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A RIEMANNIAN BFGS METHOD WITHOUT DIFFERENTIATED
RETRACTION FOR NONCONVEX OPTIMIZATION PROBLEMS*
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Abstract. In this paper, a Riemannian BFGS method for minimizing a smooth function on a
Riemannian manifold is defined, based on a Riemannian generalization of a cautious update and a
weak line search condition. It is proven that the Riemannian BFGS method converges (i) globally
to stationary points without assuming the objective function to be convex and (ii) superlinearly to
a nondegenerate minimizer. Using the weak line search condition removes the need for information
from differentiated retraction. The joint matrix diagonalization problem is chosen to demonstrate
the performance of the algorithms with various parameters, line search conditions, and pairs of
retraction and vector transport. A preliminary version can be found in [Numerical Mathematics and
Advanced Applications: ENUMATH 2015, Lect. Notes Comput. Sci. Eng. 112, Springer, New York,
2016, pp. 627-634].
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1. Introduction. In the Euclidean setting, the BFGS method is a well-known
quasi-Newton method that has been viewed for many years as the best quasi-Newton
method for solving unconstrained optimization problems [DS83, NWO06]. Its global
and superlinear local convergence have been analyzed in many papers for convex prob-
lems (see [DS83] and references therein). For many years, it was not clear whether
the standard BFGS method could be shown to converge globally for a nonconvex
cost function. In fact, it is only recently that [Dail3] has given an example where
the cost function is smooth (polynomial) and nonconvex and the BEGS method can-
not converge, which means that modifications of the BFGS method are required if the
global convergence for general nonconvex problems is desired. Such modifications have
been proposed and shown to converge globally in [LF0la, LFO1b, WLQ06, WYYL04].
In the Riemannian setting, quasi-Newton methods are also favored in many ap-
plications and much attention has been paid to generalizing the Euclidean BFGS
method. So far, many Riemannian versions of the BFGS method have appeared,
e.g., [Gab82, BM06, QGA10, SL10, RW12, SKH13, HGA15], and only two of them
[RW12, HGA15] have general discussions with complete global and local convergence
analyses rather than considering only a specific cost function or manifold. In spite of
this, both of them require cost functions to satisfy a Riemannian version of convexity
in their analyses.

In this paper, we adopt the approach in [LF01b] for nonconvex problems, which
updates the Hessian approximation cautiously, with a weak line search condition
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[BN89, (3.2), (3.3)]. Global and local superlinear convergence analyses of the proposed
cautious Riemannian BFGS (RBFGS) method are given. In addition, unlike the
Riemannian versions of the BFGS method in [RW12, HGA15], the global convergence
analysis of the cautious RBFGS does not require a convexity assumption on the cost
function.

The RBFGS method in this paper has another advantage over the approaches in
[RW12, HGA15]. The Riemannian versions of the BFGS method in [RW12, HGA15]
and this paper all rely on the notion of retraction and vector transport developed
in [ADMO02, AMS08]. The version in [RW12] involves the vector transport of differen-
tiated retraction, which may not be available to users or may be too expensive. The
version in [HGA15] uses less information from differentiated retraction—probably the
least possible if the Wolfe condition is used in line search. The RBFGS method in
this paper also allows the use of line search conditions other than the Wolfe condition
and the requirement of differentiated retraction is completely avoided. For example,
the Armijo—Goldstein condition is such a condition and is satisfied by step size found
by the frequently used backtracking line search algorithm.

The joint diagonalization problem [TCAOQ9] is used to demonstrate that the pro-
posed RBFGS framework makes it possible to use simpler line search procedures and
simpler vector transports than in earlier RBFGS methods (such as the one in [HGA15],
which was found to be the best performing Riemannian method for this problem),
without significantly affecting the efficiency of the algorithm.

This paper is organized as follows. Section 2 presents notation used in this pa-
per. Section 3 defines the Riemannian version of BFGS method. Global and local
convergence analyses are given in sections 4 and 5, respectively. The correspond-
ing limited-memory version of the RBFGS method is given in section 6. Numerical
experiments are reported in section 7 and finally conclusions are drawn in section 8.

2. Notation. The Riemannian concepts follow from the standard literature, e.g.,
[Boo86, AMSO08], and the notation of this paper follows [AMS08]. Let f denote a cost
function defined on a d-dimensional Riemannian manifold M with the Riemannian
metric g : (Mg, &) — Gz(M2, &) € R. T, M denotes the tangent space of M at x and
T M denotes the tangent bundle, i.e., the set of all tangent spaces. The Riemannian
gradient and Hessian of f at x are denoted by grad f(z) and Hess f(z), respectively,
and the action of Hess f(z) on a tangent vector n,, € T, M is denoted by Hess f(x)[n,].
Let A, be a linear operator on T, M. A} denotes the adjoint operator of A, i.e., A%
satisfies g, (Nz, Azés) = go(Akng, &) for all n,,&, € T, M. A, is called self-adjoint
or symmetric with respect to g if A% = A,. Given 7, € T, M, 1’ represents the flat
of 1, i.e., n; T M =R &= 9o, &)

A retraction is a C'! map from the tangent bundle to the manifold such that (i)
R(0,) = x for all z € M (where 0, denotes the origin of T M) and (ii) % R(t&,)|=0 =
&, for all &, € T, M. The domain of R does not need the entire tangent bundle.
However, it is usually the case in practice. In this paper, we assume that R is well-
defined whenever needed. R, denotes the restriction of R to T, M. A vector transport
T:TM&TM = TM, (g, &) — Tp, & with associated retraction R is a mapping?
such that, for all (z,7,) in the domain of R and all £, € T, M, it holds that (i) 7, &, €
Tr(y,) M and (ii) 7;, is a linear map. An isometric vector transport 7s additionally

IThis mapping is not required to be continuous. We make further assumptions when needed.
Note that in the global convergence analysis (section 4), the only constraints on 7g are given in
Assumption 4.2.
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satisfies gr, (n,)(7Ts,, §e» Ts,), C) = 92(&z, C2), where ; € T, M. The vector transport
by differentiated retraction 7Tx is defined to be Tg, &, := %Rx(% + &) |t=0-

Coordinate expressions are denoted with a hat. Let (U, ¢) be a chart of a manifold
M and z € U. The coordinate expression of z is defined by & = ¢(x). E;, the ith
coordinate vector field of (U, ), is defined by

(Bif)(x) == 0i(f oo™ ")(p(2)) = D(f o o™ ")(p(2))[ei]-

These coordinate vector fields are smooth and every vector field £ on ¢ has a decom-
position

§= (pi)Es.

7

Therefore, (E;),,i=1,...,d, is a basis of T, M and the coordinate expression &, of
&, with this basis is (§,¢1, . - ., €x¢4). The coordinate expressions of a vector transport
T and a linear operator 4 on a tangent space are represented by matrices T and fl,
respectively.

3. Riemannian BFGS method with cautious update. The proposed
RBFGS method with cautious update is stated in Algorithm 1.

Algorithm 1. Cautious RBFGS method.

Input: Riemannian manifold M with Riemannian metric g; retraction R; isometric
vector transport 7g, with R as the associated retraction; continuously differen-
tiable real-valued function f on M, bounded below; initial iterate xg € M; initial
Hessian approximation By that is symmetric positive definite with respect to the
metric g; convergence tolerance € > 0;

1: k<« 0;
2: while || grad f(zy)|| > ¢ do
3:  Obtain n € T, M by solving Bin, = — grad f(xy);
4: Set
(1) Tpt1 = R, (i),

where aj > 0 is computed by a line search procedure that guarantees the
existence of 0 < y; < 1 and 0 < x2 < 1, independent of k£ such that

2) heon) — e(0) < —ya 2O
7% |
(3) hi(ar) — hi(0) < x2hy,(0),

where hy(t) = f(Rg, (tnk))-
5. Define the linear operator Bry1 : Ty, M — Ty, M by (7);
6: k< k+1;
7: end while

When M is a Euclidean space, the line search condition in step 4 of Algorithm 1
is weak since it has been shown in [BN89, sections 3 and 4] and references therein
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that many line search conditions, e.g., the Curry—Altman condition, the Goldstein
condition, the Wolfe condition, and the Armijo—Goldstein condition, imply either (2)
or (3) if the gradient of the function is Lipschitz continuous. In the Riemannian
setting, note that function fo R, : T, M — R is defined on a linear space. It follows
that the Euclidean results about line search are applicable, i.e., the conditions above
also imply either (2) or (3) if the gradient of the function satisfies the Riemannian
Lipschitz continuous condition in Definition 3.1:

DEFINITION 3.1 (see [AMSO08, Definition 7.4.1]). The function f = fo R is a
radially L-C* function for all x € € if there exists a positive constant Ly such that
for all x € Q and all n, € Ty M, it holds that

d d
Q) | )=t = 2 FTne)le=ol < Latlll,

where t and 1, satisfy that R, (tn,) € Q.
In an RBFGS method, the search direction 7y is given by solving

(5) ne = —By ' grad f(a),

where B,;l, a linear operator on T,, M, approximates the action of the inverse Hessian
along the grad f(zy) direction. It remains to define the update formula for By to be
used in line 5 of Algoriithm 1. The classical (Euclidean) BFGS update admits several
Riemannian generalizations; see [HGA15, section 6]. We will start from the following
one:

B 2 2% b b
(6) By1 = By, — B (Bisr) y;;yk,
(B sk)’ sk Yy Sk

grad f(xg), sk =
apni, and By is an arbitrary number satisfying that |8r — 1| < Lgllawnsll,

where By, = Ts,,, © By o 7'31%7 yr = By tgrad f(zri1) — Ts
Eak"k
18,1 — 1| < Lg|lagmy||, and Lg > 0 is a constant. The motivation for introducing By
T
In Algorithm 1, 8 can be chosen as 1 for all k. Note that it is well-known that there
exists an update formula for B; ', which is given later in (50).

YRk

is to make this update subsume the update in [HGA15], which uses 85 =

If stk > 0, then the symmetric positive definiteness of By implies the symmet-
ric positive definiteness of By [HGA15]. The positive definiteness of the sequence
{Bi} is important in the sense that it guarantees that the search direction (5) is a
descent direction. However, not all line search conditions imply stk > 0. In [RW12]
and [HGA15], the Wolfe condition with information about the differential of the re-
traction R, Tg, is used to guarantee y;:sk > 0. In this paper, instead of enforcing
yisk > 0, we guarantee the symmetric positive definiteness of By by resorting to
the following cautious update formula:

3, _ Busc(Bisn)” | weyl oy vhe
(7) Best = lfk (B;sk)kbsk + yZS:’ if HskkHQ > 19(“ grad f(z)|),
By otherwise,

where ¢ is a monotone increasing function satisfying #(0) = 0 and ¥ is strictly in-
creasing at 0. Formula (7) reduces to the cautious update formula of [LF01b] when M
is a Euclidean space. Since stk > 0 is not longer enforced, we have more flexibility
in the line search procedure, which only needs to satisfy line 4 of Algorithm 1. It
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is pointed out that one also can reset By, to be any given matrix, e.g., id, rather
~ b
than Bj, when 2% % (|| grad f(x)||). Using either approach does not affect the

s 2
theoretical resu{‘tsk ljgiven later.

Note that it is important to ensure that ¥(0) = 0 and ¢ is strictly increasing
at 0. If 9 is not strictly increasing at 0, then the update (7) still guarantees the
positive definiteness of the Hessian approximation sequence {By}. However, the global
convergence of Algorithm 1 for nonconvex problems may not hold (let ¢ = 0 and see
the example in [Dail3]). If 9¥(0) > 0, then the global convergence of Algorithm 1
holds for nonconvex problems but the local superlinear convergence does not hold
generally (see the proofs in Theorem 5.1). If #(0) < 0, then Algorithm 1 may not be
well-defined in the sense that the search direction (5) may not be descent.

4. Global convergence analysis. The global convergence analysis of Algo-
rithm 1 is generalized from the Euclidean analysis in [BN89, LF01b] and the differ-
ences for the Riemannian setting are highlighted.

The convergence analysis is built on the next two assumptions, which are not
blanket assumptions and are invoked only when needed. Assumptions 4.1 and 4.2
generalize the assumptions of the Euclidean setting [LF01b, Assumption A].

Assumption 4.1. The level set Q = {& € M| f(x) < f(zo)} is compact.

Multiple Riemannian versions of Lipschitz continuous differentiable functions have
been defined, e.g., [AMSO08, Definitions 7.4.1, 7.4.3]. Definition 4.1 gives another
version which is slightly more general than [AMS08, Definition 7.4.3] in the sense
that Definition 4.1 reduces to [AMS08, Definition 7.4.3] when 7 is chosen to be the
parallel translation along the shortest geodesic. Assumption 4.2 assumes that the
function f satisfies the Lipschitz continuous differentiability in Definition 4.1. Note
that if f further satisfies [AMSO08, Definition 7.4.1] or equivalently Definition 3.1,
then the line search conditions, e.g., the Wolfe condition and the Armijo—Goldstein
condition, imply condition either (2) or (3).

DEFINITION 4.1. Let T be a vector transport associated with a retraction R.
A function f on M s said to be Lipschitz continuously differentiable with respect
to T onlU C M if there exists L1 > 0 such that

T grad f(x) — grad f(Ra(n))|| < Laln|
for all x € U and n such that R.(n) € U.

Assumption 4.2. The function f is Lipschitz continuously differentiable with re-
spect to the isometric vector transport 7g on 2.

Theorem 4.1 gives a sufficient condition for global convergence of Algorithm 1.
This theorem is generalized from [LF01b, Theorem 3.1] but the proof is different since
a different line search condition is used.

THEOREM 4.1. Let {xy} and ng be sequences generated by Algorithm 1. If there
are positive constants K1, ks, and k3 such that the inequalities

(8) 1Benell < mallnell,  w2llmwll® < nfBrme < wa el

hold for infinitely many k’s, then liminfy_, || grad f(zy )| = 0.
Proof. Let K denote the index set such that (8) holds. Using (5) and (8) yields

(9) |kl < Il grad f(zx)|| < malnell-
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It follows from either (2) or (3) that

k k

00 > f(zo) — f(@r41) = Z(f(xz) = f(ziy1)) = Z(hl(O) = hi(o))

i=0 i=0

> me (8 i)

,me <X1 gradni(ﬁﬂ mi)* ,X29(gradf(:vi),7h)>

—eruu( 2B, (gradf(mi),m),—X2g(gradf(fci),m)>

k

> min(x1k2,x2) Y (—g(grad f(z:),m)).

i=0,iek
Therefore, it holds that
(10) liminf —g(grad f (zx), n) = 0.
Combining (10) with (9), (8) yields

I grad f(zx)|I* < willmell* < wiwg ' g(m, Bime) = wiwy ' g(im, —grad f(zr)),
which implies liminfy_,o || grad f(xg)| = 0. d

Theorem 4.1 shows that the global convergence is ensured if there exist three
positive constants k1, ke, k3 such that (8) holds for infinitely many k’s. Lemma 4.1
proves that if (11) holds, then such three constants exist. Lemma 4.1 is generalized
from [BN89, Theorem 2.1]. The main difference is that in the Euclidean setting, By1
is equal to By if the update is skipped. However, in the Riemannian setting, even
though update is skipped, By is still different from By due to the existence of the
vector transport 7s.

LEMMA 4.1. Let T = {jo,j1,J2,...} be an infinite index set and {By} be the
sequence generated by the RBFGS update

(Bfsk)" sk YrSk

Bk . Brsk(Brsk)” + y;;y,'i ifk e j'}.
Bry1=19 - .
By, otherwise.

Suppose By is symmetric and positive definite and there are positive constants ag < aq
such that for all k >0, y;, and s;, satisfy

b 2
Y. S (I

(11) H;’“ H'; > ag, ka —<a.
Ik Y5 Si

Then for any p € (0,1) there exist constants R1, Ra, ks > 0 such that, for any positive
integer k,

(12) cosb;, > R,
(13) k2 < qj, < K3,
(14) 7y < IBinicll _ s

il — Fa
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hold for at least [(k + 1)p]| values of i € {0,1,...,k}, where cosf,;, = m,
g5, = %, and [a] denote the greatest integer that is smaller than a.
Ji
Proof. Since both tr(B;) and det(By,) are independent of the choice of basis, they
are well-defined. Since
Bjk = 7~S°‘jk71"jk71 O0...0 7-Sajk—1+1"jk—1+1
1 —1

o jk—1+1o7—S:‘ o...07g

n. . m.a ’
Ge—1 1M1 +1 gy =17 —1

we have tr(B;,) = tr(Bj,_,+1) and det(B;,) = det(B;,_,+1). Using the update for-
mula of (6) yields that

A A 1B;, 55, I 12
tr(Bj,,,) = tr(B,,) — B + b
e " 9550 Biusi)  9Whs i)

det(B;, ) = det(B;, ) I W S0)

o g(sjk7Bjk5jk)

which have been used in [HGA15, pp. 5, 13]. The Euclidean versions of these equa-
tions can be found in [NWO06, (6.44), (6.45)]. Define ¢(B;,) = tr(B;,) — In(det(5;,))
and it follows from the approach in [BN89, section 2] or [NWO06, section 6.4] that

. . ly;. |I? 9I(Yiin s Sje) 2
(B, =B, )+ —20 1 —In I 4y cos? 6,
( Jk+1) ( ]k) g(yjmsjk) Hsjk”z Ik
djy, djs,
15 1 .
(15) cos? 0, " cos? 05,

Using (11) and (15) yields

5 5 2
V(Bj,,,) < P(Bj,) +a1 —1—1nag+Incos®f;, +1— cos 0, cos? 0,

k
) qi, q;,

< (B —1—Inag)(k+1 mcos® 0, +1— —Z— +In—Z— |
< Y(By) + (a1 nag)(k+1) + ; (HCOS Gi T cos? 0;, tn cos? 9%)

Define 7;, = —Incos?6;, — (1 — —%i— 4+ In —%i). Note that the function £(t) =

cos? 0, cos? 0,
1 —¢+In(t) is nonpositive for all ¢ and In cos? §;, < 0 and therefore 7;, > 0. Also note

that ¢(B;,,,) = Zle()\i —1In ;) > 0, where d is the dimension of M and \; is the
eigenvalue of Bk+1~ It follows that

ﬁ(fol) + (a1 — 1 —1Inayp).

k
1
16 — E 3
( ) k+1i:OTJ1<

Define Jj, to be the set of the [(k + 1)p] indices corresponding to [(k + 1)p| smallest
values of 7;, for i« < k. Let 7,,,, denote the largest of the 7;, for i € Jj. It follows that

1 k k

1
m Zsz‘ 2 m Tmy, + Z T | = ka(l _p)'
=0 i=0,i¢ Tk

(17)
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Combining (16) with (17) yields
1 .
Tjs < m(w(lgo) +a;—1—-Inay) =w

for all 7 € Jj. By the definition of 7;,, we have that

(18) —Incos? 0, < w,

dj; 4j;
19 1-— 1 —
(19) cos? 6;, + P os? 0, -

for all ¢ € Ji. Inequality (18) implies cosfj, > exp(—w/2) := K1, which completes
the proof of (12).

Using (19) and noting ¢(t) — —oo both as ¢ — 0 and as t — oo, it follows that
there exist positive constants &3 and b for alli € J;, 0 < b < —4i— < fg. Additionally

cos? 0,
using (12) yields &9 := /3b < gj, < ks for all i € J;, which completes the proof of (13).
Bj,

Finally, inequalities kg < ﬁ < £ follow from || By, || /[n;. || = g5,/ cos 6, O

The desired global convergence result for a nonconvex function f is stated in
Theorem 4.2.

THEOREM 4.2. Let {xy} be sequences generated by Algorithm 1. If Assumptions
4.1 and 4.2 hold, then

(20) liminf || grad f(zx)|| = 0.
k—o0

Proof. Define the index set from Algorithm 1,

bS
7= (KL > o grad o)}

e

If 7 is finite, then there exists a kg > 0 such that By has the same eigenvalues as By,
for all k > ko. Since By, is symmetric positive definite, it is obvious that (8) holds.
Therefore, Theorem 4.1 yields the desired result.

Contradiction is used to prove the result when Z is infinite. Suppose (20) does
not hold. Therefore, there exists a constant 6 > 0 such that || grad f(zy)| > ¢ for
all k. It follows from the definition of Z that

(21) y'bﬂl > 9(0)

holds for all k£ € Z. Noting Assumption 4.2, the definition of 8, and the compactness
of Q, we have

Iyl = 118, " grad f(2xi1) — Ts,, . erad f(zy)|
< |18, "t erad f(xr11) — grad f(zps) || + || grad f(zes1) — Ts,, ,, grad f ()|
< Lg||sullll grad f(zr1)l| + Lllsll < Ls||sk|,

where L3 is a constant. It follows that H;f ‘f < ﬁL(E) Therefore, (20) follows from
kS .

Lemma 4.1 and Theorem 4.1, a contradiction. O
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5. Local convergence analysis. Section 5.1 lists the assumptions and defi-
nitions used in the local convergence analyses. Section 5.2 builds the connections
between the global and local convergence analyses and shows that Algorithm 1 even-
tually reduces to the ordinary RBFGS method, i.e., Algorithm 1 without skipping
updates. Since Algorithm 1 is equivalent to an ordinary RBFGS locally, the R-
linear and superlinear convergence analyses are presented for the ordinary RBFGS in
sections 5.3 and 5.4, respectively.

5.1. Basic assumptions and definitions. Throughout the local convergence
analyses, let 2* denote a nondegenerate local minimizer, i.e., Hess f(«*) is nonsingular.
Three blanket assumptions are made in Assumption 5.1. Note that it follows that
f o R is a twice continuously differentiable function.

Assumption 5.1. (i) The objective function f is twice continuously differentiable
in the level set €; (ii) the retraction R is twice continuously differentiable; (iii) the
isometric vector transport Tg with associated retraction R is continuous and satisfies
Tso, 6 = & for all § € T, M. Additionally, given any z € M, there exists a
neighborhood U of = such that 7g satisfies |75, — T, || < L||n] and HTST1 — '7'1{”1 <
Li|n|l, where R, (tn) € U for all t € [0,1] and L is a positive constant.

Since 1 = 0 implies ||7s, — Tr, || = 0 and ||’7'S;1 fTR_an = 0, we have that Tg € C!
implies || s, — Tr,|| < Lln|| and ||Tg." = Tz 'l < Liln|l. It follows that Assump-
tion 5.1(iii) is weaker than Tg € C''. This assumption has been used in [HGA15] and
therefore the analysis framework of [HGA15] can be applied here.

As in the Euclidean setting, we also have the result that a C? function on a
compact set implies its gradient is Lipschitz continuous on the set, i.e., f € C? implies
the function f satisfies Assumptions 4.2 and Definition 3.1 (see [AMSO08, section 7.4]
and [Hual3, section 5.2.2] for details).

Definition 5.1, given in [HGA15, Definition 3.1], generalizes the convexity of a
function on § C M from the Euclidean setting to the Riemannian setting.

DEFINITION 5.1. For a function f : M — R : = — f(z) on a Riemannian
manifold M with retraction R, define my ,(t) = f(Rz(tn)) forx € M andn € Ty M.
The function f is retraction-convex with respect to the retraction R in a set S if for all
z €S, alln e T, M, and||n|| = 1, mg ,(t) is convex for all t which satisfy R, (tn) € S
for all T € [0,t]. Moreover, f is strongly retraction-convez in S if mg ,(t) is strongly

2
convex, i.e., there exist two constants 0 < a7 < ag such that a7 < d ;’Z;’”’ (t) < ag for
allz €8, all ||n]| =1, and all t such that R,(mn) € S for all T € [0,1].

It has been shown in [HGA15, Lemma 3.1] that such a neighborhood, in which
the function f is strongly retraction-convex, always exists around a nondegenerate
minimizer. In addition, for any neighborhood W of x € M, it can be shrunk such
that it is an R-star shaped neighborhood of z, i.e., R,(tR;'(2)) € W for all z € W
and ¢ € [0, 1]. Therefore, there exists a neighborhood W of * satisfying the following:

A.1. W is an R-star shape of z*.

A.2. The object function f is strongly retraction-convex in W.

A.3. For any x,# € W, inequalities (23) hold. (This can be seen from Lemma 5.1
given later.)

Assumption 5.2 is used in the later proofs with 2 satisfying some or all of A.1-A.3.

Assumption 5.2. There exists K > 0 such that the iterates zj stay continuously
in a neighborhood Q of z* for all k¥ > K, meaning that R,, (tnr) € Q C Q for all
te [O, Oék].
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Note that the iterates zj, must stay in Q continuously. The ”continuously” as-
sumption cannot be removed. To see this, consider the unit sphere with the ex-
ponential retraction, where we can have xpy1 ~ xzp with agme ~ 27, (A simi-
lar comment was made in [HAG15] before Assumption 6 and in [HGA15] before
Assumption 3.3.)

Assumption 5.3 is used to guarantee that R;!(y) is well-defined and has been
used in existing papers, e.g., [HAG15, HGA15]. This assumption is also a blanket
assumption for the local convergence analysis.

Assumption 5.3. There exists 7 > 0 such that for each x € Q, R.(B(0,,7)) D Q
and R,(+) is a diffeomorphism on B(0,,7), where € is defined in Assumption 5.2.

Assumptions 5.2 and 5.3 are used in section 5.3 to show R-linear convergence.
Assumptions 5.4 and 5.5 are used in section 5.4 to prove superlinear convergence.

When a retraction is considered, a generalization of the Euclidean triangle inequal-
ity in Q must be assumed in the proofs below. As shown in [Hual3, Lemma 6.2.1],
choosing the exponential mapping for the retraction R implies Assumption 5.4.

Assumption 5.4. There is a constant ag such that for all z,y € Q,

m{g}l(] dist(R,(tn),z*) < ag max(dist(z, z*), dist(y, x™)),
teo,

where n = R 'y.

Assumption 5.5 generalizes the Euclidean property of twice Hélder continuously
differentiability of f at z* to a Riemannian manifold.

Assymption 5.5. There exist positive constants ajp and a;; such that for
all y € Q,

| Hess f(y) — T, Hess f(z*) T || < axolln]| ™,

where n = R,'y.

It can be shown that Assumptions 5.3, 5.4, and 5.5 hold if Q is sufficiently small.
It follows that if f, R € C%, T € C!, and the series {;} converges to z*, then all the
assumptions in this section hold for {z}}72 - with K sufficiently large.

5.2. Preliminaries. Before giving the local convergence analysis, we first state
an important property that holds in the Euclidean setting but may not hold in the
Riemannian setting. The property is used in Theorem 5.1 and section 5.1.

In the Euclidean setting, suppose f is strongly convex on S C R?. It is well-
known that y, = Gjsk, where y;, = grad f(z41) — grad f(ap), sp = Try1 — T and
G = fol Hess f(xr + Tsi)d7 is the average Hessian. It follows that
I?

(22) asl|skl® < yi sk < as|sk|* and Jlyx|® < aeyi sk,

where ay4, as, and ag are positive constants. Derivations can be found in, e.g., [BN89,
NWO06].

The RBFGS generalized by Ring and Wirth [RW12] satisfies (22) when the cost
function is uniformly convex; see [RW12, Proposition 10]. The Riemannian Broyden
family of methods generalized by Huang, Absil, and Gallivan [HGA15] also satisfies
(22) when the cost function is retraction-convex. However, the RBFGS in this paper
does not generally imply (22) for either uniformly convex or retraction-convex cost
functions. This is the main difference and probably the main difficulty compared
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to the existing work in [LFO1b, BN89, RW12, HGA15]. Nevertheless, as shown in
Lemma 5.1, we know (22) holds when iterates {z;} are in a neighborhood of the
nondegenerate minimizer x*.

LEMMA 5.1. Suppose Assumptions 5.1, 5.2, and 5.3 hold. Let x* be a nondegen-
erate minimaizer of f. Then there exists a neighborhood V of x* and positive constants
ay, as, and ag such that for all x,& € V satisfying R,(tR;1 (%)) € V for t € [0,1], it
holds that

(23) asl|s|* < gy, s) < asls|* and ||ly|* < acg(y, ),
where y = ﬁgradf(i) — Tsc grad f(z), & = R;Y(%), s = Tse&, B:TM = R
satisfies B(&) = 1+ O(||€]l), and O(t) means that limy,_,o O(t)/t is bounded.

Proof. Define y* and s to be ”7‘%'&” grad f(Z) — 7-S£€ grad f(z) and 7'S£§§, respec-

tively, where TSL denotes an isometric vector transport satisfying the locking condition,

ie., TSL,,W = HTH;,HnHTR”n’ for all n € T M. The existence of T& (at least locally) can

be seen from [HGA15, section 4]. It follows from [HGA15, Lemmas 3.3, 3.9] that
there exist positive constants by, b1, and by such that

bolls“|* < g(y®, 5%) < bal|s“|* and [ly“[* < bag(y*, s°).
Using 8(§) = 1+ O(J|€]]), [HGA15, Lemmas 3.5 and 3.6] and [GQA12, Lemma 14.5)

yield
.
19(5,9) — 9(s%95)] = lg <( T - ” @f”f@i) ¢ grad f@)) = O(s|P),

where € = max(dist(z, z*), dist(x, z*)). It follows that

bolls“I* < gy, 5) + O(lls]€) < bulls“[* and [ly“[|* < bag(y, s) + O([ls]%e).

Therefore, by choosing sufficiently small neighborhood V such that € is small enough,
we have that there exist constants ay, as, and ag such that (23) holds. d

We can now prove Theorem 5.1, which states that if the iterates {z}} stay in a
sufficiently small neighborhood of a nondegenerate minimizer x*, i.e., Hess f(x*) is
positive definite, then zj converges to x* and Algorithm 1 reduces to an ordinary
RBFGS. This implies that the local convergence analysis of an ordinary RBFGS is
equivalent to the local convergence analysis of Algorithm 1. This theorem is general-
ized from [LFO01b, Theorem 3.5].

THEOREM 5.1. Under the assumptions of Lemma 5.1, if s — 0 and x* is an ac-
cumulation point of {xy} generated by Algorithm 1, then the sequence {xy} converges
to x* and Algorithm 1 reduces to the ordinary RBFGS when xy is sufficiently close
to z*.

Proof. The assumptions about z* imply that =* is an isolated minimizer of f.
Since z* is an accumulation point and s — 0, we have x; — z*. It follows that

(24) lim | grad f(zx)| = 0.
k—o0

By (23) of Lemma 5.1, there exists constant bs > 0 and an integer K > 0

b
such that ﬁ > by for all k > K. Therefore, by (24), the cautious update for-

mula (7) reduces to the ordinary update formula (6) when J(|| grad f(zx)||) < b2
and k > K. O
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5.3. R-linear convergence analysis. Theorem 5.2 gives sufficient conditions
that guarantee R-linear convergence for all quasi-Newton methods with a line search
condition satisfying either (2) or (3). It is generalized from [BN89, Theorem 3.1].

THEOREM 5.2. Suppose Assumption 5.1 holds and Assumption 5.2 holds with
satisfying A.1 and A.2; {xy} is generated by (1) and (5) such that the step size
ay satisfies either A1 or A.2; and By is positive definite for all k > K. As-
sume that there erists p € (0,1) and ai2,a13 > 0 such that for any k > K, the
inequalities

(25) cosf; > aio,
B.s:

(26) 15531 < ais
155l

hold for at least [(k — K + 1)p| values of j € K, k], where cos; = % Then

{zr} — =*; moreover

(27) D Il < oo,
k=K

and there is a constant 0 < a14 < 1 such that
(28) flenpr) = (@) < a5 (fek) = f(29))
holds for all k > K, where (i = R ().

Proof. Let J denote the set of indices for which (25) and (26) hold. Consider an
iterate x; with j € J. Using (2), (3), (25), and (26) yields that

(29) hj(0) = R () > x|l grad f(z;)]I%,

where y = x1a3, if the line search condition (2) holds, or x = yz2ai2/ai3 if the
condition (3) holds. Define mg« 1 (t) to be f(Rz+(tCx/||Ckll)). Taylor’s theorem gives

_1&
©2dt?
where 7 € [0, ||¢x]]]. It follows from Assumption 5.2 and Definition 5.1 that f(zy) —

f(x*) > Faz||¢x||?. Using the result from [HGA15, (3.9) in Lemma 3.7] gives f(zy) —
f(a*) < bo|l grad f(z)||* for some constant by. Therefore, we have for all k > K,

flax) = f(@7) = ma- g ([[Gell) = ma £ (0)

M e () le=r | G|

(30) %MIICkHQ < f(ar) = f(=") < boll grad f(a)|*.

By (29) and (30), we obtain that for all j € 7, f(x;)— f(z;+1) > x(f(z;)— f(z*))/bo,
which yields

Flaj) — f@*) < aifP (f(zy) — f(z*)),

where a}ﬁp =1—xby!'. Since J N [K,k] has at least [(k — K + 1)p] elements, and
since {f} is decreasing, it follows that

fanen) = f(2*) < afy *F(fek) = f(2").
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By the lower bound of (30), we obtain

ZKMS%ZZ ﬂm—mms¢W“ﬂ;WW§y%<m 0
k=K k=K k=K

The R-linear convergence rate of Algorithm 1 is seen easily and is given in
Corollary 5.1.

COROLLARY 5.1. Suppose Assumption 5.1 holds; Assumption 5.2 holds with Q
satisfying A.1-A.2; and Assumption 5.3 holds. Let {xy} be the sequence generated by
Algorithm 1. Then the iterates xy, converge to * and (27) and (28) hold.

Proof. The results of Lemma 4.1 follow from Lemma 5.1 and the results of this
corollary follow from Lemma 4.1 and Theorem 5.2. O

5.4. Superlinear convergence analysis. In this section, {z}, {Bx}, {Bi},
{ar}, {sk}, {yr}, and {n} are infinite sequences generated by Algorithm 1. The
following notation is used:

e, = max(dist(zpy 1, 2%), dist(zx, %)), H, = Hess f(z*), ( = Ry ay,

Hy, = 7:9ng*7§_<,17 5L = H/iflSka Uk = Hk_ﬁ{zym By = H;Zl/QBkH;c_l/Q,

B B _ 5 Ckgk) _ g(gk Ckgk)
C = Hy B 2, cosy = S0 GE50) g 0(5k Cisi)
= H Bellss cosfe = 2mm = &= T 5

where H;/2 = ’ngk Hi/Q’TS_(i denotes a linear operator on T,, M, Hi/Q satisfies

HY?HY? = H,, and HY/? is self-adjoint.
Lemma 5.2 generalizes [BN89, (3.23), (3.25)]. It is used in Theorem 5.3.

LEMMA 5.2. If Assumptions 5.1, 5.2, 5.3, 5.4, and 5.5 hold, then there exists a
neighborhood U of x* such that for xy, xx11 € U, it holds that

min(l,an) HEkH

15k — 5kl < aise; pin(Lai))

and  g(r, %) > (1 — aieey, 15k [1%,

where a15 and ayg are positive constants.

Proof. Define y;’ = grad f(zx41) — P % grad f(zx), where P is parallel transport
and 7y is the retraction line from zj to zx11, ie., Yi(t) = Ra, (tR;k1 (zk41)). From
[HAG15, Lemma 8], we have ||[POS 'y — Hpownil| < bollarne|®* = bol|sk||*, where

Hy = fol P Hess f(y1(t))PL0dt and by is a positive constant. It follows that
lye = Hisasill < g — w2l
+ PO yE — Hyapml| + 1P Hy PO PL ey, — Hye Ts,,,, il
< |lgrad f(zx+1)/Br — grad f (wr41) || + | P20 grad f(w) — Ts,,.,, grad f(zo)||
tbollsell” + | Py He PR Py o, — Py HR P TS, e
+ P HP T T

apk — Hip1 Ts. o ol

PRITR ANk
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Simplifying the right-hand side yields

lye—Hiv1sx] < || grad f(zrs1)[|[1/8k — 1] (using [GQA12, Lemma 14.5])
+ [P grad f(ax) — Ts.,,.,, grad f(zx)]|
(using [GQA12, Lemma 14.5] and [HGA15, Lemma 3.6])
+ bol|sk||* + ||Hk|||\P,3;Oaknk —Ts.. . arnkl|| (using [HGA15, Lemma 3.6])
+ 1Py O H PO — Hypa |5
(using Assumptions 5.4, 5.5 and [Hual3, Lemma 6.2.5])

kM

< byexl|sk]| + back | skl + bacr skl + bac ™| s |
= bep " s

where by, ba, b3, by, and b5 are positive constants. Therefore, we have

(31) gk = Sill < boey ™ s
where bg is a positive constant. It follows that ||| — [|3k] < b6e?in(1’a“)|\§k|| and
I8kl — 7kll < boer ™ *)||5,]|, which yields
9 1-b min(1l,a11)\( = < il < (1+b min(1l,a11)\ | =
(32) (1 — beey, Skl < [1gell < (1 + beey, )ISkl-

By squaring (31) and using (32), we have

(1= boey™ )2 55112 = 29 (G 58) + 15617 < 1561 = 29, 58) + 1158

< (boey™ )2 15,2,

and therefore g(g, 5x) > (1 — bﬁekmin(l’a“))||§k||2. O

Theorem 5.3 generalized from [BN89, Theorem 3.2] is the main result of this
section. When Theorem 5.3 is combined with a Riemannian version of the Dennis—
Moré condition, superlinear convergence follows, as shown in Corollary 5.2.

THEOREM 5.3. Suppose Assumption 5.1 holds; Assumption 5.2 holds with Q sat-
isfy A.1-A.3; Assumption 5.5 holds with a;; = 1; and Assumptions 5.3 and 5.4 hold.
Then

(33) i 8120 £ (@) + Hess fo, (Oa)mel] _

0.
k=00 728

Proof. By pre- and postmultiplying the update formula (6) by H,_ _:{2, we have

B C.5:.(C*5 b oy
(34) BkH:Ck— k ( ];Sk) +yk%k.

It follows from the idea used in deriving (15) that

5 ; Al ak
35 tr(B =tr(C — =
(35) HBier) =tr(Ci) + 9k, 5K)  cos? 0y’

(36) ln(det(ékﬂ)) =1In(det(Cy)) + In ‘W —1Incos? f;, — In
k

cos2 0y,
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Using the property of a determinant, det(M; Ms) = det(M;) det(Ms), yields

(37)  det(Cy) = det(H; {2 By ?) = det(Hx /?) det(By) det(H: /?) = det(By).

It follows that

(38) —In(det(Cpsr)) = — In(det(C ))+§kj<—1 I 5) 1 cos? ;4 1n —L
n(det(Cg41 n(det(Coy 2 AR N cos nc0529

Observing the relationship between tr(Cy) and tr(ék), we have

tr(Cr,) — tr(ék) = tr(j—S;i Ts Bk'f:{ai"k 7—Sck+1ﬁ:1) — tr(ﬁ;i@kﬂ:"k 73Ck+11£[*_1)

RNk

+tr(Tg ! B;ﬂg 72%“1?;1)—tr(fsz;l’é‘ﬁgckﬁgl)

apng

~ T lplBTs) | Tse,, H P

Mk

<75 T
1 4 5 Fr—14—14
Tt oy — Too IRl T Bl

Sbo<||fs;1 Tupme = Too BT Toe, H'

XMk

+ |7 Tse, I 75 Bl)) (by [Hual3, Lemma 6.2.6))

apng 7TS’Ck+1

< bo(I s, Tsupn, Tse, = TNMBRINEZ M + 1175, 75, Tse,, =TI B

(39) < brok|Brllr < bask tr(By) (by [Hual3, Lemma 6.2.6]),

where by, b1, and by are positive constants, ¢ = HT@: %aink 72%+1 —I||. Tt follows
that
5 1]? T
t2(Crs1) < (14 bagir) tr(Brsr) = (1 + bacgr) (tr(ck) T (k50 cos2on

T 7> @ N\ 7T
< tr(Co) H (14 b2;) +Z ( - ‘Z > ) H (1 + bagj)
i=1

9(i,5:)  cos?0; i

Note that 1 < TTEN(1 + bosi) < TI2,(1 + basi) = exp(352, log(1 + bag;)) <
exp(D iy bas;) = by < co by (27) in Theorem 5.2, [HAG15, Lemma 3], and [Hual3,
Lemma 6.2.5]. We have

(40) t (é 5 a ||271||2 _ qi
r k+1)§b3tr(C0)+b3Z 955 = | .

—\9(¥i,5) cos?0;

It follows from (38) and (40) that

k _ )
tr(Cry1)/bs — In(det(Cri1)) < ¥(Co) + Z (g|(|ggjh||§) —1-1In gﬁy“”;) + In cos? ;
i=0 1y 91 Z

qi Gi
41 +1-— — 4] — .
(41) cos? 0; . cos? 9i>
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On one hand, it holds that ¢/bs — Int = t/bs — In(t/b3) — Inbz > 1 — Inbs. There-
fore, tr(Cr11)/bs — In(det(Cry1)) = Z?:l()\i/b;; —InX\) >d—- dInbz, where d is the
dimension of the manifold M and A; is the ith eigenvalue of Cx41. On the other
hand, using Lemma 5.2 yields that ggg"g) —1—In gﬁgi’lfﬁ) < b4ekmin(1’a“) holds for all
sufficiently large 4, where by is a positive constant. Therefore, it follows from (41),
(27) in Theorem 5.2, and [HAG15, Lemma 3] that

k k B )
d—dlﬂb:sﬁw(éo)+b4zéi+2(lncos20i+[1— KU R ]>+b5

20. 20.
= = cos? 0; cos? 6;
—1/)(Co)+b4b6+z<lncos29i+[1 57 +In ;_]>+b5,
= cos? 0; cos? 6;
where bs, bg are some constants. Both Incos?6; and 1 — Cojg 7 +1n Cogg - are non-
positive and we have lim,_, . In cos? 0; = 0 and lim; ,oo 1 — Cojg o+ In Cojg 5 = 0.

Note that the function £(t) =1 —t¢+1n(t),t > 0, has a unique maximizer at t = 1. It

follows that lim;_, o, cos; = lim;_, o q; = 1, which implies

C.. —id)3sl? 72
lim M = lim qk—2 —2q,+1=0.
k—oco HSkHQ k—o0 COS ak

Since

1 1 1 - —1 1 ~
12 121 (C = Dsill _ NP A BeHy 2y~ DHEsell  [[(Br — Hygen)si

- 1 =
5% IHE, sl skl

?

we have

By, —H
(42) tim 1B = Heei)sell _

k—00 IIsk]l

Let &k = agnp = 7;‘1 si. It follows that
Mk

~ —1 —1
1Bk — Hi)nell _ (B — Hy)sll _ IBrTs,,, — HiTs,,, Jsil

77 | a (A a llskll
T80, BeTs L = T HiTs ) sl
B skl
B (B, — Hy1 + Hiy1 — TSepns Hk’]jg;ink)sk“
B skl
1Br — Hos)sill N(Hiwr = Tso HiTs b sl
- (B (B

— 0 (by (42) and [Hual3, Lemma 6.2.5]).
What is more, from Assumption 5.5 and Bgn, = — grad f(xy), it holds that

o llgrad f(on) + Hess f(ml|

0.
k=00 775

Define fz = fo R,. Using the continuity of Hess f and Hess f and Hess f(z*) =
Hess fy+ (04+) yields the desired result (33). d
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COROLLARY 5.2. Suppose Assumption 5.1 holds; Assumption 5.2 holds with
satisfying A.1-A.3; Assumptions 5.3 and 5.4 hold; and Assumption 5.5 holds with
a11 = 1. Then there exists an index ko such that ap = 1 satisfies either (2) or (3)
for k > ko. Moreover, if a = 1 is used for all k > ko, then x) converges to x*
superlinearly.

Proof. By [RW12, Proposition 5], (33) in Theorem 5.3 implies that o, = 1 satisfies
the Wolfe condition for all k > kg. Therefore, ay, = 1 also satisfies either (2) or (3) for
k > ko. Furthermore, using [RW12, Proposition 8] yields the superlinear convergence
result. |

Note that Assumption 5.5 with a;; = 1 reduces to a Riemannian generaliza-
tion of twice Lipschitz continuous differentiability. We note here without proof that,
analogous to the Euclidean setting, Corollary 5.2 still holds as long as a1 > 0.

It is shown in [Hual3, Theorem 5.2.4] that aj = 1 ev