
Tech. report UCL-INMA-2015.01-v3

Solving PhaseLift by low-rank Riemannian optimization methods

for complex semidefinite constraints ∗

Wen Huang †¶ K. A. Gallivan ‡ Xiangxiong Zhang §

Abstract

A framework, PhaseLift, was recently proposed to solve the phase retrieval problem. In this frame-
work, the problem is solved by optimizing a cost function over the set of complex Hermitian positive
semidefinite matrices. This approach to phase retrieval motivates a more general consideration of opti-
mizing cost functions on semidefinite Hermitian matrices where the desired minimizers are known to have
low rank. This paper considers an approach based on an alternative cost function defined on a union of
appropriate manifolds. It is related to the original cost function in a manner that preserves the ability
to find a global minimizer and is significantly more efficient computationally. A rank-based optimality
condition for stationary points is given and optimization algorithms based on state-of-the-art Riemannian
optimization and dynamically reducing rank are proposed. Empirical evaluations are performed using
the PhaseLift problem. The new approach is shown to be an effective method of phase retrieval with
computational efficiency increased substantially compared to the algorithm used in original PhaseLift
paper. A preliminary version can be found in [HGZ16b].

1 Introduction

Recovering a signal given the modulus of its transform, e.g., Fourier or wavelet transform, is an important
task in the phase retrieval problem. It is a key problem for many important applications, e.g., X-ray
crystallography imaging [Har93], diffraction imaging [BDP+07], optics [Wal63] and microscopy [MISE08].

The continuous form of the problem with the Fourier transform recovers x(t) : Rs → C from |x̃(u)|, where
x̃(u) : Rs → C is defined by

x̃(u) =

∫

Rs

x(t) exp
(

−2πu · t
√
−1

)

dt,

and · denotes the Euclidean inner product. This paper considers the discrete form of the problem where
an indexed set of complex numbers x ∈ Cn1×n2×...×ns is to be recovered from the modulus of its discrete
Fourier transform |x̃(g1, g2, . . . , gs)|, where (g1, g2, . . . , gs) ∈ Ω := G1 × G2 × . . . Gs and Ω is a grid of an
s-dimensional space. The discrete Fourier transform x̃ is given by

x̃(g1, g2, . . . , gs) =

1√
n

∑

i1,i2,...,is

xi1i2...is exp

(

−2π
(

(i1 − 1)g1
n1

+ . . .+
(is − 1)gs

ns

)√
−1

)

, (1.1)

∗This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization),
funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office. This work was
supported by grant FNRS PDR T.0173.13.

†Department of Mathematical Engineering, ICTEAM Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve,
Belgium.

‡Department of Mathematics, 208 Love Building, 1017 Academic Way, Florida State University, Tallahassee FL 32306-4510,
USA.

§Department of Mathematics, 150 N. University Street, Purdue University, West Lafayette, IN 47907-2067, USA.
¶Corresponding author. E-mail: huwst08@gmail.com.

1

Riemannian optimization for PhaseLift 2
where n = n1n2 . . . ns, ij is an integer satisfying 1 ≤ ij ≤ nj for j = 1, . . . s, xi1i2...is denotes the correspond-
ing entry of x and x̃(g1, g2, . . . , gs) denotes the corresponding entry of x̃.

It is well-known that the solution of the phase retrieval is not unique. For example, when Ω is the uniform
grid, i.e, Gi = {0, 1, . . . , ni − 1}, i = 1, 2, . . . , s, if x is a solution, then

1. y = cx is a solution where c ∈ C and |c| = 1;

2. y ∈ Cn1×n2×...ns such that yi1i2...is = xj1j2...js is a solution, where jk = ik + ak mod nk, k = 1, . . . , s
and a1, a2, . . . as are integers;

3. y ∈ Cn1×n2×...ns such that yi1,i2,...is = x̄j1j2...js is a solution, where jk = −ik mod nk, k = 1, . . . , s
and x̄ is the conjugate of x.

These equivalent solutions are called trivial associates of x and infinitely many additional solutions may exist
[San85].

Oversampling in the Fourier domain is a standard method to obtain a unique solution and it has been
shown to almost always give a unique solution for multiple dimensional problems for real-valued and non-
negative signals [BS79, Hay82, San85]. Many algorithms based on alternating projection [GS72] have been
developed to solve phase retrieval problem using the oversampling framework [Fie78, Fie82, Els03, Bla04,
Mar07, CMWL07]. While these algorithms are efficient and effective in some problem settings, they may
not perform well in other settings. For details on the capabilities and difficulties of these algorithms see
[CESV13] and the references therein.

In recent years other frameworks, using multiple structured illuminations, or the mathematically equiv-
alent construct of masks, combined with convex programming, have been proposed to recover the phase
exactly, e.g., PhaseLift [CESV13] and PhaseCut [WDAM13]. It was later proved that a feasibility problem
of two convex sets can be solved for PhaseLift in [CL13, DH14]. For the PhaseLift framework, three major
results are of interest here. First, using a small number (related to s) of noiseless measurements of the
modulus defined by certain carefully designed illuminations, the phase can be recovered exactly [CESV13].
Second, when these carefully designed measurements are not used, the phase can be recovered exactly with
high probability using O(n log n) noiseless measurements of the modulus [CSV13]. This result is further
improved in [CL13] that exact recovery is still possible using O(n) noiseless measurements. Finally, the
stability of recovering the phase using noisy measurements is shown in [CSV13, CL13].

For the PhaseCut framework, it is known that if the phase can be recovered using PhaseLift, then it
can also be recovered by a modified version of PhaseCut and that the PhaseCut is at least as stable as
the weak formulation of PhaseLift for noisy measurements [WDAM13]. The weak formulation is formally
defined in [WDAM13, Section 4.1], however, the idea of a weak formulation is also given earlier in the proof
of [CESV13, Theorem 2.1]. Empirically, PhaseCut is observed to be more stable in the situation of sparse
sampling of the modulus.

The problems in both PhaseLift and PhaseCut concern optimizing convex cost functions defined on a
convex set of complex matrices, i.e.,

min
X∈Dn

H(X), (1.2)

where H : Dn → R : X 7→ H(X), and Dn denotes the set of all n-by-n complex Hermitian positive
semidefinite matrices. PhaseCut further requires that the diagonal entries ofX are 1. However, the dimension
of (1.2) is usually too large to be solved by standard convex programming techniques. For example, in order
to recover an image of 100 by 100 pixels, i.e., s = 2 and n1 = n2 = 100, solving an optimization problem with
an argument that is a 1002 by 1002 matrix is required. The complexity of solving PhaseLift and PhaseCut
using standard semidefinite programming solvers, e.g., SDPT3 [TTT99], is discussed in [WDAM13, Section
4.6].

Since the desired optimum, X∗, is known to be a rank-one matrix, a low-rank matrix approximation of
the argument matrix is used in [CESV13] to save computations for PhaseLift. While this approximation has
good empirical performance, no convergence proof is given in [CESV13]. For PhaseCut, a block coordinate
descent algorithm is proposed in [WDAM13] and the algorithm is shown to be computationally inexpensive

Riemannian optimization for PhaseLift 3
for each iteration. However, the block coordinate descent algorithm converges slowly, i.e., linear convergence
[BV04, Section 9.4.3], and the overall computational cost can be unacceptably high.

This paper uses the framework of PhaseLift and an alternate cost function F : Cn×p → R : Y 7→ F (Y) =
H(Y Y ∗) defined by matrix factorization is considered. Even though F is not convex, it is shown to be a
suitable replacement of the cost function H . Riemannian optimization methods on an appropriate quotient
space are used for optimizing F . Using the cost function F with a small dimension p reduces storage and
the computational complexity of each iteration. Fast convergence rate is also guaranteed theoretically by
known Riemannian optimization results. This new approach is shown to perform empirically much better
than the low-rank approximate version of the algorithm used for PhaseLift in [CESV13] and the Wirtinger
flow algorithm in [CLS16] from the points of view of efficiency and effectiveness. Finally, note that the
analysis and algorithm presented is not specific to the cost function used for phase retrieval in PhaseLift but
for a general cost function defined on Dn and therefore the approach has potential for optimization in other
applications where the global optimum is known to have low rank.

A forerunner to this paper appeared in [HGZ16b]. This paper differs from the conference paper in the
following main aspects: (i) proofs of theoretical results and derivations of required ingredients for Riemannian
optimization are given in this paper; (ii) a different Riemannian metric is used for the fixed-rank Hermitian
positive semidefinite matrices and this metric yields a cheaper Riemannian gradient and isometric vector
transport1; (iii) the initial iterate in this paper is chosen by exploiting the approach in [CLS16, Algorithm
1] whereas [HGZ16b] only uses a random initial iterate. The proposed initial iterate has an edge over the
previous one in the sense that it significantly reduces computational time; and (iv) this paper compares the
proposed algorithm with the state-of-the-art algorithm, the Wirtinger flow algorithm [CLS16], which is not
done in [HGZ16b].

The idea of using low-rank factorization to solve positive semidefinite constrained problems is, of course,
not new but all the research results of which the authors are aware, are for real positive semidefinite matrix
constraints. Burer and Monteiro [BM03] first investigate this approach for semidefinite programming (SDP)
in which the cost function is linear. Journée et al. [JBAS10] use low-rank factorization for a more general
problem in the sense that the cost function H is not necessary linear,

min
X∈S

+
n

H(X), such that tr(AiX) = bi, i = 1, . . .m,

where S+n denotes the set of all real n-by-n symmetric positive semidefinite matrices, Ai ∈ Rn×n, Ai = AT
i

and AiAj = 0 for any i 6= j. The conditions that Ai = AT
i and AiAj = 0 for any i 6= j implies the number of

equality constraints m is at most n as pointed out in [JBAS10]. The complex problem (1.2) does not belong
to this category of problem since m is much larger than n when the complex problem is written as a real
problem, see details in [HGZ16a, Appendix A].

The paper is organized as follows. Section 2 presents the notation used. The derivation of the opti-
mization problem framework in PhaseLift is given in Section 3. The alternate cost function and optimality
conditions are derived in Section 4. Riemannian optimization methods and the required geometric objects
are presented in Section 5. In Section 6, the effectiveness of the methods are demonstrated with several
numerical experiments and, finally, conclusions are given in Section 7.

2 Notation

For any z ∈ Cn1×n2×...ns , vec(z) ∈ Cn, where n = n1n2 . . . ns, denotes the vector form of z, i.e., (vec(z))k =

zi1i2...is , where k = i1 +
∑s−1

j=1 n1n2 . . . nj(ij+1 − 1). Re(·) denotes the real part of the argument and
superscript ∗ denotes the conjugate transpose operator. Given a vector v with length h, Diag(v) denotes an
h-by-h diagonal matrix the diagonal entries of which are v.

1The Riemannian gradient in [HGZ16b] requires solving a Sylvester equation whereas the Riemannian gradient in this paper
has a cheaper closed form. The isometric vector transports in this paper has complexity O(np2) +O(p3) which is cheaper than
the one of O(np2) + O(p6) in [HGZ16b].

Riemannian optimization for PhaseLift 4
0s×k denotes an s×k zero matrix; Is×k denotes a diagonal matrix with diagonal entries 1; and 0s denote

a vector with length s with entries all 0. diag(M) denotes a vector of the diagonal entries of M ∈ Cs×k and
tr(M) denotes the trace of M . If s ≥ k, M⊥ denotes an s× (s− k) matrix such that M∗

⊥M⊥ = I(s−k)×(s−k)

and M∗
⊥M = 0(s−k)×k. M(:, 1 : k) denotes a matrix that is formed by the first k columns of matrix M .

span(M) denotes the column space of M .
Given a manifoldM, TxM denotes the tangent space ofM at x ∈M. Dk denotes set {X ∈ Cn×n|X =

X∗, X � 0, rank(X) ≤ k}, 1 ≤ k ≤ n, where the statement X � 0 means that matrix X is positive
semidefinite or definite. St(k, s) denotes the complex compact Stiefel manifold {A ∈ Cs×k|A∗A = Ik×k}
with s ≥ k. SC+(k, s) denotes the set of all Hermitian positive semidefinite s × s matrices of fixed rank k.
When elements of SC+(k, s) are restricted to be real, it is denoted by SR+(k, s). Cs×k

∗ denotes the complex
noncompact Stiefel manifold, i.e., the set of all s × k full column rank complex matrices. Os denotes the
group of s-by-s unitary matrices.

Given a function f(x) onM or Cs×k, gradf(x) denotes the gradient of f at x.

3 The PhaseLift approach to phase retrieval

The phase retrieval problem recovers x from its quadratic measurements of the form A(x) = {|〈ak,x〉|2 :
k = 1, 2, . . . ,m}, where ak ∈ Cn1×n2×...ns , k = 1, 2, . . . ,m are given. It is well-known that the quadratic
measurements can be lifted up to be linear measurements about the rank-one matrix X = xx∗, where x =
vec(x) ∈ Cn. Specifically, the measurements are |〈ak,x〉|2 = tr(aka

∗
kxx

∗) := tr(AkX), where ak = vec(ak) ∈
Cn. Define A to be the linear operator mapping X into b :=

[

tr(A1X) tr(A2X) . . . tr(AmX)
]T

. The
goal of the phase retrieval problem is to

find X, such that A(X) = b,X � 0 and rank(X) = 1. (3.1)

The alternative problem suggested in [CESV13] considers an optimization problem that does not force the
rank of matrix to be one but adds a nuclear norm penalty term to favor low-rank solutions

min
X∈Dn

‖b−A(X)‖22 + κ tr(X), (3.2)

where κ is a positive constant.
Measurements with noise, b ∈ Rm, are assumed to have the form b = A(X) + ε, where ε ∈ Rm is noise

sampled from a distribution p(:;µ). The task suggested in [CESV13] is

min
X
− log(p(b;µ)) + κ tr(X) (3.3)

such that µ = A(X) and X ∈ Dn,

or equivalently

min
X∈Dn

− log(p(b;A(X))) + κ tr(X) (3.4)

where κ is a positive constant. Problems (3.3) and (3.4) are preferred over Problem (3.1), since they are
convex programming problems when the log-likelihood function is concave.

4 Theoretical results

This section presents theoretical results that motivate the design of algorithms for optimizing a cost function
H defined on Dn. The analysis does not rely on the convexity of the cost function H .

Riemannian optimization for PhaseLift 5
4.1 Equivalent cost function

The cost functions generically denoted H all satisfy

H : Dn → R : X 7→ H(X). (4.1)

It is well-known that for any X ∈ Dn, there exists Yn ∈ Cn×n such that YnY
∗
n = X . Furthermore, if X

is rank p, then there exists Yp ∈ Cn×p such that YpY
∗
p = X . Throughout this paper, the subscript of Y

is used to emphasize the column size of Y . Therefore, a surjective mapping between C
n×p and Dp is given

by αp : Cn×p → Dp : Yp 7→ YpY
∗
p . It is clear that αp is not an injection. Specifically, given X ∈ Dp, if Yp

satisfies αp(Yp) = YpY
∗
p = X , then YpOp also satisfies αp(YpOp) = X for any Op ∈ Op. Thus, if the desired

solution of H is known to be at most rank p, then an alternate cost function to H can be used:

Fp : Cn×p → R : Yp 7→ H(αp(Yp)) = H(YpY
∗
p).

The subscripts of F and α indicate the column size of the argument. The domain of Fp has lower dimension
than that of H which may yield computational efficiency. Therefore, instead of problem of (1.2), the problem
minYp∈Cn×p Fp(Yp) is considered.

4.2 Optimality conditions

In this section, the characterizations of stationary points of F and H over Dn are used to derive the relation-
ship between optimizing F and optimizing H over Dn. Since H is defined on a constrained set, a stationary
point of H does not simply satisfies gradH(X) = 0. One can define the stationary points of H as follows by
[HGZ16a, Lemma A.1]:

Definition 4.1. A stationary point of (4.1) is a matrix X ∈ Dn such that gradH(X)X = 0 and gradH(X) �
0.

The gradient is easily computed and is given in Lemma 4.1 in terms of H .

Lemma 4.1. The gradient of Fp at Yp is given by

gradFp(Yp) = 2 gradH(YpY
∗
p)Yp. (4.2)

Proof. On one hand, it satisfies that for all ηp ∈ Cn×p

DFp(Yp)[ηp] = gE(gradFp(Yp), ηp).

On the other hand, we have

DFp(Yp)[ηp] =DH(YpY
∗
p)[Ypη

∗
p + ηpY

∗
p] = gE(gradH(YpY

∗
p), Ypη

∗
p + ηpY

∗
p)

=gE((gradH(YpY
∗
p) + gradH(YpY

∗
p)

∗)Yp, ηp),

which implies gradFp(Yp) = (gradH(YpY
∗
p)+gradH(YpY

∗
p)

∗)Yp. Since H is defined on Hermitian matrices,
gradH can be written as a Hermitian matrix. It follows that gradFp(Yp) = 2 gradH(YpY

∗
p)Yp which is

(4.2).

Theorem 4.1 and [JBAS10, Theorem 7] show similar results under different frameworks. Both results
suggest considering the cost function Fp if the desired minimizer of H is known to have rank smaller than
p, as is the case with PhaseLift for phase retrieval. This is formalized in Theorem 4.1 and has critical
algorithmic, efficiency and optimality implications when H has suitable structure such as convexity as in the
case of PhaseLift. These implications for PhaseLIft are discussed in Section 6.1.

Theorem 4.1. Suppose Yp = KsQ
∗ is a rank deficient minimizer of Fp, where Ks ∈ Cn×s

∗ with s < p and
Q ∈ St(s, p). Then gradH(YpY

∗
p) is a positive semidefinite matrix and, therefore, X = YpY

∗
p is a stationary

point of H. If furthermore H is convex, then X is a global minimizer of (4.1).

Riemannian optimization for PhaseLift 6
Proof. We first show that (Ks)

∗
⊥ gradH(X)(Ks)⊥ is a positive semidefinite matrix. This is proved by

contradiction. If (Ks)
∗
⊥ gradH(X)(Ks)⊥ is not a positive semidefinite matrix, then it has at least one

negative eigenvalue. If µ and v denote a negative eigenvalue and the corresponding eigenvector then the
semidefinite positive matrix η = −(Ks)⊥(vµv∗)(Ks)

∗
⊥ satisfies gE(η, gradH(X)) < 0. Thus, a smooth curve

γ(t) = X+ tη satisfies that γ̇(0) = η, γ(t) ∈ Dp for all t ∈ [0, δ) and γ(0) = X , where δ is a positive constant.
The derivative d

dtH(γ(t))|t=0 by definition is gE(η, gradH(X)) and, therefore, d
dtH(γ(t))|t=0 < 0.

Decomposing γ(t) yields

γ(t) =
(

Ks ṽ
)

(

Is×s

−tµ

)

(

Ks ṽ
)∗

,

where ṽ = (Ks)⊥v. Define r(t) =
(

Ks ṽ
)

Diag (Is,
√−tµ). Therefore, γ(t) = r(t)r∗(t). The derivative of

r(t2) is ξ(t) =
(

0n×s
√−µṽ

)

. It follows that

d2

dt2
H(γ(t2))|t=0 =

d2

dt2
Fn(r(t

2))|t=0 = gE(ξ(0),HessFp(Ỹp)[ξ(0)]) ≥ 0. (4.3)

Let a(t) = H(γ(t)) and so ȧ(0) < 0. It follows that

d2

dt2
H(γ(t2))|t=0 =

d2

dt2
a(t2) = (4t2ä(t2) + 2ȧ(t2))|t=0 = 2ȧ(0) < 0,

which conflicts with (4.3). Therefore, (Ks)
∗
⊥ gradH(YpY

∗
p)(Ks)⊥ is a positive semidefinite matrix which is

a contradiction with the initial assumption of the proof.
Let Qs denote an orthonormal basis of span(Ks). gradH(X) can be written as

gradH(X) =
(

Qs (Ks)⊥
)

(

S A∗

A R

)

(

Qs (Ks)⊥
)∗

,

where S ∈ Cs×s, S∗ = S, A ∈ C(n−s)×p and R = (Ks)
∗
⊥ gradH(X)(Ks)⊥. Since Yp is a stationary point of

F , we have gradH(X)KsQ
∗ = gradF (Yp) = 0n×s. It follows that S = 0s×s and A = 0(n−s)×s. Therefore,

R � 0 implies gradH(X) � 0 which means X is a stationary point of H by Definition 4.1.

For the optimization problems in the PhaseLift framework for phase retrieval, Theorem 4.1 is important
due to the following reasons. First, the cost function H in PhaseLift is convex over a convex domain Dn.
Therefore, finding a stationary point of H by using the cost function F is sufficient to find a global minimizer
of H . Second, the rank of the desired minimizer of H in PhaseLift is one. It follows that by using a low-
rank factorization-based cost function Fp with small p > 1 it is possible to find the desired unique rank-one
minimizer of H by optimizing Fp with small p > 1. (This approach also has lower storage and computational
complexity compared to optimizing H .) The theorem guarantees that any minimizer, Yp, of Fp with rank
less than p must have rank 1 and YpY

∗
p must be the global minimizer of H .

5 A Riemannian approach

Riemannian optimization is an active research area and recently many Riemannian optimization meth-
ods have been systemically analyzed and efficient libraries designed, e.g., Riemannian trust-region New-
ton method (RTR-Newton) [Bak08], Riemannian Broyden family method including BFGS method and
its limited-memory version (RBroyden family, RBFGS, LRBFGS) [RW12, Hua13, HGA15], Riemannian
trust-region symmetric rank-one update method and its limited-memory version (RTR-SR1, LRTR-SR1)
[Hua13, HAG15], Riemannian Newton method (RNewton) and Riemannian non-linear conjugate gradient
method (RCG) [AMS08, SI15, Sat15].

Journée et al. [JBAS10] have proposed a method that combines a Riemannian optimization method on
a fixed rank manifold with a procedure of increasing rank for their semidefinite constrained problem setting.

Riemannian optimization for PhaseLift 7
Specifically, given an iterate with rank r, a Riemannian optimization method is applied for a cost function
on a manifold with rank r. If the limit point is not rank deficient, then either a descent direction to a higher
rank space can be found or a desired stationary point is obtained. For the former case, a descent algorithm
is applied to find a next descent iterate which is used to be the initial point for a Riemannian optimization
method on a manifold with larger rank. For the latter case, the convergence rate can be obtained and
depends on the Riemannian optimization algorithm. If the limit point is rank deficient, then convergence
analyses are complicated and may need to consider a union of manifolds [ZHG+15]. This case was ignored
in [JBAS10] since situations of a limit point being rank deficient were not encountered in their experiments.

If the rank of the desired minimizer is known, such as in the problems in PhaseLift, then [BM03] suggests
to choose the rank of initial point to be that rank. However, this, in fact, is not the appropriate response due
to complexity considerations as the theory and algorithms derived in this section indicate, and the numerical
experiments in Section 6 demonstrate. To see this, let r∗ denote the desired rank of the global minimizer.
Note that there may exist a stationary point Yr∗ of Fr∗ for which Yr∗Y

∗
r∗ is not a stationary point of H . It

follows that forcing iterates to be rank r∗ is not appropriate and starting from a higher rank or moving to a
higher rank to move to the minimizer of H is necessary.

There is also a potential problem of using a rank increasing procedure. If Yp is a stationary point of Fp,
then (Yp, 0n×(k−p)) is also a stationary point of Fk. A procedure that increases rank starting from Yp may
find a point Yk which is close to (Yp, 0n×(k−p)). It follows that using Yk to be an initial point of the iteration
on the rank-k manifold may not work efficiently since Yk may be too close to a stationary point. Therefore, an
algorithm based on Riemannian optimization methods on a fixed rank manifold and a procedure to decrease
rank without using any rank increase technique is proposed in this section.

5.1 Riemannian optimization on fixed rank manifold

In order to make use of Riemannian optimization theory and algorithms on a fixed rank manifold, the
Riemannian gradient of the cost function, the tangent space of an element in the manifold, the retraction
operation on the manifold, and an appropriate vector transport are needed. The definitions of Riemannian
gradient, tangent space, retraction and vector transport are standard and can be found, e.g., in [Boo86,
AMS08].

Derivations for Riemannian objects of SR+(p, n) have been given in [AIDV09]. This section includes deriva-
tions of Riemannian objects for the complex case, i.e., SC+(p, n). Since the mapping αp is not an injection,
all the minimizers of Fp are degenerate, which causes difficulties in some algorithms, e.g., Riemannian and
Euclidean Newton method. In order to overcome this difficulty, a function defined on a quotient manifold
with fixed rank is considered. To this end, define the mapping βp to be the mapping αp restricted on
C

n×p
∗ , i.e., βp : Cn×p

∗ → SC+(p, n) : Y 7→ αp(Y) = Y Y ∗, and function Gp to be the function Fp restricted

on C
n×p
∗ , i.e., Gp : Cn×p

∗ → R : Y 7→ Fp(Y) = H(βp(Y)). Like αp, the mapping βp is a surjection but
not an injection and there are multiple matrices in C

n×p
∗ mapping to a single point in SC+(p, n). Neverthe-

less, given an X ∈ SC+(p, n), β
−1
p (X) is a manifold while α−1

p (X) is not a manifold. Therefore, using the
mapping βp, a quotient manifold can be used to remove the degeneracy by defining the equivalence class
β−1
p (Y Y ∗) = [Y] = {Y O|O ∈ Op} and the set

C
n×p
∗ /Op = {[Y]|Y ∈ C

n×p
∗ }.

This set can be shown to be a quotient manifold over R. To clarify the notation, π(Y) is used to denote [Y]
viewed as an element in C

n×p
∗ /Op and π−1(π(Y)) is used to denote [Y] viewed as a subset of Cn×p

∗ . The
function mp : π(Y) 7→ Y Y ∗ is a diffeomorphism between C

n×p
∗ /Op and SC+(p, n).

An element of a quotient manifold is an equivalence class which is often cumbersome computationally
. Fortunately, choosing a representative for an equivalence class and definitions of related mathematical
objects have been developed in many papers in the literature of computation on manifolds, e.g., [AMS08].
The vertical space at Y ∈ π−1(π(Y)), which is the tangent space of π−1(π(Y)) at Y , is

VY = {YΩ|Ω∗ = −Ω,Ω ∈ C
p×p}.

Riemannian optimization for PhaseLift 8
The horizontal space at Y , HY , is defined to be a subspace of TY C

n×p
∗ = Cn×p that is orthogonal to VY ,

i.e., satisfying HA ⊕ VA = TA GL(n,C). Therefore, a Riemannian metric of Cn×p
∗ is required to define the

meaning of orthogonal. The metric used is

ĝY (ηY , ξY) = Re(tr((Y ∗Y)η∗Y ξY)), (5.1)

for all ηY , ξY ∈ TY C
n×p
∗ and Y ∈ C

n×p
∗ . The metric (5.1) yields a cheap vector transport by parallelization

which is discussed later. The horizontal space is therefore

HY = {Y S + Y⊥K|S∗ = S, S ∈ C
p×p,K ∈ C

(n−p)×p}.

The horizontal space HY is a representation of the tangent space Tπ(Y) C
n×p
∗ /Op. It is known that for any

ηπ(Y) ∈ Tπ(Y) C
n×p
∗ /Op, there exists a unique vector in HY , called the horizontal lift of ηπ(Y) and denoted

by η↑Y
, satisfying D π(Y)[η↑Y

] = ηπ(Y), see e.g., [AMS08]. Lemma 5.1 gives a relationship among horizontal
lifts of a tangent vector ηπ(Y) when different representations in π−1(π(Y)) are chosen. The result follows
from [Hua13, Theorem 9.3.1].

Lemma 5.1. A horizontal vector field η̂ of Cn×p
∗ is the horizontal lift of a vector field η on C

n×p
∗ /Op if and

only if, for each Y ∈ C
n×p
∗ , we have η̂Y O = η̂Y O for all O ∈ Op.

The orthogonal projections on to the horizontal space or the vertical space are also easily characterized.

Lemma 5.2. The orthogonal projection to vertical space VY is P v
Y (η) = Y Ω, where Ω = ((Y ∗Y)−1Y ∗η −

η∗Y (Y ∗Y)−1)/2 is a skew Hermitian matrix. The orthogonal projection to Horizontal space HY is P h
Y (η) =

η − YΩ.

Proof. By definition of HY and VY , P h
Y (η) satisfies that (Y

∗Y)−1Y ∗P h
Y (η) = P h

Y (η)
∗Y (Y ∗Y)−1 and can be

expressed as η−YΩ. It follows that Ω = ((Y ∗Y)−1Y ∗η−η∗Y (Y ∗Y)−1)/2 which gives the desired results.

Finally, the desired cost function that removes the equivalence can be defined as

fp : Cn×p
∗ /Op → R : π(Y) 7→ fp(π(Y)) = Gp(Y) = Fp(Y). (5.2)

The function fp in (5.2) has the important property that π(Y) is a nondegenerate minimizer of f over
C

n×p
∗ /Op if and only if Y Y ∗ is a nondegenerate minimizer of H over SC+(p, n).
The gradient is given in Lemma 5.3.

Lemma 5.3. The horizontal lift of the gradient of (5.2) at Y is

(grad f(π(Y)))↑Y
= P h

Y (gradF (Y)(Y ∗Y)−1).

Proof. The directional derivative of f along any ηπ(Y) ∈ Tπ(Y) C
n×p
∗ /Op is

D f(π(Y))[ηπ(Y)] = D f(π(Y))[D π(Y)[η↑Y
]] = DF (Y)[η↑Y

]

= Re(tr(gradF (Y)∗η↑Y
)) = ĝY (gradF (Y)(Y ∗Y)−1, η↑Y

) = ĝY (P
h
Y (gradF (Y)(Y ∗Y)−1), η↑Y

).

Additionally using the definition of gradient [AMS08, (3.31)], i.e., D f(π(Y))[ηπ(Y)] = gπ(Y)(gradf(π(Y)), ηπ(Y)),
and the equation gπ(Y)(grad f(π(Y)), ηπ(Y)) = ĝY ((grad f(π(Y)))↑Y

, η↑Y
), yields the result.

Retraction is used in updating iterates in a Riemannian algorithm. Vector transport is used to compare
tangent vectors in different tangent spaces. Specifically, a retraction R is a smooth mapping from the tangent
bundle TM, which is the set of all tangent spaces, ontoM such that (i) R(0x) = x for all x ∈ M (where
0x denotes the origin of TxM) and (ii) d

dtR(tξx)|t=0 = ξx for all ξx ∈ TxM. The restriction of R to TxM
is denoted by Rx. A vector transport T : TM⊕ TM→ TM, (ηx, ξx) 7→ Tηx

ξx with associated retraction
R is a smooth mapping such that, for all (x, ηx) in the domain of R and all ξx ∈ TxM, it holds that

Riemannian optimization for PhaseLift 9
(i) Tηx

ξx ∈ TR(ηx)M, (ii) T0xξx = ξx, (iii) Tηx
is a linear map. The retraction used in the Riemannian

optimization methods is
Rπ(Y)(ηπ(Y)) = π(Y + η↑Y

), (5.3)

and the vector transport used is the vector transport by parallelization [HAG16b]:

Tηx
ξx = ByB

†
x,

where B is a smooth tangent basis field defined on an open set V ofM and B†
x denotes the pseudo-inverse

of Bx. A smooth orthonormal tangent basis of Cn×p
∗ /Op can be defined as follows: given π(Z) ∈ C

n×p
∗ /Op,

the horizontal lifts of columns in Bπ(Z) at Z is

{

ZL−∗eie
T
i L

−1, i = 1, . . . , p
}

⋃

{

1√
2
ZL−∗(eie

T
j − eje

T
i)L

−1, i = 1, . . . , p, j = i+ 1, . . . , p

}

⋃

{

1√
2
ZL−∗(eie

T
j + eje

T
i)
√
−1L−1i = 1, . . . , p, j = i+ 1, . . . , p

}

⋃

{

Z⊥ẽie
T
j L

−1, i = 1, . . . n− p, j = 1, . . . p
}

⋃

{

Z⊥ẽie
T
j

√
−1L−1, i = 1, . . . n− p, j = 1, . . . p

}

,

where (e1, . . . , ep) is the canonical basis of R
p, (ẽ1, . . . , ẽ(n−p)) is the canonical basis of R

n−r, and Z∗Z = LL∗

is the Cholesky decomposition.
In summary, this section provides the objects used in Riemannian optimization methods, i.e., the horizon-

tal space, the projection to a horizontal space, the Riemannian metric, the retraction, the vector transport,
and the Riemannian gradient.

5.2 Dynamic rank reduction

Since the domain of fp, C
n×p
∗ /Op, is not closed, i.e., a sequence {W (i)} representing {π(W (i))} generated by

an algorithm may have a limit point Ŵ with rank less than p, a simple well-known strategy for dynamically
reducing rank is adapted and used. Since it is impossible in practice to check whether a limit point of iterates
{W (i)} is a lower rank matrix or just close to one of lower rank, the idea suggested below makes more sense
when the desired rank of the minimizer is known and the current iterate W (i) has a higher rank than the
desired rank. This is the case with PhaseLift for phase retrieval.

The thin singular value decomposition of the i-th iterate is W (i) = UΣV ∗ and Σ = Diag(σ1, σ2, . . . , σp),
where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. Let σ̃ be ‖Diag(σ1, . . . , σp)‖F /

√
p. If there exists q < p such that σq/σ̃ > δ

and σq+1/σ̃ ≤ δ for a given threshold δ, then Ŵ = U(:, 1 : q)Diag(σ1, . . . σq)V (:, 1 : q)∗ is chosen to be
the initial point for optimizing cost function fq over C

n×q
∗ /Oq. The details of reducing rank are given in

Algorithm 1. Note that the step of decreasing the rank may produce an iterate that increases the cost
function value. This facilitates global optimization by allowing nondescent steps.

Combining a Riemannian optimization method with the procedure of reducing rank gives Algorithm 2.
Recently, a rigorous definition of a rank adaptation strategy, which not only reduces rank but also

increase rank if necessary, for optimization with rank inequality constraints based on the notion of rank-
related Riemannian retractions has been developed in [ZHG+15]. It is pointed out here that one can exploit
the idea in [ZHG+15] and similarly define a rank adaptation algorithm to optimize F .

6 Experiments

In this section, numerical simulations for noiseless problems and those with Gaussian noise are used to illus-
trate the performance of the proposed method. The required Riemannian objects are derived in Section 6.1

Riemannian optimization for PhaseLift 10

Algorithm 1 Reduce Rank

Require: Y ∈ Cn×p; threshold δ;
Ensure: W ∈ Cn×q;
1: Take thin singular value decomposition for Y , i.e., Y = U Diag(σ1, . . . , σp)V

∗, where U ∈ Cn×p, V ∈
Cp×p and σ1 ≥ . . . ≥ σp ≥ 0;

2: Set σ̃ = ‖Diag(σ1, . . . , σp)‖F /
√
p;

3: if σp/σ̃ > δ then

4: q ← p, W ← Y and return;
5: else

6: Find q such that σq/σ̃ > δ and σq+1/σ̃ ≤ δ;
7: Let W = U(:, 1 : q)Diag(σ1, . . . σq)V (:, 1 : q)∗ and return;
8: end if

Algorithm 2 Rank Reduce Algorithm

Require: p > 0; Y
(0)
p ∈ Cn×p a representation of initial point π(Y

(0)
p) for f ; Stopping criterion threshold ǫ;

rank reducing threshold δ; a Riemannian optimization method;
Ensure: W
1: for k = 0, 1, 2, . . . do

2: Apply Riemannian method for cost function f over C
n×p
∗ /Op with initial point π(Y

(k)
p) until i-th

iterate W (i) satisfying g(grad f, gradf) < ǫ2 or the requirement of reducing rank with threshold δ;
3: if g(gradf, grad f) < ǫ2 then

4: Set W ←W (i) and return;
5: else[iterate in the Riemannian optimization method meets the requirements of reducing rank]
6: Apply Algorithm 1 with threshold δ and obtain an output Ŵ ∈ Cn×q;

7: p← q and set Y
(k+1)
p = Ŵ ;

8: end if

9: end for

Riemannian optimization for PhaseLift 11
and the experimental environment and parameters are defined in Section 6.3. The detailed implementations
are given in Section 6.4. Algorithm 2 with LRBFGS is compared for a range of parameters in Section 6.5.
In Section 6.6, the Riemannian approach is compared to the Wirtinger flow algorithm in [CLS16] that repre-
sents the current state-of-the-art algorithm. Finally, the performance is evaluated for various sizes of natural
images.

6.1 Cost function, gradient, and complexity for PhaseLift

The known random masks or illumination fields defined on the discrete signal domain are denoted wr ∈
Cn1×n2×...ns , r = 1, . . . l. It follows that {〈ak,x〉, k = 1, . . .m} is







(Fns
⊗Fns−1

⊗ . . .Fn1
)Diag(w1)x

...
(Fns

⊗Fns−1
⊗ . . .Fn1

)Diag(wl)x






,

where ⊗ denotes the Kronecker product and Fni
∈ Cti×ni , i = 1, . . . , s denotes the one-dimensional Discrete

Fourier Transform (DFT). Let Zi denote (Fns
⊗Fns−1

⊗ . . .Fn1
)Diag(wi), Z denote (ZT

1 ZT
2 . . . ZT

l)
T . We

have A(x) = diag(Zxx∗Z∗), which implies that A(X) = diag(ZXZ∗).
When the entries in the noise ǫ are drawn from the normal distribution with mean 0 and variance τ , the

cost functions of (3.4) and (3.2) are essentially identical, i.e., for (3.2), H1(X) = ‖b−diag(ZXZ∗)‖22+κ tr(X),
and for (3.4), H2(X) = 1

τ2 ‖b− diag(ZXZ∗)‖22 + κ tr(X). Without loss of generality, only the cost function
H(X) = ‖b− diag(ZXZ∗))‖22/‖b‖22 + κ tr(X) is considered. It can be shown that the Euclidean gradient of
H is gradH(X) = 2

‖b‖2
2

Z∗Diag(diag(ZXZ∗) − b)Z + κIn×n. The gradients of functions Fp and fp can be

constructed by using Lemmas 4.1 and 5.3.
Stationary points, including local minimizers, of Fp with rank p can be discarded if found and the

algorithm restarted appropriately possibly with an increased p. If an X with numerical rank 1 < r < p
is encountered when iterating using Fp and X is not a stationary point, then the rank reduction strategy
increases efficiency by removing the unnecessary directions from X and continuing the iteration on Fr.

Even though stationary points with rank 1 that are not local minimizers of F1 may exist, their presence
tends to simply slow the algorithm rather than stopping the iteration at the saddle point, see experiments
in Section 6.5. As expected, therefore, running with p > 1 avoids this issue completely. There is no theorem
guaranteeing that the iterates generated by optimizing Fp with adapting p but remaining greater than 1
always converge to an approximation of the rank-one minimizer of H in PhaseLift, but such convergence
occurred in all of the experiments below. The use of a carefully chosen initial iterate as discussed below is
partly responsible though the convergence is also observed with random initial iterate.

6.2 Initial iterate

The initial iterate Y
(0)
p is computed by Algorithm 3, which generalizes [CLS16, Algorithm 1] such that the

values p > 1 is allowed. It is shown in [CLS16] that the initialization can be satisfactory with high probability
if the number of measure m is large enough, i.e., m ≥ cn log(n) for some sufficiently large constant c. Note
the initial iterate is chosen such that its singular values are identical. This choice of initial point minimizes
the influence of magnitudes of singular values of the initial point. In other words, if a bias of magnitudes
of singular values is shown during iteration, one knows that the bias is generated by the algorithm and the
surface of the cost function not the initial iterate.

6.3 Data, parameters and notations

A complex number a+ b
√
−1 is said to be drawn from a distribution in this paper if both a and b are drawn

from the distribution independently. The entries of the true solution x∗ and Gaussian masks wi, i = 1, . . . l
are drawn from the standard normal distribution. The entries of x∗ are further normalized by ‖x∗‖2. For
the noiseless problem, the measurement b is set to be diag(Zx∗x∗

∗Z
∗) and for Gaussian noise problem, the

Riemannian optimization for PhaseLift 12
Algorithm 3 Initialization

Require: Y ∈ C
n×p drawn from the standard normal distribution;

Ensure: Initial iterate Y
(0)
p ;

1: Y ← qr(Y), where qr(M) is a Q-factor of the QR-decomposition of M ;
2: for i = 1, . . . , N do

3: Y ← qr(Z∗ Diag(b)ZY);
4: end for

5: λ =

√

n
∑

m
i=1

bi∑
l
i=1

vec(wi)∗ vec(wi)
;

6: Y
(0)
p ← λY ;

measurement b is set to be diag(Zx∗x∗
∗Z

∗) + ε, where the entries of ε ∈ Rm are drawn from the normal
distribution with mean 0 and variance τ that is specified later for each experiment. The rank of the first
iterate is denoted by p0.

The limited-memory version of Riemannian BFGS (LRBFGS) method is chosen to be the representative
Riemannian method in Step 2 of Algorithm 2. If the norm of the gradient over the norm of the initial
gradient is smaller than 10−6, then the step size of LRBFGS is fixed to be 1. The minimum number of
iterations at each rank is 10. The parameter κ is chosen to be 1/

√
n if p > 1 and 0 if p = 0 for Algorithm 2.

The codes are written in C++ using the library ROPTLIB [HAGH16] through its Matlab interface. All
experiments are performed in Matlab R2016b on a 64 bit Windows system with a 3.4GHz CPU(Intel(R)
Core(TM) i7-6700). The DFT is performed using the library FFTW [FJ05] with one thread. The code is
available at http://www.math.fsu.edu/~whuang2/papers/SPLRROMCSC.htm.

6.4 Implementation of a Limited-memory BFGS method on the Fixed-rank

Manifold Cn×p
∗ /Op

We exploit the version of LRBFGS developed in [HGA15, Algorithm 2] and modified the version to use an
alternate update defined in [HAG16a] which allows the line search using the Wolfe conditions to be replaced
by the Armijo line search. The LRBFGS method is stated in Algorithm 4. It is shown in [HAG16b] that a
tangent vector can be represented by a vector with size the dimension of the manifold. The vector transport
by parallelization using this representation is essentially identity, which is the cheapest one can expect. The
necessary sub-algorithms for efficiently computing the representation of vector transports are given from
Algorithm 5 to Algorithm 9.

The complexities of the algorithms are measured by the number of fast Fourier transforms (FFT) (or
inverse FFT) and the number of matrix multiplications (MM) between a m-by-p matrix and a p-by-p matrix.
The complexities are given on the right hand side of the algorithms except the operations with lower order
complexities. Note that p≪ n holds in practice. The operations with complexity of O(p3) are not reported
either. Since MM depends on p, we define complexity unit NN, which is independent of p, such that
MM = NNp2. If the step size is accepted at the first try in the line search algorithm, then the complexity of
one iteration in Algorithm 4 is 2lp FFT + 7p2 NN without the consideration of the cost in stopping criterion.
If p > 1, then the computations of singular values for checking stopping criterion take additional 2p2 NN.

6.5 Initial point size and rank reducing threshold

In this section, noiseless problems are used. The initiate iterate of LRBFGS is obtained by Algorithm 3 with
N = 10. The stopping criterion of Algorithm 2 requires the norm of gradient to less than 10−10.

Table 1 presents the experimental results of Algorithm 2 with n1 = n2 = 128 several values of l, p0, and δ.
When l = 6, the average computational time and the standard derivation of p0 = 1 are much larger relatively

2Note that Alg5(Y,U) = Alg5(Y, Ph
Y (U)), where Y ∈ C

n×p
∗ and Alg5 : (Cn×p

∗ ,Cn×p) → Cnp−p(p+1)/2 is the function
defined by Algorithm 5

http://www.math.fsu.edu/~whuang2/papers/SPLRROMCSC.htm

Riemannian optimization for PhaseLift 13

Algorithm 4 LRBFGS for problems on C
n×p
∗ /Op

Require: Initial iterate x0 ∈M; an integer χ > 0; line search constant δ ∈ (0, 1).
1: k = 0, γ0 = 1, ℓ = 0; compute Fp(xk) and gradFp(xk); ⊲ # 2lp FFT;

2: Compute the intrinsic representation gfdk of gradF (xk)(x
∗
kxk)

−1 by Algorithm 5; ⊲ # 9
2p

2 NN; 2

3: Obtain ηk ∈ Cd, intrinsic representation of a vector ηw ∈ Txk
M, by the following algorithm, Step 4 to

Step 14:
4: q ← gfdk;
5: for i = k − 1, k − 2, . . . , k − ℓ do
6: ξi ← ρiRe(q

∗si);
7: q ← q − ξiyi;
8: end for

9: r ← γkq;
10: for i = k − ℓ, k − ℓ+ 1, . . . , k − 1 do

11: ω ← ρi Re(r
∗yi);

12: r← r + si(ξi − ω);
13: end for

14: set ηk = −r;
15: Compute ηwk = D2Exk

(ηk) by Algorithm 6; ⊲ # 5
2p

2 NN
16: find the largest αk ∈ {1, ̺, ̺2, . . .} satisfying

F (xk + αkη
w
k) ≤ F (xk) + δαkη

T
k gf

d
k,

17: Compute F (xk+1); ⊲ # lp FFT
18: Set xk+1 = xk + αkη

w
k ;

19: Apply Algorithm 7 with Z = xk+1 and obtain unit vectors V = {v1, v2, . . . , vp} and complex numbers
S = {s1, s2, . . . , sp} and W = {w1, w2, . . . , wp}, and the lower triangle matrix L. ⊲ # p2 NN

20: Compute gradF (xk+1); ⊲ # lp FFT
21: Compute the intrinsic representation gfdk+1 of gradF (xk+1)L

−1L−∗; ⊲ # 7
2p

2 NN

22: Define sk = αkηk and y = gfdk+1 − gfdk;
23: Compute a = Re(y∗ksk) and b = ‖sk‖22;
24: if a

b ≥ 10−4‖gfdk‖2 then

25: Compute c = ‖y(k+1)
k ‖22 and define ρk = 1/a and γk+1 = a/c;

26: Add sk, yk and ρk into storage and if ℓ ≥ χ, then discard vector pair {sk−ℓ, yk−ℓ} and scalar ρk−ℓ

from storage, else ℓ← ℓ+ 1;
27: else

28: Set γk+1 ← γk, {ρk, . . . , ρk−ℓ+1} ← {ρk−1, . . . , ρk−ℓ}, {sk, . . . , sk−ℓ+1} ← {sk−1, . . . , sk−ℓ} and
{yk, . . . , yk−ℓ+1} ← {yk−1, . . . , yk−ℓ};

29: end if

30: k = k + 1, goto Step 3;

Riemannian optimization for PhaseLift 14

Algorithm 5 Compute the intrinsic representation of U ∈ HY

Require: Y ∈ C
n×p
∗ , U ∈ HX , a function αY : Cn×p → Cn×p : A 7→

[

Y L−∗ Y⊥
]T

A (see Algorithm 8),
where Y ∗Y = LL∗ is the Cholesky decomposition.

1:

[

Ω̃

K̃

]

= αY (U), where Ω̃ ∈ Cp×p and K̃ ∈ C(n−p)×p; ⊲ # 2p2 NN

2: Set Ω = (Ω̃L+ L∗Ω̃∗)/2, K = K̃L and k = 1; ⊲ # 1
2p

2 NN
3: for j = 2, . . . , p, i = 1, . . . j − 1 do

4: vX(k) = Ωij , where Ωij is the i-th row j-th column entry of Ω;
5: k ← k + 1;
6: end for

7: for i = 1, . . . , (n− p), j = 1, . . . , p do

8: vX(k) = Kij and k ← k + 1;
9: end for

10: return vector vX ∈ Cnp−p(p+1)/2;

Algorithm 6 Compute a vector in HY from its intrinsic representation

Require: Y ∈ C
n×p
∗ , vY ∈ Cnp−p(p+1)/2, a function βY : Cn×p → Cn×p : A 7→

[

Y L−∗ Y⊥
]

A (see
Algorithm 9), where Y ∗Y = LL∗ is the Cholesky decomposition.

1: k = 1;
2: for j = 2, . . . , p, i = 1, . . . j − 1 do

3: Ωij = vY (k) and Ωji = −vY (k);
4: k ← k + 1;
5: end for

6: for i = 1, . . . , (n− p), j = 1, . . . , p do

7: Kij = vY (k) and k← k + 1;
8: end for

9: Set Ω̃ = ΩL−1 and K̃ = KL−1; ⊲ # 1
2p

2 NN;

10: return βY

[

Ω̃

K̃

]

; ⊲ # 2p2 NN;

Algorithm 7 Compute unit vectors in Householder matrices (v1, v2, . . . , vp), complex numbers
(s1, s2, . . . , sp), (w1, w2, . . . , wp), and a lower triangle matrix L satisfying LL∗ = Z∗Z

Require: Z =
[

z1 z2 . . . zp
]

∈ Cn×p;
1: for i = 1, . . . , p do ⊲ # p2 NN
2: Let a denote −earg z̃i1

√
−1‖z̃i‖2 and define vi = (z̃i − ae1)/‖z̃i − ae1‖2, si = −earg z̃i1

√
−1, and wi =

z̃∗i vi/v
∗
i z̃i, where z̃i is the vector formed by last n− i + 1 entries of zi, z̃i1 is the first entry of z̃i and e1

denotes the first canonical basis of Rn−i+1;

3: Z =
[

z1 z2 . . . zp
]

← QiZ, where Qi =

[

Ii−1 0
0 In−i+1 − (1 + wi)viv

∗
i

]

;

4: end for

5: L← Z(1 : p, 1 : p)∗; ⊲ Z is an upper triangle matrix.
6: return (v1, v2, . . . , vp), (s1, s2, . . . , sp), (w1, w2, . . . , wp), and L;

Riemannian optimization for PhaseLift 15
Algorithm 8 Compute αX(A)

Require: A ∈ Cn×p, and VX = (v1, v2, . . . , vp), SX = (s1, s2, . . . , sp), and WX = (w1, w2, . . . , wp) generated
by Algorithm 7 with input X ;

1: for i = 1, . . . , p do ⊲ # 2p2 NN

2: A← QiA, where Qi =

[

Ii−1 0
0 In−i+1 − (1 + wi)viv

∗
i

]

;

3: end for

4: return diag(s∗1, s
∗
2, . . . , s

∗
p, In−p)A;

Algorithm 9 Compute βX(A)

Require: A ∈ Cn×p, and VX = (v1, v2, . . . , vp), SX = (s1, s2, . . . , sp), and WX = (w1, w2, . . . , wp) generated
by Algorithm 7 with input X ;

1: A← diag(s1, s2, . . . , sp, In−p)A
2: for i = p, (p− 1) . . . , 1 do ⊲ # 2p2 NN

3: A← QiA, where Qi =

[

Ii−1 0
0 In−i+1 − (1 + wi)viv

∗
i

]

.

4: end for

5: Return A;

than the starting ranks p0 = 2, 4. Note that Algorithm 3 with a small value of l, which is the case in these
tests, often does not give a satisfactory initial iterate. Therefore, if the initial point is close to the global
rank-one minimizer, then Algorithm 2 with p0 = 1 is fast, otherwise Algorithm 2 with p0 = 1 is usually very
slow. This explains the big standard derivation of computational time for p = 1. Using p0 > 1 improves the
efficiency of the algorithm. It allows the algorithm to search on a larger dimensional space and find a more
reasonable initial point for Algorithm 2 when p finally reduces to 1. However, since optimizing over a higher
dimensional space requires more work on each iterations, Algorithm 2 with p0 = 4 is not as fast as p0 = 2.
On the other hand, when l = 20, Algorithm 3 is able to provide a satisfactory initial condition. Therefore,
it is not necessary to search over a larger dimensional space and Algorithm 2 with p0 = 1 is efficient and
reliable.

Table 2 reports empirical probabilities of success with the starting rank p0 = 1, 2 and n1 = n2 = 32. The
threshold δ is set to 0.9 for p0 = 2. Multiple values of l are used. Using starting rank p0 = 2 increases the
probability of success when the number of measurements are not sufficient.

We conclude from these experiments that the rank reducing algorithm, Algorithm 2, with p0 > 1 is useful
in the sense of both efficiency and effectiveness when a satisfactory initial iterate is unknown.

Table 1: The mean and the standard derivation of computational time of 100 runs of Algorithm 2 using
LRBFGS with variant l, p0, and δ and output format is (mean)/(the standard derivation). Since δ does not
take effect for p0 = 1, the row corresponding to p0 = 1 has only one result. The subscript k indicates a scale
of 10k.

δ:0.95 δ:0.9 δ:0.85 δ:0.8 δ:0.75

l:6
p0:1 3.13/3.54
p0:2 1.60/5.54−1 1.49/3.56−1 1.39/2.72−1 1.37/2.31−1 1.38/2.14−1

p0:4 1.79/3.96−1 1.73/2.22−1 1.72/1.87−1 1.73/1.99−1 1.75/1.79−1

l:20
p0:1 9.35−1/8.48−2

p0:2 1.30/7.20−2 1.30/8.45−2 1.31/6.99−2 1.29/8.21−2 1.29/7.26−2

p0:4 1.99/1.65−1 2.00/1.71−1 1.99/1.55−1 1.99/1.46−1 2.02/1.66−1

Riemannian optimization for PhaseLift 16
Table 2: Empirical probability of success based on 100 random trials for different signal/measurement.

l 2 3 4 5 6 7 8
p0 : 1 0 0.01 0.69 0.97 0.98 1.00 1.00
p0 : 2 0 0.48 0.96 0.99 1.00 1.00 1.00

Table 3: The comparison results of an average of 10 random runs between the Wirtinger flow algorithm and
Algorithm 2. WF and R denote the Wirtinger flow algorithm and LRBFGS method. err denotes the relative
error min|a|=1 ‖ax− x∗‖/‖x∗‖

l = 6, ǫ = 10−5, p0 = 2 l = 20, ǫ = 10−10, p0 = 1
n1 = n2 = 16 n1 = n2 = 32 n1 = n2 = 128 n1 = n2 = 256

τ WF R WF R WF R WF R

0
t 9.12−2 2.81−2 2.28−1 4.91−2 3.84 9.23−1 2.251 6.11

FFT 4864 1129 7037 1305 12496 2560 11092 2662
NN 0 739 0 833 0 372 0 385
err 2.67−4 1.68−4 6.30−4 5.81−4 5.42−9 9.27−9 1.11−8 3.21−8

10−6

t 8.13−2 2.22−2 1.97−1 4.96−2 3.88 9.33−1 2.231 6.13
FFT 4864 1129 7037 1327 12492 2554 11092 2688
NN 0 735 0 839 0 372 0 388
err 2.68−4 1.65−4 6.36−4 5.15−4 3.51−4 3.51−4 10.00−4 10.00−4

10−4

t 7.97−2 2.18−2 2.00−1 4.91−2 3.79 8.84−1 2.191 6.14
FFT 4868 1127 7033 1312 12492 2526 11104 2746
NN 0 732 0 827 0 370 0 393
err 3.40−3 3.39−3 9.87−3 9.90−3 3.51−2 3.51−2 10.00−2 10.00−2

6.6 Comparisons with a standard low-rank method

A state-of-the-art algorithm, Wirtinger flow algorithm, is proposed in [CLS16]. This algorithm works by
defining

Y (k+1) = Y (k) − µk+1

‖Y (0)‖2∇F (Y (k)),

where Y (0) is the first iterate given by Algorithm 3 and {µk} is a sequence of predefined step sizes. We use
the same heuristic formula as in [CLS16]: µk = min(1 − e−k/k0 , µmax)µ0, where k0, µmax, and µ0 are given
constants. The coefficient in the formula of µk need be carefully chosen, and we use the best values by tuning
them during our tests. The stopping criteria of the Wirtinger flow algorithm and Algorithm 2 requires the
norm of the gradient is less than ǫ, which is specified in Table 3. The initial iterate of the Wirtinger flow
algorithm is given by Algorithm 3 with N = 50, which is the same as the setting in [CLS16].

Table 3 shows that Algorithm 2 is significantly faster than the Wirtinger flow algorithm for both noiseless
and noise problems in the sense of both computational time and machine-independent criteria, the number
of FFT and NN. Note that the complexity of 1 FFT is larger than 1 NN.

Candes et al., [CESV13, CSV13] use a Matlab library TFOCS [BCG11] that contains a variety of accel-
erated first-order methods given in [Nes04] and, in particular, the method based on FISTA [BT09] is used to
optimize the cost functions (3.2) in PhaseLift. Since the domain Dn has dimension 1

2n(n+1), which is usu-
ally too large to be solved, a low-rank version of FISTA (LR-FISTA) is used instead in [CESV13]. However,
LR-FISTA is not a competitive algorithm, see details in [HGZ16a] for comparisons between Algorithm 2 and
LR-FISTA.

6.7 Performance of PhaseLift on natural images

Two images of different sizes, shown in Figures 1, are used to illustrate the performance of Algorithm 2 for
noiseless measurements. Twenty masks l = 20 and p0 = 1 are used. Algorithm 2 stops when the norm
of gradient over the norm of the initial gradient is smaller than 10−15. Algorithm 2 is able to recover the
images in minutes.

Riemannian optimization for PhaseLift 17

Gold balls data set

min

max

Galaxy

min

max

Figure 1: Left: A gold balls data set image of 256 by 256 pixels. The values of pixels are complex numbers.
The number of iterations is 85. The computational time is 9.3 seconds including the computations for an
initial iterate. The relative error min|a|=1 ‖ax − x∗‖/‖x∗‖ is 1.60 × 10−15. The numbers of FFT and NN
are 4020 and 682 respectively. Right:A gray galaxy image of 1800 by 2880 pixels. The values of pixels
are real numbers. The number of iterations is 136. The computational time is 1473 seconds including the
computations for an initial iterate. The relative error is 1.96 × 10−15. The numbers of FFT and NN are
6000 and 1090 respectively.

7 Conclusion

In this paper, the recently proposed PhaseLift framework for solving the phase retrieval problem has moti-
vated the consideration of cost functions H on the set of complex Hermitian positive semidefinite matrices
Dn that include the PhaseLift cost function.

An alternate cost function F related to factorization is used to replace the cost function H , i.e., F (Y) =
H(Y Y ∗). The optimality conditions of H are related to the properties of F and the important optimality
condition, Theorem 4.1, shows that if Yp is a rank deficient minimizer of Fp, then YpY

∗
p is a stationary point

of H . For general problems defined on Dn, if r∗, the rank of the desired minimizer of cost function H , is
low, the optimality condition suggests the use of the alternate cost function F with p > r∗. If r∗ is small,
then a small p can be used and optimization on Fp can be more efficient than optimization on H .

Additionally, Algorithm 2 based on optimization on a fixed rank manifold and dynamically reducing is
developed for optimizing the cost function F . For optimization on a fixed rank manifold, recently developed
state-of-the-art Riemannian optimization methods on a quotient space are used.

For the phase retrieval problem, when the number of measurements is not sufficient large, Algorithm 3
does not give a satisfactory initial condition. Algorithm 2 with higher starting rank p0 > 1 improves the
efficiency and reliability. Furthermore, Algorithm 2 is much faster than the Wirtinger flow algorithm in the
sense of computational time and the number of machine-independent operations regardless of p0 = 1 or 2.

Acknowledgement

We thank Stefano Marchesini at Lawrence Berkeley Notional Laboratory for providing the gold balls data
set and granting permission to use it.

Riemannian optimization for PhaseLift 18
References

[AIDV09] P.-A. Absil, M. Ishteva, L. De Lathauwer, and S. Van Huffel. A geometric Newton method for
Oja’s vector field. Neural Computation, 21(5):1415–33, May 2009. doi:10.1162/neco.2008.04-08-
749.

[AMS08] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Prince-
ton University Press, Princeton, NJ, 2008.

[Bak08] C. G. Baker. Riemannian manifold trust-region methods with applications to eigenproblems.
PhD thesis, Florida State University, Department of Computational Science, 2008.

[BCG11] S. Becker, E. J. Cand, and M. Grant. Templates for convex cone problems with applications to
sparse signal recovery. Mathematical Programming Computation, 3:165–218, 2011.

[BDP+07] O. Bunk, A. Diaz, F. Pfeiffer, C. David, B. Schmitt, D. K. Satapathy, and J. F. van der Veen.
Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across
microfluidic channels. Acta crystallographica. Section A, Foundations of crystallography, 63(Pt
4):306–314, July 2007. doi:10.1107/S0108767307021903.

[Bla04] R. Blankenbecler. Three-dimensional image reconstruction. II. Hamiltonian method for phase
recovery. Physical Review B, 69(6):064108, February 2004. doi:10.1103/PhysRevB.69.064108.

[BM03] S. Burer and R. D. C. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95(2):329–357, February 2003.
doi:10.1007/s10107-002-0352-8.

[Boo86] W. M. Boothby. An introduction to differentiable manifolds and Riemannian geometry. Aca-
demic Press, second edition, 1986.

[BS79] Y. M. Bruck and L. G. Sodin. On the ambiguity of the image recontruction problem. Optics
Communications, 30(3):304–308, 1979.

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for lin-
ear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, January 2009.
doi:10.1137/080716542.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge,
2004. doi:10.1017/CBO9780511804441.

[CESV13] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix comple-
tion. SIAM Journal on Imaging Sciences, 6(1):199–225, 2013. arXiv:1109.0573v2.

[CL13] E. J. Candès and X. Li. Solving quadratic equations via phaselift when there are about
as many equations as unknowns. Foundations of Computational Mathematics, June 2013.
doi:10.1007/s10208-013-9162-z.

[CLS16] E. J. Candés, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: theory and
algorithms. IEEE Transactions on Information Theory, 64(4):1985–2007, 2016.

[CMWL07] C. Chen, J. Miao, C. w. Wang, and T. K. Lee. Application of optimization technique to non-
crystalline x-ray diffraction microscopy: Guided hybrid input-output method. Physical Review
B, 76(6):064113, August 2007. doi:10.1103/PhysRevB.76.064113.

[CSV13] E. J. Candès, T. Strohmer, and V. Voroninski. PhaseLift : Exact and stable signal recovery
from magnitude measurements via convex programming. Communications on Pure and Applied
Mathematics, 66(8):1241–1274, 2013.

Riemannian optimization for PhaseLift 19
[DH14] L. Demanet and P. Hand. Stable optimizationless recovery from phaseless linear measurements.

Journal of Fourier Analysis and Applications, 20(1):199–221, 2014.

[Els03] V. Elser. Solution of the crystallographic phase problem by iterated projections. Section A:
Foundations of Crystallography, pages 201–209, 2003.

[Fie78] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform. Optics
letters, 3(1):27–29, 1978.

[Fie82] J. R. Fienup. Phase retrieval algorithms: a comparison. Applied optics, 21(15):2758–69, August
1982.

[FJ05] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

[GS72] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of phase from
image and diffraction plane pictures. Optik, 35:237–246, 1972.

[GW04] M. X. Goemans and D. P. Williamson. Approximation algorithms for max-3-cut and other
problems via complex semidefinite programming. Journal of Computer and System Sciences,
68(2):442–470, March 2004. doi:10.1016/j.jcss.2003.07.012.

[HAG15] W. Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian symmetric rank-one trust-region
method. Mathematical Programming, 150(2):179–216, February 2015.

[HAG16a] W. Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian BFGS Method for Nonconvex
Optimization Problems. Lecture Notes in Computational Science and Engineering, pages 1–8,
2016.

[HAG16b] Wen Huang, P.-A. Absil, and K. A. Gallivan. Intrinsic representation of tangent vectors and
vector transport on matrix manifolds. Numerische Mathematik, 2016.

[HAGH16] Wen Huang, P.-A. Absil, K. A. Gallivan, and Paul Hand. Roptlib: an object-oriented c++
library for optimization on riemannian manifolds. Technical Report FSU16-14, Florida State
University, 2016.

[Har93] R. W. Harrison. Phase problem in crystallography. Journal of the Optical Society of America
A, 10(5):1046–1055, May 1993. doi:10.1364/JOSAA.10.001046.

[Hay82] M. H. Hayes. The reconstruction of a multidimensional sequence from the phase or magnitude of
its fourier transform. IEEE Transactions on Acoustics speech and signal processing, 30(2):140–
154, 1982.

[HGA15] Wen Huang, K. A. Gallivan, and P.-A. Absil. A Broyden Class of Quasi-Newton Methods for
Riemannian Optimization. SIAM Journal on Optimization, 25(3):1660–1685, 2015.

[HGZ16a] W. Huang, K. A. Gallivan, and X. Zhang. Solving PhaseLift by low-rank Riemannian optimiza-
tion methods for complex semidefinite constraints. UCL-INMA-2015.01.v2, 2016.

[HGZ16b] Wen Huang, K. A. Gallivan, and Xiangxiong Zhang. Solving phaselift by low rank Riemannian
optimization methods. In Proceedings of the International Conference on Computational Science
(ICCS2016), accepted, 2016.

[Hua13] W. Huang. Optimization algorithms on Riemannian manifolds with applications. PhD thesis,
Florida State University, Department of Mathematics, 2013.

Riemannian optimization for PhaseLift 20
[JBAS10] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization on the cone of

positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327–2351, 2010.

[Mar07] S. Marchesini. Invited article: a unified evaluation of iterative projection algorithms for phase
retrieval. Review of scientific instruments, 78(1):011301, January 2007. doi:10.1063/1.2403783.

[MISE08] J. Miao, T. Ishikawa, Q. Shen, and T. Earnest. Extending X-ray crystallography to allow the
imaging of noncrystalline materials, cells, and single protein complexes. Annual review of phys-
ical chemistry, 59:387–410, January 2008. doi:10.1146/annurev.physchem.59.032607.093642.

[Nes04] Y. Nesterov. Introductory lectures on convex programming: a basic course, volume I. Springer,
2004.

[RW12] W. Ring and B. Wirth. Optimization methods on Riemannian manifolds and their ap-
plication to shape space. SIAM Journal on Optimization, 22(2):596–627, January 2012.
doi:10.1137/11082885X.

[San85] J. L. C. Sanz. Mathematical considerations for the problem of Fourier transform phase retrieval
from magnitude. SIAM Journal on Applied Mathematics, 45(4):651–664, 1985.

[Sat15] H. Sato. A Dai-Yuan-type Riemannian conjugate gradient method with the weak Wolfe condi-
tions. Computational Optimization and Applications, 2015. to appear.

[SI15] H. Sato and T. Iwai. A new, globally convergent Riemannian conjugate gradient method.
Optimization, 64(4):1011–1031, February 2015.

[TTT99] K. C. Toh, M. J. Todd, and R. H. Tutuncu. SDPT3 a matlab software package for semidefinite
programming. Optimization methods and software, 11:545–581, 1999.

[Wal63] A. Walther. The question of phase retrieval in optics. Optica Acta: International Journal of
Optics, 10(1):41–49, January 1963. doi:10.1080/713817747.

[WDAM13] I. Waldspurger, A. D´ Aspremont, and S. Mallat. Phase recovery, maxcut and complex semidefi-
nite programming. Mathematical Programming, December 2013. doi:10.1007/s10107-013-0738-9.

[ZHG+15] G. Zhou, W. Huang, K. A. Gallivan, P. Van Dooren, and P.-A. Absil. A riemannian rank-
adaptive method for low-rank optimization. Neurocomputing, 2015.

A Stationary Points

The definition of stationary points in real semidefinite programming can be used to characterize stationary
points of (4.1). To this end, we first define a mapping, denoted by a superscript :̃

˜: Cn×p → R
2n×2p : Y = Y̌1 + Y̌2

√
−1 7→ Ỹ =

(

Y̌1 −Y̌2

Y̌2 Y̌1

)

which is an isometry from Cn×p to R2n×2p [GW04]. Therefore, (1.2) can be formulated as a problem with
real semidefinite constraints:

min
X̂∈S

+

2n

H̃(X̂) := H(X̌1 + X̌2

√
−1) (A.1)

such that tr(AkX̂) = 0, k = 1, 2, . . . , n(n+ 1),

where Ak, k = 1, . . . , n(n+ 1)/2 are given by

Ak =

(

0n×n Eij + Eji

Eij + Eji 0n×n

)

, i = 1, . . . , n, j = i, . . . , n

Riemannian optimization for PhaseLift 21
and the n(n+ 1)/2 remaining Ak, are given by

Ak =

(

Eij + Eji 0n×n

0n×n −Eij − Eji

)

, i = 1, . . . , n, j = i, . . . , n

where Eij ∈ Rn×n are the standard basis matrices.

Since H̃ in (A.1) is defined on a real space, [JBAS10, Definition 1] is applicable:

Definition A.1. A stationary point of (A.1) is a symmetric matrix X̂ ∈ R2n×2n for which there exists
a vector δ = (δ1, . . . , δm)T ∈ Rm and a symmetric matrix S ∈ R2n×2n such that the first-order optimality
conditions hold: tr(AiX̂) = 0, X̂ ≥ 0, S ≥ 0, SX̂ = 0, S = grad H̃(X̂)−∑m

i=1 δiAi, where m = n(n+1).

One can define X to be a stationary point of H if and only if X̃ is a stationary point of H̃ , since H̃ is
a reformulation of H . Therefore, by using Definition A.1, Lemma A.1 provides a necessary and sufficient
condition for X to be a stationary point of H .

Lemma A.1. Suppose X ∈ Dn. gradH(X)X = 0 and gradH(X) ≥ 0 if and only if X is a stationary point
of H.

Proof. ⇒ The conditions gradH(X)X = 0 and gradH(X) ≥ 0 imply grad H̃(X̃) ≥ 0 and grad H̃(X̃)X̃ = 0.
Therefore, choosing S = grad H̃(X̃) and δ = 0m in Definition A.1 yields that X is a stationary point of H .
⇐ Let G denote gradH(X). The gradient of H̃ can be written as G̃. Therefore, using S = G̃−∑m

i=1 δiAi

in Definition A.1 yields δi = 0 for all i. It follows from SX̃ = 0, S ≥ 0 that G̃X̃ = 0 and G̃ ≥ 0. This implies
gradH(X)X = 0 and gradH(X) ≥ 0.

	Introduction
	Notation
	The PhaseLift approach to phase retrieval
	Theoretical results
	Equivalent cost function
	Optimality conditions

	A Riemannian approach
	Riemannian optimization on fixed rank manifold
	Dynamic rank reduction

	Experiments
	Cost function, gradient, and complexity for PhaseLift
	Initial iterate
	Data, parameters and notations
	Implementation of a Limited-memory BFGS method on the Fixed-rank Manifold C*n p / Op
	Initial point size and rank reducing threshold
	Comparisons with a standard low-rank method
	Performance of PhaseLift on natural images

	Conclusion
	Stationary Points

