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Abstract

A framework, PhaseLift, was recently proposed to solve the phase retrieval problem. In this frame-
work, the problem is solved by optimizing a cost function over the set of complex Hermitian positive
semidefinite matrices. This approach to phase retrieval motivates a more general consideration of opti-
mizing cost functions on semidefinite Hermitian matrices where the desired minimizers are known to have
low rank. This paper considers an approach based on an alternative cost function defined on a union of
appropriate manifolds. It is related to the original cost function in a manner that preserves the ability
to find a global minimizer and is significantly more efficient computationally. A rank-based optimality
condition for stationary points is given and optimization algorithms based on state-of-the-art Riemannian
optimization and dynamically reducing rank are proposed. Empirical evaluations are performed using
the PhaseLift problem. The new approach is shown to be an effective method of phase retrieval with
computational efficiency increased substantially compared to the algorithm used in original PhaseLift
paper. A preliminary version can be found in [HGZ16].

1 Introduction

Recovering a signal given the modulus of its transform, e.g., Fourier or wavelet transform, is an important
task in the phase retrieval problem. It is a key problem for many important applications, e.g., X-ray
crystallography imaging [Har93], diffraction imaging [BDP+07], optics [Wal63] and microscopy [MISE08].

The continuous form of the problem with the Fourier transform recovers x(t) : Rs → C from |x̃(u)|, where
x̃(u) : Rs → C is defined by

x̃(u) =

∫
Rs

x(t) exp
(
−2πu · t

√
−1

)
dt,

and · denotes the Euclidean inner product. This paper considers the discrete form of the problem where
an indexed set of complex numbers x ∈ Cn1×n2×...×ns is to be recovered from the modulus of its discrete
Fourier transform |x̃(g1, g2, . . . , gs)|, where (g1, g2, . . . , gs) ∈ Ω := G1 × G2 × . . . Gs and Ω is a grid of an
s-dimensional space. The discrete Fourier transform x̃ is given by

x̃(g1, g2, . . . , gs) =

1√
n

∑
i1,i2,...,is

xi1i2...is exp

(
−2π

(
(i1 − 1)g1

n1
+ . . .+

(is − 1)gs
ns

)√
−1

)
, (1.1)
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where n = n1n2 . . . ns, ij is an integer satisfying 1 ≤ ij ≤ nj for j = 1, . . . s, xi1i2...is denotes the correspond-
ing entry of x and x̃(g1, g2, . . . , gs) denotes the corresponding entry of x̃.

It is well-known that the solution of the phase retrieval is not unique. For example, when Ω is the uniform
grid, i.e, Gi = {0, 1, . . . , ni − 1}, i = 1, 2, . . . , s, if x is a solution, then

1. y = cx is a solution where c ∈ C and |c| = 1;

2. y ∈ Cn1×n2×...ns such that yi1i2...is = xj1j2...js is a solution, where jk = ik + ak mod nk, k = 1, . . . , s
and a1, a2, . . . as are integers;

3. y ∈ Cn1×n2×...ns such that yi1,i2,...is = x̄j1j2...js is a solution, where jk = −ik mod nk, k = 1, . . . , s
and x̄ is the conjugate of x.

These equivalent solutions are called trivial associates of x and infinitely many additional solutions may exist
[San85].

Oversampling in the Fourier domain is a standard method to obtain a unique solution and it has been
shown to almost always give a unique solution for multiple dimensional problems for real-valued and non-
negative signals [BS79, Hay82, San85]. Many algorithms based on alternating projection [GS72] have been
developed to solve phase retrieval problem using the oversampling framework [Fie78, Fie82, Els03, Bla04,
Mar07, CMWL07]. While these algorithms are efficient and effective in some problem settings, they may
not perform well in other settings. For details on the capabilities and difficulties of these algorithms see
[CESV13] and the references therein.

In recent years other frameworks, using multiple structured illuminations, or the mathematically equiv-
alent construct of masks, combined with convex programming, have been proposed to recover the phase
exactly, e.g., PhaseLift [CESV13] and PhaseCut [WDAM13]. It was later proved that a feasibility problem
of two convex sets can be solved for PhaseLift in [CL13, DH14]. For the PhaseLift framework, four major
results are of interest here. First, using a small number (related to s) of noiseless measurements of the
modulus defined by certain carefully designed illuminations, the phase can be recovered exactly [CESV13].
Second, when these carefully designed measurements are not used, the phase can be recovered exactly with
high probability using O(n log n) noiseless measurements of the modulus [CSV13]. Third, exact recovery is
still possible using O(n) noiseless measurements [CL13]. Finally, the stability of recovering the phase using
noisy measurements is shown in [CSV13].

For the PhaseCut framework, it is known that if the phase can be recovered using PhaseLift, then it
can also be recovered by a modified version of PhaseCut and that the PhaseCut is at least as stable as
the weak formulation of PhaseLift for noisy measurements [WDAM13]. The weak formulation is formally
defined in [WDAM13, Section 4.1], however, the idea of a weak formulation is also given earlier in the proof
of [CESV13, Theorem 2.1]. Empirically, PhaseCut is observed to be more stable in the situation of sparse
sampling of the modulus.

The problems in both PhaseLift and PhaseCut concern optimizing convex cost functions defined on a
convex set of complex matrices, i.e.,

min
X∈Dn

H(X), (1.2)

where H : Dn → R : X 7→ H(X), and Dn denotes the set of all n-by-n complex Hermitian positive
semidefinite matrices. PhaseCut further requires that the diagonal entries ofX are 1. However, the dimension
of (1.2) is usually too large to be solved by standard convex programming techniques. For example, in order
to recover an image of 100 by 100 pixels, i.e., s = 2 and n1 = n2 = 100, solving an optimization problem with
an argument that is a 1002 by 1002 matrix is required. The complexity of solving PhaseLift and PhaseCut
using standard semidefinite programming solvers, e.g., SDPT3 [TTT99], is discussed in [WDAM13, Section
4.6].

Since the desired optimum, X∗, is known to be a rank-one matrix, a low-rank matrix approximation of
the argument matrix is used in [CESV13] to save computations for PhaseLift. While this approximation has
good empirical performance, no convergence proof is given in [CESV13]. For PhaseCut, a block coordinate
descent algorithm is proposed in [WDAM13] and the algorithm is shown to be computationally inexpensive
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for each iteration. However, the block coordinate descent algorithm converges slowly, i.e., linear convergence
[BV04, Section 9.4.3], and the overall computational cost can be unacceptably high.

This paper uses the framework of PhaseLift and an alternate cost function F : Cn×p → R : Y 7→ F (Y ) =
H(Y Y ∗) defined by matrix factorization is considered. Even though F is not convex, it is shown to be a
suitable replacement of the cost function H. Riemannian optimization methods on an appropriate quotient
space are used for optimizing F . Using the cost function F with a small dimension p reduces storage and the
computational complexity of each iteration. Fast convergence rate is also guaranteed theoretically by known
Riemannian optimization results. This new approach is shown to perform empirically much better than the
low-rank approximate version of the algorithm used for PhaseLift in [CESV13] from the points of view of
efficiency and effectiveness. Finally, note that the analysis and algorithm presented is not specific to the cost
function used for phase retrieval in PhaseLift but for a general cost function defined on Dn and therefore the
approach has potential for optimization in other applications where the global optimum is known to have
low rank.

A forerunner to this paper appeared in [HGZ16]. This paper differs from the conference paper in the
following main aspects: (i) proofs of theoretical results and derivations of required ingredients for Riemannian
optimization are given in this paper; (ii) a different Riemannian metric is used for the fixed-rank Hermitian
positive semidefinite matrices and this metric yields a cheaper Riemannian gradient and isometric vector
transport1; and (iii) the initial iterate in this paper is chosen by exploiting the approach in [CLS16, Algorithm
1] whereas [HGZ16] only uses a random initial iterate. The proposed initial iterate has an edge over the
previous one in the sense that it significantly reduces computational time.

The idea of using low-rank factorization to solve positive semidefinite constrained problems is, of course,
not new but all the research results of which the authors are aware, are for real positive semidefinite matrix
constraints. Burer and Monteiro [BM03] first investigate this approach for semidefinite programming (SDP)
in which the cost function is linear. Journée et al. [JBAS10] use low-rank factorization for a more general
problem in the sense that the cost function H is not necessary linear,

min
X∈S+n

H(X), such that tr(AiX) = bi, i = 1, . . .m,

where S+n denotes the set of all real n-by-n symmetric positive semidefinite matrices, Ai ∈ Rn×n, Ai = AT
i

and AiAj = 0 for any i ̸= j. The conditions that Ai = AT
i and AiAj = 0 for any i ̸= j implies the number of

equality constraints m is at most n as pointed out in [JBAS10]. The complex problem (1.2) does not belong
to this category of problem since m is much larger than n when the complex problem is written as a real
problem, see details in Appendix A.

The paper is organized as follows. Section 2 presents the notation used. The derivation of the opti-
mization problem framework in PhaseLift is given in Section 3. The alternate cost function and optimality
conditions are derived in Section 4. Riemannian optimization methods and the required geometric objects
are presented in Section 5. In Section 6, the effectiveness of the methods are demonstrated with several
numerical experiments and, finally, conclusions are given in Section 7.

2 Notation

For any z ∈ Cn1×n2×...ns , vec(z) ∈ Cn, where n = n1n2 . . . ns, denotes the vector form of z, i.e., (vec(z))k =

zi1i2...is , where k = i1 +
∑s−1

j=1 n1n2 . . . nj(ij+1 − 1). Re(·) denotes the real part of the argument and
superscript ∗ denotes the conjugate transpose operator. Given a vector v with length h, Diag(v) denotes an
h-by-h diagonal matrix the diagonal entries of which are v.

0s×k denotes an s×k zero matrix; Is×k denotes a diagonal matrix with diagonal entries 1; and 0s denote
a vector with length s with entries all 0. diag(M) denotes a vector of the diagonal entries of M ∈ Cs×k and
tr(M) denotes the trace of M . If s ≥ k, M⊥ denotes an s× (s− k) matrix such that M∗

⊥M⊥ = I(s−k)×(s−k)

1The Riemannian gradient in [HGZ16] requires solving a Sylvester equation whereas the Riemannian gradient in this paper
has a cheaper closed form. The isometric vector transports in this paper has complexity O(np2) +O(p3) which is cheaper than
the one of O(np2) +O(p6) in [HGZ16].
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and M∗

⊥M = 0(s−k)×k. M(:, 1 : k) denotes a matrix that is formed by the first k columns of matrix M .
span(M) denotes the column space of M . Eij denotes a matrix with i-th row j-th column entry be 1 and
other entries be 0.

Given a manifoldM, TxM denotes the tangent space ofM at x ∈M. Dk denotes set {X ∈ Cn×n|X =
X∗, X ≥ 0, rank(X) ≤ k}, 1 ≤ k ≤ n, where the statement X ≥ 0 means that matrix X is positive
semidefinite or definite. St(k, s) denotes the complex compact Stiefel manifold {A ∈ Cs×k|A∗A = Ik×k}
with s ≥ k. SC+(k, s) denotes the set of all Hermitian positive semidefinite s × s matrices of fixed rank k.
When elements of SC+(k, s) are restricted to be real, it is denoted by SR+(k, s). Cs×k

∗ denotes the complex
noncompact Stiefel manifold, i.e., the set of all s × k full column rank complex matrices. Os denotes the
group of s-by-s unitary matrices.

Given a function f(x) onM or Cs×k, grad f(x) denotes the gradient of f at x.

3 The PhaseLift approach to phase retrieval

The phase retrieval problem recovers x from its quadratic measurements of the form A(x) = {|⟨ak,x⟩|2 :
k = 1, 2, . . . ,m}, where ak ∈ Cn1×n2×...ns , k = 1, 2, . . . ,m are given. It is well-known that the quadratic
measurements can be lifted up to be linear measurements about the rank-one matrix X = xx∗, where x =
vec(x) ∈ Cn. Specifically, the measurements are |⟨ak,x⟩|2 = tr(aka

∗
kxx

∗) := tr(AkX), where ak = vec(ak) ∈
Cn. Define A to be the linear operator mapping X into b :=

[
tr(A1X) tr(A2X) . . . tr(AmX)

]T
. The

goal of the phase retrieval problem is to

find X, such that A(X) = b,X ≥ 0 and rank(X) = 1. (3.1)

The alternative problem suggested in [CESV13] considers an optimization problem that does not force the
rank of matrix to be one but adds a nuclear norm penalty term to favor low-rank solutions

min
X∈Dn

∥b−A(X)∥22 + κ tr(X), (3.2)

where κ is a positive constant.
Measurements with noise, b ∈ Rm, are assumed to have the form b = A(X) + ϵ, where ϵ ∈ Rm is noise

sampled from a distribution p(:;µ). The task suggested in [CESV13] is

min
X
− log(p(b;µ)) + κ tr(X) (3.3)

such that µ = A(X) and X ∈ Dn,

or equivalently

min
X∈Dn

− log(p(b;A(X))) + κ tr(X) (3.4)

where κ is a positive constant. Problems (3.3) and (3.4) are preferred over Problem (3.1), since they are
convex programming problems when the log-likelihood function is concave.

4 Theoretical results

This section presents theoretical results that motivate the design of algorithms for optimizing a cost function
H defined on Dn. The analysis does not rely on the convexity of the cost function H.

4.1 Equivalent cost function

The cost functions generically denoted H all satisfy

H : Dn → R : X 7→ H(X). (4.1)
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It is well-known that for any X ∈ Dn, there exists Yn ∈ Cn×n such that YnY

∗
n = X. Furthermore, if X

is rank p, then there exists Yp ∈ Cn×p such that YpY
∗
p = X. Throughout this paper, the subscript of Y

is used to emphasize the column size of Y . Therefore, a surjective mapping between Cn×p and Dp is given
by αp : Cn×p → Dp : Yp 7→ YpY

∗
p . It is clear that αp is not an injection. Specifically, given X ∈ Dp, if Yp

satisfies αp(Yp) = YpY
∗
p = X, then YpOp also satisfies αp(YpOp) = X for any Op ∈ Op. Thus, if the desired

solution of H is known to be at most rank p, then an alternate cost function to H can be used:

Fp : Cn×p → R : Yp 7→ H(αp(Yp)) = H(YpY
∗
p ).

The subscripts of F and α indicate the column size of the argument. The domain of Fp has lower dimension
than that of H which may yield computational efficiency. Therefore, instead of problem of (1.2), the problem
minYp∈Cn×p Fp(Yp) is considered.

4.2 Optimality conditions

In this section, the characterizations of stationary points of F and H over Dn are used to derive the relation-
ship between optimizing F and optimizing H over Dn. Since H is defined on a constrained set, a stationary
point of H does not simply satisfies gradH(X) = 0. One can define the stationary points of H as follows by
Lemma A.1:

Definition 4.1. A stationary point of (4.1) is a matrix X ∈ Dn such that gradH(X)X = 0 and gradH(X) ≥
0.

The gradient is easily computed and is given in Lemma 4.1 in terms of H.

Lemma 4.1. The gradient of Fp at Yp is given by

gradFp(Yp) = 2 gradH(YpY
∗
p )Yp. (4.2)

Proof. On one hand, it satisfies that for all ηp ∈ Cn×p

DFp(Yp)[ηp] = gE(gradFp(Yp), ηp).

On the other hand, we have

DFp(Yp)[ηp] =DH(YpY
∗
p )[Ypη

∗
p + ηpY

∗
p ] = gE(gradH(YpY

∗
p ), Ypη

∗
p + ηpY

∗
p )

=gE((gradH(YpY
∗
p ) + gradH(YpY

∗
p )

∗)Yp, ηp),

which implies gradFp(Yp) = (gradH(YpY
∗
p )+gradH(YpY

∗
p )

∗)Yp. Since H is defined on Hermitian matrices,
gradH can be written as a Hermitian matrix. It follows that gradFp(Yp) = 2 gradH(YpY

∗
p )Yp which is (4.2).

Theorem 4.1 and [JBAS10, Theorem 7] show similar results under different frameworks. Both results
suggest considering the cost function Fp if the desired minimizer of H is known to have rank smaller than
p, as is the case with PhaseLift for phase retrieval. This is formalized in Theorem 4.1 and has critical
algorithmic, efficiency and optimality implications when H has suitable structure such as convexity as in the
case of PhaseLift. These implications for PhaseLIft are discussed in Section 6.1.

Theorem 4.1. Suppose Yp = KsQ
∗ is a rank deficient minimizer of Fp, where Ks ∈ Cn×s

∗ with s < p and
Q ∈ St(s, p). Then gradH(YpY

∗
p ) is a positive semidefinite matrix and, therefore, X = YpY

∗
p is a stationary

point of H. If furthermore H is convex, then X is a global minimizer of (4.1).

Proof. We first show that (Ks)
∗
⊥ gradH(X)(Ks)⊥ is a positive semidefinite matrix. This is proved by

contradiction. If (Ks)
∗
⊥ gradH(X)(Ks)⊥ is not a positive semidefinite matrix, then it has at least one

negative eigenvalue. If µ and v denote a negative eigenvalue and the corresponding eigenvector then the
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semidefinite positive matrix η = −(Ks)⊥(vµv

∗)(Ks)
∗
⊥ satisfies gE(η, gradH(X)) < 0. Thus, a smooth curve

γ(t) = X+ tη satisfies that γ̇(0) = η, γ(t) ∈ Dp for all t ∈ [0, δ) and γ(0) = X, where δ is a positive constant.
The derivative d

dtH(γ(t))|t=0 by definition is gE(η, gradH(X)) and, therefore, d
dtH(γ(t))|t=0 < 0.

Decomposing γ(t) yields

γ(t) =
(
Ks ṽ

)( Is
−tµ

)(
Ks ṽ

)∗
,

where ṽ = (Ks)⊥v. Define r(t) =
(
Ks ṽ

)
Diag (Is,

√
−tµ). Therefore, γ(t) = r(t)r∗(t). The derivative of

r(t2) is ξ(t) =
(
0n×s

√
−µṽ

)
. It follows that

d2

dt2
H(γ(t2))|t=0 =

d2

dt2
Fn(r(t

2))|t=0 = gE(ξ(0),HessFp(Ỹp)[ξ(0)]) ≥ 0. (4.3)

Let a(t) = H(γ(t)) and so ȧ(0) < 0. It follows that

d2

dt2
H(γ(t2))|t=0 =

d2

dt2
a(t2) = (4t2ä(t2) + 2ȧ(t2))|t=0 = 2ȧ(0) < 0,

which conflicts with (4.3). Therefore, (Ks)
∗
⊥ gradH(YpY

∗
p )(Ks)⊥ is a positive semidefinite matrix which is

a contradiction with the initial assumption of the proof.
Let Qs denote an orthonormal basis of span(Ks). gradH(X) can be written as

gradH(X) =
(
Qs (Ks)⊥

)( S A∗

A R

)(
Qs (Ks)⊥

)∗
,

where S ∈ Cs×s, S∗ = S, A ∈ C(n−s)×p and R = (Ks)
∗
⊥ gradH(X)(Ks)⊥. Since Yp is a stationary point of

F , we have gradH(X)KsQ
∗ = gradF (Yp) = 0n×s. It follows that S = 0s×s and A = 0(n−s)×s. Therefore,

R ≥ 0 implies gradH(X) ≥ 0 which means X is a stationary point of H by Definition 4.1.

5 A Riemannian approach

Riemannian optimization is an active research area and recently many Riemannian optimization meth-
ods have been systemically analyzed and efficient libraries designed, e.g., Riemannian trust-region New-
ton method (RTR-Newton) [Bak08], Riemannian Broyden family method including BFGS method and
its limited-memory version (RBroyden family, RBFGS, LRBFGS) [RW12, Hua13, HGA15], Riemannian
trust-region symmetric rank-one update method and its limited-memory version (RTR-SR1, LRTR-SR1)
[Hua13, HAG15], Riemannian Newton method (RNewton) and Riemannian non-linear conjugate gradient
method (RCG) [AMS08, SI15, Sat15].

Journée et al. [JBAS10] have proposed a method that combines a Riemannian optimization method on
a fixed rank manifold with a procedure of increasing rank for their semidefinite constrained problem setting.
Specifically, given an iterate with rank r, a Riemannian optimization method is applied for a cost function
on a manifold with rank r. If the limit point is not rank deficient, then either a descent direction to a higher
rank space can be found or a desired stationary point is obtained. For the former case, a descent algorithm
is applied to find a next descent iterate which is used to be the initial point for a Riemannian optimization
method on a manifold with larger rank. For the latter case, the convergence rate can be obtained and
depends on the Riemannian optimization algorithm. If the limit point is rank deficient, then all existing
Riemannian convergence analyses are not applicable. This case was ignored in [JBAS10] since situations of
a limit point being rank deficient were not encountered in their experiments.

If the rank of the desired minimizer is known, such as in the problems in PhaseLift, then [BM03] suggests
to choose the rank of initial point to be that rank. However, this, in fact, is not the appropriate response due
to complexity considerations as the theory and algorithms derived in this section indicate, and the numerical
experiments in Section 6 demonstrate. To see this, let r∗ denote the desired rank of the global minimizer.
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Note that there may exist a stationary point Yr∗ of Fr∗ for which Yr∗Y

∗
r∗ is not a stationary point of H. It

follows that forcing iterates to be rank r∗ is not appropriate and starting from a higher rank or moving to a
higher rank to move to the minimizer of H is necessary. This is discussed further later in this section.

There is also a potential problem of using a rank increasing procedure. If Yp is a stationary point of Fp,
then (Yp, 0n×(k−p)) is also a stationary point of Fk. A procedure that increases rank starting from Yp may
find a point Yk which is close to (Yp, 0n×(k−p)) . It follows that using Yk to be an initial point of the iteration
on the rank-k manifold may not work efficiently since Yk may be too close to a stationary point. Therefore,
an algorithm based on Riemannian optimization methods on a fixed rank manifold and a procedure to
decrease rank without using any rank increase technique is proposed in this section. Since it is known that
the minimizer for PhaseLift phase retrieval has rank 1 this is sufficient to allow global minimization using
only rank decreases.

5.1 Riemannian optimization on fixed rank manifold

In order to make use of Riemannian optimization theory and algorithms on a fixed rank manifold, the
Riemannian gradient of the cost function, the tangent space of an element in the manifold, the retraction
operation on the manifold, and an appropriate vector transport are needed. The definitions of Riemannian
gradient, tangent space, retraction and vector transport are standard and can be found, e.g., in [Boo86,
AMS08].

Derivations for Riemannian objects of SR+(p, n) have been given in [AIDV09]. This section includes deriva-
tions of Riemannian objects for the complex case, i.e., SC+(p, n). Since the mapping αp is not an injection,
all the minimizers of Fp are degenerate, which causes difficulties in some algorithms, e.g., Riemannian and
Euclidean Newton method. In order to overcome this difficulty, a function defined on a quotient manifold
with fixed rank is considered. To this end, define the mapping βp to be the mapping αp restricted on
Cn×p

∗ , i.e., βp : Cn×p
∗ → SC+(p, n) : Y 7→ αp(Y ) = Y Y ∗, and function Gp to be the function Fp restricted

on Cn×p
∗ , i.e., Gp : Cn×p

∗ → R : Y 7→ Fp(Y ) = H(βp(Y )). Like αp, the mapping βp is a surjection but
not an injection and there are multiple matrices in Cn×p

∗ mapping to a single point in SC+(p, n). Neverthe-
less, given an X ∈ SC+(p, n), β

−1
p (X) is a manifold while α−1

p (X) is not a manifold. Therefore, using the
mapping βp, a quotient manifold can be used to remove the degeneracy by defining the equivalence class
β−1
p (Y Y ∗) = [Y ] = {Y O|O ∈ Op} and the set

Cn×p
∗ /Op = {[Y ]|Y ∈ Cn×p

∗ }.

This set can be shown to be a quotient manifold over R. To clarify the notation, π(Y ) is used to denote [Y ]
viewed as an element in Cn×p

∗ /Op and π−1(π(Y )) is used to denote [Y ] viewed as a subset of Cn×p
∗ . The

function mp : π(Y ) 7→ Y Y ∗ is a diffeomorphism between Cn×p
∗ /Op and SC+(p, n).

An element of a quotient manifold is an equivalence class which is often cumbersome computationally
. Fortunately, choosing a representative for an equivalence class and definitions of related mathematical
objects have been developed in many papers in the literature of computation on manifolds, e.g., [AMS08].
The vertical space at Y ∈ π−1(π(Y )), which is the tangent space of π−1(π(Y )) at Y , is

VY = {Y Ω|Ω∗ = −Ω,Ω ∈ Cp×p}.

The horizontal space at Y , HY , is defined to be a subspace of TY Cn×p
∗ = Cn×p that is orthogonal to VY ,

i.e., satisfying HA ⊕ VA = TA GL(n,C). Therefore, a Riemannian metric of Cn×p
∗ is required to define the

meaning of orthogonal. The metric used is

ĝY (ηY , ξY ) = Re(tr((Y ∗Y )η∗Y ξY )), (5.1)

for all ηY , ξY ∈ TY Cn×p
∗ and Y ∈ Cn×p

∗ . The metric (5.1) yields a cheap vector transport by parallelization
which is discussed later. The horizontal space is therefore

HY = {Y S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p}.
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The horizontal space HY is a representation of the tangent space Tπ(Y ) Cn×p

∗ /Op. It is known that for any

ηπ(Y ) ∈ Tπ(Y ) Cn×p
∗ /Op, there exists a unique vector in HY , called the horizontal lift of ηπ(Y ) and denoted

by η↑Y
, satisfying Dπ(Y )[η↑Y

] = ηπ(Y ), see e.g., [AMS08]. Lemma 5.1 gives a relationship among horizontal
lifts of a tangent vector ηπ(Y ) when different representations in π−1(π(Y )) are chosen. The result follows
from [Hua13, Theorem 9.3.1].

Lemma 5.1. A horizontal vector field η̂ of Cn×p
∗ is the horizontal lift of a vector field η on Cn×p

∗ /Op if and
only if, for each Y ∈ Cn×p

∗ , we have η̂Y O = η̂Y O for all O ∈ Op.

The orthogonal projections on to the horizontal space or the vertical space are also easily characterized.

Lemma 5.2. The orthogonal projection to vertical space VY is P v
Y (η) = Y Ω, where Ω = ((Y ∗Y )−1Y ∗η −

η∗Y (Y ∗Y )−1)/2 is a skew Hermitian matrix. The orthogonal projection to Horizontal space HY is Ph
Y (η) =

η − Y Ω.

Proof. By definition of HY and VY , Ph
Y (η) satisfies that (Y

∗Y )−1Y ∗Ph
Y (η) = Ph

Y (η)
∗Y (Y ∗Y )−1 and can be

expressed as η−Y Ω. It follows that Ω = ((Y ∗Y )−1Y ∗η−η∗Y (Y ∗Y )−1)/2 which gives the desired results.

Finally, the desired cost function that removes the equivalence can be defined as

fp : Cn×p
∗ /Op → R : π(Y ) 7→ fp(π(Y )) = Gp(Y ) = Fp(Y ). (5.2)

The function fp in 5.2 has the important property that π(Y ) is a nondegenerate minimizer of f over Cn×p
∗ /Op

if and only if Y Y ∗ is a nondegenerate minimizer of H over SC+(p, n).
The gradient is given in Lemma 5.3.

Lemma 5.3. The horizontal lift of the gradient of (5.2) at Y is

(grad f(π(Y )))↑Y = Ph
Y (gradF (Y )).

Proof. The directional derivative of f along any ηπ(Y ) ∈ Tπ(Y ) Cn×p
∗ /Op is

D f(π(Y ))[ηπ(Y )] = D f(π(Y ))[Dπ(Y )[η↑Y
]]

= DF (Y )[η↑Y
] = ĝY (gradF (Y ), η↑Y

) = ĝY (P
h
Y (gradF (Y )), η↑Y

).

Additionally using the definition of gradient [AMS08, (3.31)], i.e., D f(π(Y ))[ηπ(Y )] = gπ(Y )(grad f(π(Y )), ηπ(Y )),
and the equation gπ(Y )(grad f(π(Y )), ηπ(Y )) = ĝY ((grad f(π(Y )))↑Y

, η↑Y
), yields the result.

Retraction is used in updating iterates in a Riemannian algorithm. Vector transport is used to compare
tangent vectors in different tangent spaces. Specifically, a retraction R is a smooth mapping from the tangent
bundle TM, which is the set of all tangent spaces, onto M such that (i) R(0x) = x for all x ∈ M (where
0x denotes the origin of TxM) and (ii) d

dtR(tξx)|t=0 = ξx for all ξx ∈ TxM. The restriction of R to TxM
is denoted by Rx. A vector transport T : TM⊕ TM→ TM, (ηx, ξx) 7→ Tηxξx with associated retraction
R is a smooth mapping such that, for all (x, ηx) in the domain of R and all ξx ∈ TxM, it holds that
(i) Tηxξx ∈ TR(ηx)M, (ii) T0xξx = ξx, (iii) Tηx is a linear map. The retraction used in the Riemannian
optimization methods is

Rπ(Y )(ηπ(Y )) = π(Y + η↑Y
), (5.3)

and the vector transport used is the vector transport by parallelization [HAG16]:

Tηxξx = ByB
†
x,

where B is a smooth tangent basis field defined on an open set V ofM and B†
x denotes the pseudo-inverse

of Bx. A smooth orthonormal tangent basis of Cn×p
∗ /Op can be defined as follows: given π(Z) ∈ Cn×p

∗ /Op,
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the horizontal lifts of columns in Bπ(Z) at Z is{

ZL−∗eie
T
i L

−1, i = 1, . . . , p
}

∪{
1√
2
ZL−∗(eie

T
j − eje

T
i )L

−1, i = 1, . . . , p, j = i+ 1, . . . , p

}
∪{

1√
2
ZL−∗(eie

T
j + eje

T
i )
√
−1L−1i = 1, . . . , p, j = i+ 1, . . . , p

}
∪{

Z⊥ẽie
T
j L

−1, i = 1, . . . n− p, j = 1, . . . p
}∪{

Z⊥ẽie
T
j

√
−1L−1, i = 1, . . . n− p, j = 1, . . . p

}
,

where (e1, . . . , ep) is the canonical basis of Rp, (ẽ1, . . . , ẽ(n−p)) is the canonical basis of Rn−r, and ZTZ = LL∗

is the Cholesky decomposition.
In summary, this section provides the objects used in Riemannian optimization methods, i.e., the horizon-

tal space, the projection to a horizontal space, the Riemannian metric, the retraction, the vector transport,
and the Riemannian gradient.

5.2 Dynamic rank reduction

Since the domain of fp, Cn×p
∗ /Op, is not closed, i.e., a sequence {W (i)} representing {π(W (i))} generated by

an algorithm may have a limit point Ŵ with rank less than p, a simple well-known strategy for dynamically
reducing rank is adapted and used. Since it is impossible in practice to check whether a limit point of iterates
{W (i)} is a lower rank matrix or just close to one of lower rank, the idea suggested below makes more sense
when the desired rank of the minimizer is known and the current iterate W (i) has a higher rank than the
desired rank. This is the case with PhaseLift for phase retrieval.

The thin singular value decomposition of the i-th iterate is W (i) = UΣV ∗ and Σ = Diag(σ1, σ2, . . . , σp),
where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. Let σ̃ be ∥Diag(σ1, . . . , σp)∥F /

√
p. If there exists q < p such that σq/σ̃ > δ

and σq+1/σ̃ ≤ δ for a given threshold δ, then Ŵ = U(:, 1 : q)Diag(σ1, . . . σq)V (:, 1 : q)∗ is chosen to be
the initial point for optimizing cost function fq over Cn×q

∗ /Oq. The details of reducing rank are given in
Algorithm 1. Note that the step of decreasing the rank may produce an iterate that increases the cost
function value. This facilitates global optimization by allowing nondescent steps.

Algorithm 1 Reduce Rank

Require: Y ∈ Cn×p; threshold δ;
Ensure: W ∈ Cn×q;
1: Take thin singular value decomposition for Y , i.e., Y = U Diag(σ1, . . . , σp)V

∗, where U ∈ Cn×p, V ∈
Cp×p and σ1 ≥ . . . ≥ σp ≥ 0;

2: Set σ̃ = ∥Diag(σ1, . . . , σp)∥F /
√
p;

3: if σp/σ̃ > δ then
4: q ← p, W ← Y and return;
5: else
6: Find q such that σq/σ̃ > δ and σq+1/σ̃ ≤ δ;
7: Let W = U(:, 1 : q)Diag(σ1, . . . σq)V (:, 1 : q)∗ and return;
8: end if

Combining a Riemannian optimization method with the procedure of reducing rank gives Algorithm 2.

6 Experiments

In this section, numerical simulations for noiseless problems and those with Gaussian noise are used to illus-
trate the performance of the proposed method. The required Riemannian objects are derived in Section 6.1
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Algorithm 2 Rank Reduce Algorithm

Require: p > 0; Y
(0)
p ∈ Cn×p a representation of initial point π(Y

(0)
p ) for f ; Stopping criterion threshold ϵ;

rank reducing threshold δ; a Riemannian optimization method;
Ensure: W
1: for k = 0, 1, 2, . . . do

2: Apply Riemannian method for cost function f over Cn×p
∗ /Op with initial point π(Y

(k)
p ) until i-th

iterate W (i) satisfying g(grad f, grad f) < ϵ2 or the requirement of reducing rank with threshold δ;
3: if g(grad f, grad f) < ϵ21 then
4: Set W ←W (i) and return;
5: else {iterate in the Riemannian optimization method meets the requirements of reducing rank}
6: Apply Algorithm 1 with threshold δ and obtain an output Ŵ ∈ Cn×q;

7: p← q and set Y
(k+1)
p = Ŵ ;

8: end if
9: end for

and the experimental environment and parameters are defined in Section 6.2. Algorithm 2 with LRBFGS is
compared for a range of parameters in Section 6.3. In Section 6.4, the Riemannian approach is compared to
the algorithm used in the convex programming approach of [CESV13, CSV13] that represents the current
PhaseLift state-of-the-art. Finally, the performance is evaluated for various sizes of natural images.

6.1 Cost function, gradient, and complexity for PhaseLift

The known random masks or illumination fields defined on the discrete signal domain are denoted wr ∈
Cn1×n2×...ns , r = 1, . . . l. It follows that {⟨ak,x⟩, k = 1, . . .m} is (Fns ⊗Fns−1 ⊗ . . .Fn1)Diag(w1)x

...
(Fns ⊗Fns−1 ⊗ . . .Fn1)Diag(wl)x

 ,

where ⊗ denotes the Kronecker product and Fni ∈ Cti×ni , i = 1, . . . , s denotes the one-dimensional Discrete
Fourier Transform (DFT). Let Zi denote (Fns

⊗Fns−1
⊗ . . .Fn1

)Diag(wi), Z denote (ZT
1 ZT

2 . . . ZT
l )

T . We
have A(x) = diag(Zxx∗Z∗), which implies that A(X) = diag(ZXZ∗).

When the entries in the noise ϵ are drawn from the normal distribution with mean 0 and variance τ , the
cost functions of (3.4) and (3.2) are essentially identical, i.e., for (3.2), H1(X) = ∥b−diag(ZXZ∗)∥22+κ tr(X),
and for (3.4), H2(X) = 1

τ2 ∥b− diag(ZXZ∗)∥22 + κ tr(X). Without loss of generality, only the cost function
H(X) = ∥b− diag(ZXZ∗))∥22/∥b∥22 + κ tr(X) is considered. It can be shown that the Euclidean gradient of
H is gradH(X) = 2

∥b∥2
2
Z∗ Diag(diag(ZXZ∗)− b)Z + κIn×n. The gradients of functions Fp and fp can be

constructed by using Lemmas 4.1 and 5.3.
The complexities of evaluations of the function value, and gradient of Fp are all of the same or-

der, O(pmsmaxi(log(ni)). The complexities of evaluations of the function value, and gradient of fp are
O(pmsmaxi(log(ni)) and O(pmsmaxi(log(ni)) + O(np2) + O(p3) respectively. The complexities of the
retraction and the vector transport by parallelization are O(pn) and O(np2)+O(p3) respectively. If p << n
then all these complexities are dominated by O(pmsmaxi(log(ni)).

For the optimization problems in the PhaseLift framework for phase retrieval, Theorem 4.1 is important
due to the following reasons. First, the cost function H in PhaseLift is convex over a convex domain Dn.
Therefore, finding a stationary point of H by using the cost function F is sufficient to find a global minimizer
of H. Second, the rank of the desired minimizer of H in PhaseLift is one. It follows that by using a low-
rank factorization-based cost function Fp with small p > 1 it is possible to find the desired unique rank-one
minimizer ofH and optimizing Fp with small p > 1. (This approach also has lower storage and computational
complexity compared to optimizing H.) The theorem guarantees that any minimizer, Yp, of Fp with rank
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less than p must have rank 1 and YpY

∗
p must be the global minimizer of H. Stationary points, including

local minimizers, of Fp with rank p can be discarded if found and the algorithm restarted appropriately. If
an X with numerical rank 1 < r < p is encountered when iterating using Fp then X is not a stationary
point and the rank reduction strategy increases efficiency by removing the unnecessary directions from X
and continuing the iteration on Fr.

Even though stationary points with rank 1 that are not local minimizers of F1 may exist, their presence
tends to simply slow the algorithm rather than stopping the iteration at the saddle point. As expected,
therefore, running with p > 1 avoids this issue completely. There is no theorem guaranteeing that the iterates
generated by optimizing Fp with adapting but remaining greater than 1 always converge to an approximation
of the rank-one minimizer of H in PhaseLift, such convergence occurred in all of the experiments below and
if it were to occur Theorem 4.1 allows detection and restarting as discussed above.

6.2 Data, parameters and notations

All codes are written in Matlab and all experiments are performed in Matlab R2014a on a 64 bit Ubuntu
system with 3.6 GHz CPU (Intel (R) Core (TM) i7-4790).

Unless indicated in the description of the experiments, the following test data are used. A complex
number a + b

√
−1 is said to be drawn from a distribution in this paper if both a and b are drawn from

the distribution independently. The entries of the true solution x∗ and Gaussian masks wi, i = 1, . . . l are
drawn from the standard normal distribution. The entries of x∗ are further normalized by ∥x∗∥2 and the
wi, i = 1, . . . , l are further normalized by

√
n. For the noiseless problem, the measurement b is set to be

diag(Zx∗x
∗
∗Z

∗) and for Gaussian noise problem, the measurement b is set to be diag(Zx∗x
∗
∗Z

∗) + ϵ, where
the entries of ϵ ∈ Rm are drawn from the normal distribution with mean 0 and variance τ that is specified
later for each experiment.

The initial iterate Y
(0)
p is computed by Algorithm 3, which generalizes [CLS16, Algorithm 1] such that the

values p > 1 is allowed. We set the number of iterations N in Algorithm 3 to be 20 in all the experiments.
Note the initial iterate is chosen such that its singular values are identical. This choice of initial point

Algorithm 3 Initialization

Require: Y ∈ Cn×p drawn from the standard normal distribution;

Ensure: Initial iterate Y
(0)
p ;

1: Y ← orth(Y ), where orth(M) is computed by orthonormalizing the matrix M .
2: for i = 1, . . . , N do
3: Y ← orth(Z∗ Diag(b)ZY );
4: end for
5: Y

(0)
p ← Y ;

minimizes the influence of magnitudes of singular values of the initial point. In other words, if a bias of
magnitudes of singular values is shown during iteration, one knows that the bias is generated by the algorithm
and the surface of the cost function not the initial iterate.

The limited-memory version of Riemannian BFGS (LRBFGS) method is chosen to be the representative
Riemannian method in Step 2 of Algorithm 2. The stopping criterion of Algorithm 2 requires the norm of
gradient to less than 10−8 and the minimum number of iterations at each rank is 10. The parameter κ is
chosen to be 1/

√
n if p > 1 and 0 if p = 0 for Algorithm 2.

To obtain sufficiently stable timing results, an average time is taken of several runs with identical param-
eters for a total runtime of at least 1 minute. The notation used when reporting the experimental results is
given in Table 1.
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Table 1: Notation for reporting the experimental results.
iter summation of numbers of iterations in Step 2 of Algorithm 2
nf number of function evaluations
ng number of gradient evaluations
ff the function value of the final iterate
t average wall time (seconds)

Table 2: The mean and the standard derivation of computational time of 20 runs of Algorithm 2 using
LRBFGS with variant p0 and δ and output format is (mean)/(the standard derivation). Since δ does not
take effect for p0 = 1, the row corresponding to p0 = 1 has only one result.

δ 0.95 0.9 0.85 0.8 0.75

p0

1 9.06−1/3.75−1

2 5.67−1/7.95−2 5.75−1/8.05−2 5.89−1/8.32−2 6.02−1/8.84−2 6.11−1/8.64−2

4 5.99−1/6.25−2 6.63−1/7.73−2 7.03−1/7.60−2 7.62−1/7.75−2 7.98−1/7.72−2

6.3 Choices of initial point size and rank reducing threshold

Table 2 presents the experimental results of Algorithm 2 using the representative Riemannian method L-
RBFGS with l = 6, s = 2 and several values of p0 and δ. The noiseless problem is used. The mean and the
standard derivation of computational time of 20 runs of Algorithm 2 are reported.

The average computational time and the standard derivation of p0 = 1 are much larger relatively than
the other starting ranks. This clearly shows that the performance simply optimizing over matrices with the
fixed optimal rank is not a reliable and efficient method. Additionally, note that, when the initial point is
close to the global rank-one minimizer, then Algorithm 2 with p0 = 1 is fast, otherwise Algorithm 2 with
p0 = 1 is usually very slow. This explains the big standard derivation of computational time for p = 1. As
expected, using p0 > 1 significantly improves the performance of the algorithm. It allows the algorithm to
search on a larger dimensional space and find a more reasonable initial point for Algorithm 2 when p finally
reduces to 1. The values p0 = 4 and δ = 0.9 are chosen for use with Algorithm 2 in the later comparisons.

6.4 Comparisons with a standard low-rank method

Candes et al., [CESV13, CSV13] use a Matlab library TFOCS [BCG11] that contains a variety of accelerated
first-order methods given in [Nes04] and, in particular, the method based on FISTA [BT09] is used to optimize
the cost functions in PhaseLift. FISTA [BT09] works as follows. Given an initial point X(0), set B(0) = X(0)

and θ(0) = 1, and inductively define

X(i) = PDn(B
(i−1) − t(i) gradH(B(i−1))), (6.1)

θ(i) = 2(1 +

√
1 +

4

(θ(i−1))2
)−1,

β(i) = θ(i)((θ(i−1))−1 − 1),

B(i) = X(i) + β(i)(X(i) −X(i−1)), (6.2)

where t(i) is an appropriate step size, e.g., by back tracking. For large scale problems, matrix X(i) is

stored by its low-rank approximation computed via projection, i.e.,
∑k

j=1 max(σ
(i)
j , 0)v

(i)
j (v

(i)
j )∗, where∑n

j=1 σ
(i)
j v

(i)
j (v

(i)
j )∗ is an eigenvalue decomposition of X(i) and eigenvalues satisfies σ

(i)
1 ≥ σ

(i)
2 ≥ . . . ≥ σ

(i)
n .

The orthogonal projection (6.1) is obtained by using ”eigs” with function handle providing matrix vec-
tor multiplication since the matrix vector multiplication of (B(i−1) − t(i) gradH(B(i−1)))v is cheap for any
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Table 3: Comparisons of Algorithm 2 and LR-FISTA for the noiseless PhaseLift problem (3.2) with n1 =
n2 = 64 and several values of k. ♯ represents the number of iterations reach the maximum.

noiseless
Algorithm 2

LR-FISTA
1 2 4 8 16

iter 104 492 484 521 1538 2000
nf 108 1064 1004 1113 3323 4317
ng 104 532 502 556 1661 2158
ff 3.88−15 3.54−12 3.20−12 7.41−12 1.52−11 1.20−9

RMSE 1.93−7 6.20−6 4.68−6 1.59−5 8.92−5 2.64−3

t 8.37−1 59.6 53.3 80.7 337 676

v ∈ Cn. The low-rank subtraction (6.2) is computed exactly by doubling the storage. LR-FISTA is used to
denote the low-rank version of FISTA.

As in [CESV13], the difference between the true solution and the minimizer is measured by the relative
mean-square error (RMSE) that is defined to be mina:|a|=1 ∥ax−x∗∥2/∥x∗∥2 and RMSE in dB is defined by
10 log10(RMSE). The scale of the noise is measured by the signal-to-noise ratio (SNR) in dB that is defined

to be SNR = 10 log10(∥b∥22/∥b− b̂∥22), where b = diag(Zx∗x
∗
∗Z

∗) and b̂ is the noise measurements.
The stopping criterion of LR-FISTA requires that the Frobenius norm of the relative difference be-

tween X(i) and X(i−1) is less than 10−6 or the number of iterations is greater than 2000, i.e., ∥X(i) −
X(i−1)∥F /∥X(i)∥F < 10−6 or iter > 2000.

In practice, the choice of κ needs careful consideration. The standard golden section search [Kie53] is
used by Candes et al. [CESV13] to find the best κ that gives the smallest RMSE. This method can be used
only when the true solution x∗ is known. In addition, Candes et al. indicate that one would have to find the
best κ via a strategy like cross validation or generalized cross validation. However, since Algorithm 2 was
designed with rank in mind, the default choice for problems with and without noise is κ = 1/

√
n if p > 1 and

κ = 0 if p = 1. κ is chosen to be 0 in LR-FISTA for noiseless measurements in order to recover the exact
solution. The effect of using κ > 0 in LR-FISTA is discussed below when Gaussian noisy measurements are
used.

Tables 3 and 4 report experimental results of comparisons of Algorithm 2 and LR-FISTA for the noiseless
and Gaussian noise problems (3.2) and (3.4) respectively. For the Gaussian noise problem, τ is 10−4 and
the corresponding SNR is 31.05 dB in this experiment. Multiple examples with different random seeds
and different SNR show similar results. First, increasing k for LR-FISTA usually does not improve the
performance in the sense of efficiency and effectiveness for both noiseless and Gaussian noise problems.
Second, increasing κ usually does not reduce the RMSE. When it does, the RMSE values are not reduced
significantly. Third, Algorithm 2 outperforms LR-FISTA significantly in the sense that Algorithm 2 provides
similar accuracy usually while requiring fewer operations of all types (cost function evaluation, gradients etc.)
and yielding a significantly smaller computational time.

6.5 Performance of PhaseLift on natural images

Three images of different sizes, shown in Figures 1, 2 and 3, are used to illustrate the performance of
Algorithm 2 for noiseless measurements. Table 5 reports the computational time with the default parameters
and variant number of masks l for Figures 1 and 2. Even though using 6 masks empirically is sufficient to
recover the images, it may not be a good choice in the sense of efficiency. Among the number of masks l we
tested, 18 masks l = 18 requires least computational time. As shown in Figure 3, the Riemannian method
is able to recover an 2D image of 1800 by 2880 pixels within an hour.
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Table 4: Comparisons of Algorithm 2 and LR-FISTA for the noise PhaseLift problem (3.4) with SNR be
31.05 dB, n1 = n2 = 64 and several values of k and κ. ♯ represents the number of iterations reach the
maximum.

noise Algorithm 2 κ
LR-FISTA

1 2 4 8 16

iter 79
10−2 288 1574 2000♯ 2000♯ 2000♯

10−6 515 2000♯ 2000♯ 2000♯ 2000♯

0 509 2000♯ 2000♯ 2000♯ 2000♯

nf 83
10−2 620 3378 4261 4285 4275
10−6 1108 4286 4315 4323 4323
0 1098 4314 4309 4331 4323

ng 79
10−2 387 2694 3651 3344 3584
10−6 554 2143 2157 2161 2161
0 549 2157 2154 2165 2161

ff 4.08−7

10−2 1.63−1 1.76−1 2.24−1 2.75−1 3.04−1

10−6 1.84−5 1.92−5 2.37−5 3.56−5 7.82−5

0 4.08−7 1.17−6 6.01−6 2.54−5 9.31−5

RMSE 6.71−4

10−2 1.80−1 2.63−1 3.60−1 4.19−1 4.45−1

10−6 6.72−4 1.11−3 2.13−3 3.52−3 6.37−3

0 6.70−4 1.10−3 2.14−3 4.05−3 7.46−3

t 6.59−1

10−2 34.0 304 445 571 948
10−6 61.6 255 302 452 701
0 59.8 261 292 442 687

Gold balls data set

min

max

Figure 1: A gold balls data set image of 256 by 256 pixels. The values of pixels are complex numbers. The
computational time is given in Table 5. The RMSE is -80.1 dB when l is 18.

Table 5: Computational time on the natural images in Figures 1 and 2. t0 and tR denote the computational
time (in second) of initial iterate (Algorithm 3) and Algorithm 2, respectively.

l 6 12 18 24 30

Figure 1
t0 2.23 3.53 4.86 6.61 8.08
tR 22.14 9.15 7.61 8.45 10.08

Figure 2
t0 79.8 150.7 216.1 286.4 345.9
tR 1374.4 605.6 470.0 622.5 425.9
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Keukenhof park

min

max

Figure 2: A gray image of 1224 by 1632 pixels in Keukenhof park. The values of pixels are real numbers.
The computational time is given in Table 5. The RMSE is -81.3 dB when l is 18.
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Galaxy

min

max

Figure 3: A gray galaxy image of 1800 by 2880 pixels. The values of pixels are real numbers. The computa-
tional times of initial iterate and Algorithm 2 are 536.6 seconds and 1826 seconds, respectively. The RMSE
is -82.3 dB for the chosen l = 18.
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7 Conclusion

In this paper, the recently proposed PhaseLift framework for solving the phase retrieval problem has moti-
vated the consideration of cost functions H on the set of complex Hermitian positive semidefinite matrices
Dn that include the PhaseLift cost function.

An alternate cost function F related to factorization is used to replace the cost function H, i.e., F (Y ) =
H(Y Y ∗). The optimality conditions of H are related to the properties of F and the important optimality
condition, Theorem 4.1, shows that if Yp is a rank deficient minimizer of Fp, then YpY

∗
p is a stationary point

of H. For general problems defined on Dn, if r∗, the rank of the desired minimizer of cost function H, is
low, the optimality condition suggests the use of the alternate cost function F with p > r∗. If r∗ is small,
then a small p can be used and optimization on Fp can be more efficient than optimization on H.

Additionally, Algorithm 2 based on optimization on a fixed rank manifold and dynamically reducing is
developed for optimizing the cost function F . For optimization on a fixed rank manifold, recently developed
state-of-the-art Riemannian optimization methods on a quotient space are used.

For the case of the noiseless phase retrieval problem in the PhaseLift framework, obtaining a rank-
one minimizer Yp of Fp with p > 1 is shown to be equivalent to obtaining the rank-one global minimizer
YpY

∗
p of H. Empirically, in finite precision arithmetic, choosing p0 > 1 and using Algorithm 2 always

yields a (approximately) rank-one minimizer for both the noiseless and noisy phase retrieval problems. The
computational time of Algorithm 2 with LRBFGS is demonstrated to be significantly smaller than that
of LR-FISTA with accuracy is at least as good as LR-FISTA when the latter manages to converge in an
acceptable amount of time. In [CESV13], it is pointed out that the algorithm LR-FISTA may be too slow
for large-scale images and development of a fast algorithm is a future research. The unacceptably large
computational time of LR-FISTA is empirically verified here and Algorithm 2 using the limited memory
forms of the Riemannian fixed-rank optimization algorithms, specifically LRBFGS for the phase retrieval
problems, are clearly seen to be practical in terms of computational time and recovery quality for a wide
range of problem sizes including those for which LR-FISTA fails.
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A Stationary Points

The definition of stationary points in real semidefinite programming can be used to characterize stationary
points of (4.1). To this end, we first define a mapping, denoted by a superscript :̃

˜: Cn×p → R2n×2p : Y = Y̌1 + Y̌2

√
−1 7→ Ỹ =

(
Y̌1 −Y̌2

Y̌2 Y̌1

)
which is an isometry from Cn×p to R2n×2p [GW04]. Therefore, (1.2) can be formulated as a problem with
real semidefinite constraints:

min
X̂∈S+2n

H̃(X̂) := H(X̌1 + X̌2

√
−1) (A.1)

such that tr(AkX̂) = 0, k = 1, 2, . . . , n(n+ 1),

where Ak, k = 1, . . . , n(n+ 1)/2 are given by

Ak =

(
0n×n Eij + Eji

Eij + Eji 0n×n

)
, i = 1, . . . , n, j = i, . . . , n

and the n(n+ 1)/2 remaining Ak, are given by

Ak =

(
Eij + Eji 0n×n

0n×n −Eij − Eji

)
, i = 1, . . . , n, j = i, . . . , n

where Eij ∈ Rn×n are the standard basis matrices.

Since H̃ in (A.1) is defined on a real space, [JBAS10, Definition 1] is applicable:

Definition A.1. A stationary point of (A.1) is a symmetric matrix X̂ ∈ R2n×2n for which there exists
a vector δ = (δ1, . . . , δm)T ∈ Rm and a symmetric matrix S ∈ R2n×2n such that the first-order optimality
conditions hold: tr(AiX̂) = 0, X̂ ≥ 0, S ≥ 0, SX̂ = 0, S = grad H̃(X̂)−

∑m
i=1 δiAi, where m = n(n+1).

One can define X to be a stationary point of H if and only if X̃ is a stationary point of H̃, since H̃ is
a reformulation of H. Therefore, by using Definition A.1, Lemma A.1 provides a necessary and sufficient
condition for X to be a stationary point of H.

Lemma A.1. Suppose X ∈ Dn. gradH(X)X = 0 and gradH(X) ≥ 0 if and only if X is a stationary point
of H.

Proof. ⇒ The conditions gradH(X)X = 0 and gradH(X) ≥ 0 imply grad H̃(X̃) ≥ 0 and grad H̃(X̃)X̃ = 0.
Therefore, choosing S = grad H̃(X̃) and δ = 0m in Definition A.1 yields that X is a stationary point of H.
⇐ Let G denote gradH(X). The gradient of H̃ can be written as G̃. Therefore, using S = G̃−

∑m
i=1 δiAi

in Definition A.1 yields δi = 0 for all i. It follows from SX̃ = 0, S ≥ 0 that G̃X̃ = 0 and G̃ ≥ 0. This implies
gradH(X)X = 0 and gradH(X) ≥ 0.


