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Abstract

A framework, PhaseLift, was recently proposed to solve the phase retrieval problem. In this frame-

work, the problem is solved by optimizing a cost function over the set of complex Hermitian positive

semidefinite matrices. This paper considers an approach based on an alternative cost function defined

on a union of appropriate manifolds. It is related to the original cost function in a manner that preserves

the ability to find a global minimizer and is significantly more efficient computationally. A rank-based

optimality condition for stationary points is given and optimization algorithms based on state-of-the-

art Riemannian optimization and dynamically reducing rank are proposed. Empirical evaluations are

performed using the PhaseLift problem. The new approach is shown to be an effective method of

phase retrieval with computational efficiency increased substantially compared to the algorithm used

in original PhaseLift paper.

1 Introduction

Recovering a signal given the modulus of its transform, e.g., Fourier or wavelet transform, is
an important task in the phase retrieval problem. It is a key problem for many important
applications, e.g., X-ray crystallography imaging [14], diffraction imaging [7], optics [26] and
microscopy [20].

This paper considers the discrete form of the phase retrieval problem where an indexed
set of complex numbers x ∈ Cn1×n2×...×ns is to be recovered from the modulus of its discrete
Fourier transform |x̃(g1, g2, . . . , gs)|, where (g1, g2, . . . , gs) ∈ Ω := G1 ×G2 × . . . Gs and Ω is a
grid in an s-dimensional space. The discrete Fourier transform of x, denoted x̃, is given by

x̃(g1, g2, . . . , gs) =

1√
n

∑
i1,i2,...,is

xi1i2...is exp

(
−2π

(
(i1 − 1)g1

n1
+ . . .+

(is − 1)gs
ns

)√
−1

)
, (1.1)

where n = n1n2 . . . ns, ij is an integer satisfying 1 ≤ ij ≤ nj for j = 1, . . . s, xi1i2...is denotes
the corresponding entry of x and x̃(g1, g2, . . . , gs) denotes the corresponding entry of x̃.

It is well-known that the solution of the phase retrieval problem is not unique. Many
approaches e.g., [23, 13, 9, 25, 11] have been proposed to recover the phase. Some frameworks use
multiple structured illuminations or the mathematically equivalent construct of masks combined
with convex programming, e.g., PhaseLift [9]. For the PhaseLift framework, four major results
are of interest here. First, using a small number (related to s) of noiseless measurements of the
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modulus defined by certain carefully designed illuminations, the phase can be recovered exactly
[9]. Second, when these carefully designed measurements are not used, exact recovery is still
possible using O(n2) noiseless measurements [10]. Third, the phase can be recovered exactly
with high probability using O(n log n) noiseless measurements of the modulus [12]. Finally, the
stability of recovering the phase using noisy measurements is shown in [12].

The problems in PhaseLift concern optimizing convex cost functions defined on a convex
set of complex matrices, i.e.,

min
X∈Dn

H(X), (1.2)

where H : Dn → R : X 7→ H(X), and Dn denotes the set of all n-by-n complex Hermitian
positive semidefinite matrices. However, the dimension of (1.2) is usually too large to be solved
by standard convex programming techniques. Since the desired optimum, X∗, is known to be
a rank-one matrix, a low-rank matrix approximation of the argument matrix is used in [9] to
save computations for PhaseLift. While this approximation has good empirical performance,
no convergence proof is given in [9].

This paper focuses on the framework of PhaseLift and an alternate cost function F : Cn×p →
R : Y 7→ F (Y ) = H(Y Y ∗) defined by matrix factorization is considered. Even though F is
not convex, it is shown to be a suitable replacement of the cost function H. Riemannian
optimization methods on an appropriate quotient space are used for optimizing F . Using the
cost function F with a small dimension p reduces storage and the computational complexity
of each iteration. This new approach is shown to perform empirically much better than the
low-rank approximate version of the algorithm used for PhaseLift in [9] from the points of view
of efficiency and effectiveness. Finally, note that the analysis and algorithm presented is not
specific to the cost function used for phase retrieval in PhaseLift but for a general cost function
defined on Dn and therefore the approach has potential for optimization in other applications
where the global optimum is known to have low rank. The idea of using low-rank factorization
to solve positive semidefinite constrained problems is, of course, not new but all the research
results of which the authors are aware, are for real positive semidefinite matrix constraints, see
[8, 19].

The paper is organized as follows. Section 2 presents the notation used. The derivation
of the optimization problem framework in PhaseLift is given in Section 3. The alternate cost
function and optimality conditions are given in Section 4. Riemannian optimization methods
and the required geometric objects are presented in Section 5. In Section 6, the effectiveness of
the methods are demonstrated and, finally, conclusions are given in Section 7.

2 Notation

For any z ∈ Cn1×n2×...ns , vec(z) ∈ Cn, where n = n1n2 . . . ns, denotes the vector form of z, i.e.,

(vec(z))k = zi1i2...is , where k = i1 +
∑s−1

j=1 n1n2 . . . nj(ij+1 − 1). Given z1, z2 ∈ Cn1×n2×...ns ,

⟨z1, z2⟩ denotes vec(z1)T vec(z2). Re(·) denotes the real part of the argument and superscript
∗ denotes the conjugate transpose operator. Given a vector v with length h, all upper case
DIAG(v) denotes an h-by-h diagonal matrix the diagonal entries of which are v. All lower
case diag(M) denotes a vector of the diagonal entries of M ∈ Cs×k and trace(M) denotes the
trace of M . If s ≥ k, M⊥ denotes an s× (s− k) matrix such that M∗

⊥M⊥ = I(s−k)×(s−k) and
M∗

⊥M = 0(s−k)×k.

Given an embedded submanifold M ⊆ Cs×k, TxM and NxM denote the tangent s-
pace and normal space of M at x ∈ M respectively. Dk denotes set {X ∈ Cn×n|X =
X∗, X ≥ 0, rank(X) ≤ k}, 1 ≤ k ≤ n. Note that the statement X ≥ 0 means that matrix
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X is positive semidefinite or definite. St(k, s) denotes the complex compact Stiefel manifold
{A ∈ Cs×k|A∗A = Ik×k} with s ≥ k. SC+(k, s) denotes the set of all Hermitian positive semidef-
inite s × s matrices of fixed rank k. Cs×k

∗ denotes the complex noncompact Stiefel manifold,
i.e., the set of all s × k full column rank complex matrices. Os denotes the group of s-by-s
unitary matrices.

3 The PhaseLift Approach to Phase Retrieval

The phase retrieval problem recovers x from quadratic measurements of the form A(x) =
{|⟨ak,x⟩|2 : k = 1, 2, . . . ,m}, where ak ∈ Cn1×n2×...ns , k = 1, 2, . . . ,m are given. It is well-
known that the quadratic measurements can be lifted up to be linear measurements of the rank-
one matrix X = xx∗, where x = vec(x) ∈ Cn. Specifically, the measurements are |⟨ak,x⟩|2 =
trace(aka

∗
kxx

∗) := trace(AkX), where ak = vec(ak) ∈ Cn. Define A to be the linear operator
mapping X into b := {trace(AkX) : k = 1, 2, . . .m}. The goal of the phase retrieval problem is
to

find X, such that A(X) = b,X ≥ 0 and rank(X) = 1. (3.1)

The alternative problem suggested in [9] considers an optimization problem that does not force
the rank of matrix to be one but adds a nuclear norm penalty term to favor low-rank solutions

min
X∈Dn

∥b−A(X)∥22 + κ trace(X), (3.2)

where κ is a positive constant.
Measurements with noise, b ∈ Rm, are assumed to have the form b = A(X) + ϵ, where

ϵ ∈ Rm is noise sampled from a distribution p(:;µ). The task suggested in [9] is

min
X
− log(p(b;µ)) + κ trace(X) (3.3)

such that µ = diag(ZXZ∗) and X ∈ Dn,

or equivalently

min
X∈Dn

− log(p(b; diag(ZXZ∗))) + κ trace(X) (3.4)

where κ is a positive constant. Problems (3.3) and (3.4) are preferred over Problem (3.1), since
they are convex programming problems when the log-likelihood function is concave.

4 Theoretical Results

This section presents theoretical results that motivate the design of algorithms for optimizing
a class of cost functions defined on Dn without giving the proofs due to space limits. They can
be found in [18]. The analysis does not rely on the convexity of the particular cost function H
from the class.

4.1 Equivalent Cost Function

The cost functions generically denoted H all satisfy

H : Dn → R : X 7→ H(X). (4.1)
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It is well-known that for any X ∈ Dn, there exists Yn ∈ Cn×n such that YnY
∗
n = X. Further-

more, if X has rank p, then there exists Yp ∈ Cn×p such that YpY
∗
p = X. Throughout this

paper, the subscript of Y is used to denote the column size of Y . A surjective mapping between
Cn×p and Dp is given by αp : Cn×p → Dp : Yp 7→ YpY

∗
p . Thus, if the desired solution of H is

known to be at most rank p, then an alternate cost function to H can be used:

Fp : Cn×p → R : Yp 7→ H(αp(Yp)) = H(YpY
∗
p ).

The subscripts of F and α indicate the column size of the argument. The domain of Fp has
lower dimension than that of H which may yield computational efficiency. Therefore, instead
of Problem (1.2), the problem minYp∈Cn×p Fp(Yp) is considered.

4.2 Optimality Conditions

In this section, characterizations of stationary points of F and H over Dn are used to derive
the relationship between optimizing F and optimizing H over Dn. Since H is defined on a
constrained set, a stationary point of H does not simply satisfy gradH(X) = 0. The stationary
points of H are defined as follows by [18, Lemma 5]:

Definition 4.1. A stationary point of (4.1) is a matrix X ∈ Dn such that gradH(X)X = 0
and gradH(X) ≥ 0.

The gradient and the action of Hessian of Fp are easily computed and are given in Lemma
4.1 in terms of H.

Lemma 4.1. The gradient of Fp at Yp is given by gradFp(Yp) = 2 gradH(YpY
∗
p )Yp and the

action of the Hessian of Fp at Yp on ηp ∈ Cn×p is given by HessFp(Yp)[ηp] = 2 gradH(YpY
∗
p )ηp+

2(HessH(YpY
∗
p )[ηpY

∗
p + Ypη

∗
p])Yp.

Theorem 4.1 and [19, Theorem 7] show similar results under different frameworks. Both
results suggest considering the cost function Fp if the desired minimizer of H is known to have
rank smaller than p, as is the case with PhaseLift for phase retrieval. This is formalized in
Theorem 4.1 and has critical algorithmic, efficiency and optimality implications when H has
suitable structure such as convexity as in the case of PhaseLift.

Theorem 4.1. Suppose Yp = KsQ
∗ is a rank deficient minimizer of Fp, where Ks ∈ Cn×s

∗ and
Q ∈ St(s, p). Then (Ks)

∗
⊥ gradH(YpY

∗
p )(Ks)⊥ is a positive semidefinite matrix and, therefore,

X = YpY
∗
p is a stationary point of H. If furthermore H is convex, then X is a global minimizer

of (4.1).

5 A Riemannian Approach

Riemannian optimization is an active research area and recently many Riemannian optimization
methods have been systemically analyzed and efficient libraries designed, e.g., Riemannian trust-
region Newton method [1, 4], Riemannian Broyden family of methods including RBFGS and
its limited-memory version (LRBFGS) [22, 15, 17], Riemannian trust-region symmetric rank-
one update method and its limited-memory version [15, 16], Riemannian Newton method and
Riemannian non-linear conjugate gradient method [24].
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5.1 Riemannian Optimization on Fixed Rank Manifold

Derivations for Riemannian objects of SR+(p, n) have been given in [2]. This section includes
results of Riemannian objects for the complex case, i.e., SC+(p, n). Since the mapping αp is not an
injection, all the minimizers of Fp are degenerate, which causes difficulties in some algorithms,
e.g., Riemannian and Euclidean Newton method. In order to overcome this difficulty, a function
defined on a quotient manifold with fixed rank is considered. To this end, define the mapping βp

to be the mapping αp restricted to Cn×p
∗ , i.e., βp : Cn×p

∗ → SC+(p, n) : Y 7→ αp(Y ) = Y Y ∗. and

the function Gp to be Fp restricted to Cn×p
∗ , i.e., Gp : Cn×p

∗ → R : Y 7→ Fp(Y ) = H(βp(Y )).
Like αp, the mapping βp is a surjection but not a injection and there are multiple matrices
in Cn×p

∗ mapping to a single point in SC+(p, n). Nevertheless, given a X ∈ SC+(p, n), β
−1
p (X)

is a manifold while α−1
p (X) is not a manifold. Therefore, using the mapping βp, a quotient

manifold can be used to remove the degeneracy by defining the equivalence class β−1
p (Y Y ∗) =

[Y ] = {Y O|O ∈ Op} and the set

Cn×p
∗ /Op = {[Y ]|Y ∈ Cn×p

∗ }.

This set can be shown to be a quotient manifold over R. To clarify the notation, π(Y ) is used
to denote [Y ] viewed as an element in Cn×p

∗ /Op and π−1(π(Y )) is used to denote [Y ] viewed as
a subset of Cn×p

∗ . The function mp : π(Y ) 7→ Y Y ∗ is a diffeomorphism between Cn×p
∗ /Op and

SC+(p, n).
Choosing a representative for an equivalence class and definitions of related mathematical

objects have been developed in many papers in the literature of computation on manifolds, e.g.,
[3]. The vertical space at Y ∈ π−1(π(Y )), which is the tangent space of π−1(π(Y )) at Y , is

VY = {Y Ω|Ω∗ = −Ω,Ω ∈ Cp×p}.

The horizontal space at Y , HY , is defined to be a subspace of TY Cn×p
∗ = Cn×p that is orthog-

onal to VY , i.e., satisfying HA ⊕ VA = TA GL(n,C). Therefore, a Riemannian metric of Cn×p
∗

is required to define the meaning of orthogonal. The standard Euclidean metric,

gY (ηY , ξY ) = Re(trace(η∗Y ξY )) (5.1)

for all ηY , ξY ∈ TY Cn×p
∗ and Y ∈ Cn×p

∗ , is used in this paper. The horizontal space is therefore

HY ={V ∈ Cn×p|Y ∗V = V ∗Y }
={Y (Y ∗Y )−1S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p}.

The horizontal space HY is a representation of the tangent space Tπ(Y ) Cn×p
∗ /Op.

It is known that for any ηπ(Y ) ∈ Tπ(Y ) Cn×p
∗ /Op, there exists a unique vector in HY ,

called the horizontal lift of ηπ(Y ) and denoted by η↑Y , satisfying Dπ(Y )[η↑Y ] = ηπ(Y ), see e.g.,
[3]. The orthogonal projections onto the horizontal space or the vertical space are also easily
characterized.

Lemma 5.1. The orthogonal projection onto the vertical space VY of η ∈ Cn×p
∗ is P v

Y (η) = Y Ω,
where Ω is the skew symmetric matrix that solves the Sylvester equation, ΩY ∗Y + Y ∗Y Ω =
Y ∗η − η∗Y . The orthogonal projection onto the horizontal space HY is Ph

Y (η) = η − Y Ω.

Finally, the desired cost function that removes the equivalence is defined as

fp : Cn×p
∗ /Op → R : π(Y ) 7→ fp(π(Y )) = Gp(Y ) = Fp(Y ). (5.2)
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The function fp in (5.2) has the important property that π(Y ) is a nondegenerate minimizer
of f over Cn×p

∗ /Op if and only if Y Y ∗ is a nondegenerate minimizer of H over SC+(p, n).
The gradient and the action of the Hessian of (5.2) are given in Lemma 5.2.

Lemma 5.2. The gradient of f satisfies (grad f(π(Y )))↑Y = Ph
Y (gradF (Y )), and the action

of Hessian of (5.2) at π(Y ) along ηπ(Y ) ∈ Tπ(Y ) Cn×p
∗ /Op satisfies (Hess f(π(Y ))[ηπ(Y )])↑Y

=

Ph
Y (Ṁ − η↑Y

Ω), where M = gradF (Y ), Ṁ = HessF (Y )[η↑Y
], and Ω is the skew-symmetric

matrix that solves ΩY ∗Y + Y ∗Y Ω = Y ∗M −M∗Y .

5.2 Dynamic Rank Reduction

The domain of fp, Cn×p
∗ /Op, is not closed, i.e., a sequence {W (i)} representing {π(W (i))}

generated by an algorithm may have a limit point Ŵ with rank less than p. It is impossible, in
practice to check whether a limit point of iterates {W (i)} is a lower rank matrix or just close to
one of lower rank. However, when the desired rank of the minimizer is known and the current
iterate W (i) has a higher rank than the desired rank, as is the case with PhaseLift for phase
retrieval, a straightforward technique can be used to address the lack of closure by dynamically
reducing the rank. This technique is discussed below.

The thin singular value decomposition of the i-th iterate is W (i) = UΣV ∗ and Σ =
DIAG(σ1, σ2, . . . , σp), where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. Let σ̃ be ∥DIAG(σ1, . . . , σp)∥F /

√
p.

If there exists q < p such that σq/σ̃ > δ and σq+1/σ̃ ≤ δ for a given threshold δ, then

Ŵ = U(:, 1 : q)DIAG(σ1, . . . σq)V (:, 1 : q)∗ is chosen to be the initial point for optimizing cost
function fq over Cn×q

∗ /Oq. The details of reducing rank are given in Algorithm 1. Note that
the step of decreasing the rank may produce an iterate that increases the cost function value.
This facilitates global optimization by allowing nondescent steps.

Algorithm 1 Reduce Rank

Input: Y ∈ Cn×p; threshold δ;
Output: W ∈ Cn×q;
1: Take thin singular value decomposition for Y , i.e., Y = U DIAG(σ1, . . . , σp)V

∗, where
U ∈ Cn×p, V ∈ Cp×p and σ1 ≥ . . . ≥ σp ≥ 0;

2: Set σ̃ = ∥DIAG(σ1, . . . , σp)∥F /
√
p;

3: if σp/σ̃ > δ then
4: q ← p, W ← Y and return;
5: else
6: Find q such that σq/σ̃ > δ and σq+1/σ̃ ≤ δ;
7: Let W = U(:, 1 : q)DIAG(σ1, . . . σq)V (:, 1 : q)∗ and return;
8: end if

Combining a Riemannian optimization method with the procedure of reducing rank gives
Algorithm 2.

6 Experiments

In this section, numerical simulations for noiseless problems and those with Gaussian noise are
used to illustrate the performance of the proposed method and to compare it to the performance
of the current convex optimization approach.
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Algorithm 2 Rank Reduce Algorithm

Input: p > 0; Y
(0)
p ∈ Cn×p a representation of initial point π(Y

(0)
p ) for f ; Stopping criterion

threshold ϵ; rank reducing threshold δ; a Riemannian optimization method;
Output: W
1: for k = 0, 1, 2, . . . do

2: Apply Riemannian method for cost function f over Cn×p
∗ /Op with initial point π(Y

(k)
p )

until i-th iterate W (i) satisfying g(grad f, grad f) < ϵ2 or the requirement of reducing
rank with threshold δ;

3: if g(grad f, grad f) < ϵ21 then
4: Find a minimizer W = W (i) over Cn×p

∗ /Op and return;
5: else {iterate in the Riemannian optimization method meets the requirements of reducing

rank}
6: Apply Algorithm 1 with threshold δ and obtain an output Ŵ ∈ Cn×q;

7: p← q and set Y
(k+1)
p = Ŵ ;

8: end if
9: end for

6.1 Cost Function, Gradient, and Action of Hessian and Complexity
for PhaseLift

The known random masks or illumination fields defined on the discrete signal domain are
denoted wr ∈ Cn1×n2×...ns , r = 1, . . . l. It follows that {⟨ak,x⟩, k = 1, . . .m} is

 (Fns ⊗Fns−1 ⊗ . . .Fn1)DIAG(w1)x
...

(Fns
⊗Fns−1

⊗ . . .Fn1
)DIAG(wl)x

 ,

where ⊗ denotes the Kronecker product and Fni ∈ Cti×ni , i = 1, . . . , s denotes the one-
dimensional Discrete Fourier Transform (DFT). Let Zi denote (Fns⊗Fns−1⊗. . .Fn1)DIAG(wi),
Z denote (ZT

1 ZT
2 . . . ZT

l )
T . We have A(x) = diag(Zxx∗Z∗), which implies that A(X) =

diag(ZXZ∗).

When the entries in the noise ϵ are drawn from the normal distribution with mean 0 and
variance τ , the cost functions of (3.4) and (3.2) are essentially identical, i.e., for (3.2), H1(X) =
∥b− diag(ZXZ∗)∥22 + κ trace(X), and for (3.4), H2(X) = 1

τ2 ∥b− diag(ZXZ∗)∥22 + κ trace(X),
(see details in [18, Section 3]). Without loss of generality, only the cost function H(X) = ∥b−
diag(ZXZ∗))∥22/∥b∥22 + κ trace(X) is considered. The Euclidean gradient of H is gradH(X) =

2
∥b∥2

2
Z∗ DIAG(diag(ZXZ∗)− b)Z + κIn×n, and the action of the Euclidean Hessian at X along

V is HessH(X)[V ] = 2
∥b∥2

2
Z∗ DIAG(diag(ZV Z∗))Z, where V = V ∗. The gradients and actions

of Hessians of functions Fp and fp can be constructed using Lemmas 4.1 and 5.2.

The complexities of evaluations of the function value, gradient and action of Hessian of Fp

are all of the same order, O(pmsmaxi(log(ni)). The complexities of evaluations of the function
value, gradient and action of Hessian of fp are O(pmsmaxi(log(ni)), O(pmsmaxi(log(ni)) +
O(np2) +O(p3) and O(pmsmaxi(log(ni)) +O(np2) +O(p3) respectively. If p << n then all of
these complexities are dominated by O(pmsmaxi(log(ni)).
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noiseless
Algorithm 2

LR-FISTA
1 2 4 8 16

iter 124 1022 377 601 1554 2000♯

nf 129 2212 804 1278 3360 4322
ng 124 1106 402 639 1680 2161
ff 4.62−12 8.18−12 4.50−11 4.64−12 1.54−11 1.27−9

RMSE 6.34−6 1.01−5 1.74−5 1.46−5 1.10−4 2.56−3

t 2.12 1.272 5.251 9.351 3.482 6.862

Table 1: Comparisons of Algorithm 2 and LR-FISTA for the noiseless PhaseLift problem (3.2)
with n1 = n2 = 64 and several values of k. ♯ represents the number of iterations reach the
maximum. iter, nf , ng, ff , and t denote the number of iteration, the number of function
evaluation, the number of gradient evaluation, final cost function value and computational time
in second respectively.

6.2 Comparisons with a Standard Low-rank Method

Candès et al., [9, 12] use a Matlab library TFOCS [6] that contains a variety of accelerated
first-order methods given in [21] and, in particular, the method based on FISTA [5] is used to
optimize the cost functions in PhaseLift. For large-scale problems, a low rank version of FISTA
called LR-FISTA is used. The main difference is that the iterates of LR-FISTA are low-rank
matrices computed via projection rather than the full-rank iterates of FISTA.

As in [9], the difference between the true solution and the minimizer is measured by the
relative mean-square error (RMSE) mina:|a|=1 ∥ax− x∗∥2/∥x∗∥2 and by 10 log10(RMSE) when
expressed in dB. The scale of the noise is measured by the signal-to-noise ratio (SNR) in dB given

by SNR = 10 log10(∥b∥22/∥b− b̂∥22), where b = diag(Zx∗x
∗
∗Z

∗) and b̂ is the noise measurements.
Tables 1 and 2 report experimental results for Algorithm 2 and LR-FISTA for the noiseless

and Gaussian noise problems (3.2) and (3.4) respectively. For the Gaussian noise problem, τ
is 10−4 and the corresponding SNR is 31.05 dB in this experiment. Multiple examples with
different random seeds and different SNR show similar results. First, increasing k for LR-
FISTA usually does not improve the performance in the sense of efficiency and effectiveness
for both noiseless and Gaussian noise problems. Second, increasing κ usually does not reduce
the RMSE. When it does, the RMSE values are not reduced significantly. Therefore, κ = 0 is
used in the later comparisons for Gaussian noise problems. Third, Algorithm 2 outperforms
LR-FISTA significantly in the sense that Algorithm 2 provides similar accuracy usually while
requiring fewer operations of all types (cost function evaluation, gradients etc.) and yielding a
significantly smaller computational time.

7 Conclusion

In this paper, the recently proposed PhaseLift framework for solving the phase retrieval prob-
lem has motivated the consideration of a class of cost functions on the set of complex Hermitian
positive semidefinite matrices Dn. An alternate cost function F related to factorization is used
to replace any cost function H in this class. The important optimality condition, Theorem 4.1,
shows that if Yp is a rank deficient minimizer of Fp, then YpY

∗
p is a stationary point of H. Addi-

tionally, Algorithm 2 based on optimization on a fixed rank manifold and dynamically reducing
rank is developed for optimizing the cost function F . For optimization on a fixed rank manifold,
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noise κ Algorithm 2
LR-FISTA

1 2 4 8 16

iter
10−6 128 1027 2000♯ 2000♯ 2000♯ 2000♯

0 138 1070 2000♯ 2000♯ 2000♯ 2000♯

nf
10−6 132 2210 4266 4312 4336 4316
0 143 2306 4308 4322 4314 4320

ng
10−6 128 1105 2712 2156 2168 2158
0 138 1153 2154 2161 2157 2160

ff
10−6 1.84−5 1.84−5 1.91−5 2.35−5 3.55−5 7.62−5

0 4.08−7 4.08−7 1.16−6 6.27−6 2.51−5 8.89−5

RMSE
10−6 6.72−4 6.72−4 1.09−3 2.10−3 3.53−3 6.27−3

0 6.70−4 6.70−4 1.09−3 2.18−3 4.01−3 7.29−3

t
10−6 2.13 1.272 2.752 3.012 4.642 7.042
0 2.20 1.342 2.632 2.982 4.322 6.912

Table 2: Comparisons of Algorithm 2 and LR-FISTA for the noise PhaseLift problem (3.4)
with SNR be 31.05 dB, n1 = n2 = 64 and several values of k and κ. ♯ represents the number of
iterations reach the maximum.

recently developed state-of-the-art Riemannian optimization methods on a quotient space are
used. In the experiments, it is shown that Algorithm 2 with LRBFGS yields more efficient than
LR-FISTA for both noiseless and noise artificial data. The code used for these experiments is
available at http://www.math.fsu.edu/~whuang2/papers/SPLRROMCSCshort.htm.
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