{-11}	9.68_{-11}	9.44_{-11}	9.19_{-11}	9.72_{-11}	9.41_{-11}	9.31_{-11}
	time	1.54	2.24	3.46	3.82	5.94	9.62	1.021	1.89_{1}	2.43_{1}

29/37

Numerical Experiments

Matrix Completion

Numerical Experiments

Joint Diagonalization

Joint diagonalization problem [TCA09] is

$$f: \operatorname{St}(p, n) \to \mathbb{R}: X \mapsto -\sum_{i=1}^{N} \left\| \operatorname{diag}(X^{T}C_{i}X) \right\|_{2}^{2},$$

where C_1, \ldots, C_N are given symmetric matrices, diag(M) denotes the vector formed by the diagonal entries of M.

• Compare with LRBFGS and RTRNewton [TCA09]

Numerical Experiments

Joint Diagonalization

Numerical Experiments

The phase retrieval problem in [CLS16] is

$$\min_{x\in\mathbb{C}^n} f(x) := \frac{1}{\|b\|_2^2} \|b - \operatorname{diag}(Zxx^*Z^*)\|_2^2,$$

where $b \in \mathbb{R}^m$ is the observation measurements, $Z \in \mathbb{C}^{m imes n}$ is

$$Z = \begin{bmatrix} (\mathcal{F}_s \otimes \mathcal{F}_{s-1} \otimes \ldots \mathcal{F}_1) \operatorname{ddiag}(w_1) \\ \vdots \\ (\mathcal{F}_s \otimes \mathcal{F}_{s-1} \otimes \ldots \mathcal{F}_1) \operatorname{ddiag}(w_l) \end{bmatrix},$$

 $w_i \in \mathbb{C}^n, i = 1, ..., l$ denotes masks, $\mathcal{F}_i \in \mathbb{C}^{n_i \times n_i}, i = 1, ..., s$ denotes the one-dimensional DFT, \otimes denotes the Kronecker product, m = ln, and ddiag(v) denotes a diagonal matrix whose diagonal entries are v.

Numerical Experiments

Phase Retrieval

Numerical Experiments

Conclusion

- Smooth optimization on Riemannian manifold
- Limited-memory symmetric rank-one trust-region subproblem
- Intrinsic representation of tangent vectors
- Global convergence analysis
- Numerical experiments

Thank you

Thank you!

References I

E. J. Candés, X. Li, and M. Soltanolkotabi.

Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Transactions on Information Theory, 64(4):1985–2007, 2016.

W. Huang, P.-A. Absil, and K. A. Gallivan.

A Riemannian symmetric rank-one trust-region method. Mathematical Programming, 150(2):179–216, February 2015.

J. Nocedal and S. J. Wright.

Numerical Optimization. Springer, second edition, 2006.

F. J. Theis, T. P. Cason, and P.-A. Absil.

Soft dimension reduction for ICA by joint diagonalization on the Stiefel manifold. Proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, 5441:354–361, 2009.

B. Vandereycken.

Low-rank matrix completion by Riemannian optimization—extended version. *SIAM Journal on Optimization*, 23(2):1214–1236, 2013.

Z. Wen, W. Yin, and Y. Zhang.

Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Mathematical Programming Computation, 4(4):333–361, July 2012. doi:10.1007/s12532-012-00441.