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A Riemannian BFGS method without differentiated retraction for

nonconvex optimization problems

Wen Huang †¶ P.-A. Absil ‡ K. A. Gallivan §

Abstract

In this paper, a Riemannian BFGS method for minimizing a smooth function on a Riemannian
manifold is defined, based on a Riemannian generalization of a cautious update and a weak line search
condition. It is proven that the Riemannian BFGS method converges (i) globally to stationary points
without assuming the objective function to be convex and (ii) superlinearly to a nondegenerate minimizer.
Using the weak line search condition removes the need for information from differentiated retraction. The
joint matrix diagonalization problem is chosen to demonstrate the performance of the algorithms with
various parameters, line search conditions and pairs of retraction and vector transport. A preliminary
version can be found in [HAG16a].

1 Introduction

In the Euclidean setting, the BFGS method is a well-known quasi-Newton method that has been viewed for
many years as the best quasi-Newton method for solving unconstrained optimization problems [DS83, NW06].
Its global and superlinear local convergence have been analyzed in many papers for convex problems (see
[DS83] and references therein). For many years, it was not clear whether the standard BFGS method could
be shown to converge globally for a nonconvex cost function. In fact, it is only recently that [Dai13] has
given an example where the cost function is smooth (polynomial) and nonconvex and the BFGS method
cannot converge, which means that modifications of the BFGS method are required if the global convergence
for general nonconvex problems is desired. Such modifications have been proposed and shown to converge
globally in [LF01a, LF01b, WLQ06, WYYL04]. In the Riemannian setting, quasi-Newton methods are also
favored in many applications and much attention has been paid to generalizing the Euclidean BFGS method.
So far, many Riemannian versions of the BFGS method have appeared, e.g., [Gab82, BM06, QGA10, SL10,
RW12, SKH13, HGA15], and only two of them [RW12, HGA15] have general discussions with complete global
and local convergence analyses rather than considering only a specific cost function or manifold. In spite of
this, both of them require cost functions to satisfy a Riemannian version of convexity in their analyses.

In this paper, we adopt the approach in [LF01b] for nonconvex problems, which updates the Hessian
approximation cautiously, with a weak line search condition [BN89, (3.2), (3.3)]. Global and local superlinear
convergence analyses of the proposed cautious Riemannian BFGS method are given. In addition, unlike the
Riemannian versions of the BFGS method in [RW12, HGA15], the global convergence analysis of the cautious
Riemannian BFGS does not require a convexity assumption on the cost function.

The Riemannian BFGS method (RBFGS) in this paper has another advantage over the approaches in
[RW12, HGA15]. The Riemannian versions of BFGS method in [RW12, HGA15] and this paper all rely on
the notion of retraction and vector transport developed in [ADM02, AMS08]. The version in [RW12] involves

†Department of Computational and Applied Mathematics, 3087 Duncan Hall, Rice University, Houston, TX, USA.
‡Department of Mathematical Engineering, ICTEAM Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve,
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the vector transport of differentiated retraction which may not be available to users or may be too expensive.
The version in [HGA15] uses less information from differentiated retraction–probably the least possible if
the Wolfe condition is used in line search. The Riemannian BFGS method in this paper also allows the use
of line search conditions other than the Wolfe condition and the requirement of differentiated retraction is
completely avoided. For example, the Armijo-Goldstein condition is such a condition and is satisfied by step
size found by the frequently-used back-tracking line search algorithm.

The joint diagonalization problem [TCA09] is used to demonstrate that the proposed Riemannian BFGS
framework makes it possible to use simpler line search procedures and simpler vector transports than in
earlier Riemannian BFGS methods (such as the one in [HGA15] which was found to be the best performing
Riemannian method for this problem), without significantly affecting the efficiency of the algorithm.

This paper is organized as follows. Section 2 presents notation used in this paper. Section 3 defines
the Riemannian version of BFGS method. Global and local convergence analyses are given in Sections 4
and 5 respectively. The corresponding limited-memory version of the RBFGS method is given in Section 6.
Numerical experiments are reported in Section 7 and finally conclusions are drawn in Section 8.

2 Notation

The Riemannian concepts follow from the standard literature, e.g., [Boo86, AMS08] and the notation of
this paper follows [AMS08]. Let f denote a cost function defined on a d-dimensional Riemannian manifold
M with the Riemannian metric g : (ηx, ξx) 󰀁→ gx(ηx, ξx) ∈ R. Tx M denotes the tangent space of M at
x and TM denotes the tangent bundle, i.e., the set of all tangent spaces. The Riemannian gradient and
Hessian of f at x are denoted by grad f(x) and Hess f(x) respectively and the action of Hess f(x) on a
tangent vector ηx ∈ Tx M is denoted by Hess f(x)[ηx]. Let Ax be a linear operator on Tx M. A∗

x denotes
the adjoint operator of Ax, i.e., A∗

x satisfies gx(ηx,Axξx) = gx(A∗
xηx, ξx) for all ηx, ξx ∈ Tx M. Ax is called

self-adjoint or symmetric with respect to g if A∗
x = Ax. Given ηx ∈ Tx M, η󰂐x represents the flat of ηx, i.e.,

η󰂐x : Tx M → R : ξx 󰀁→ gx(ηx, ξx).
A retraction is a C1 map from the tangent bundle to the manifold such that (i) R(0x) = x for all

x ∈ M (where 0x denotes the origin of TM) and (ii) d
dtR(tξx)|t=0 = ξx for all ξx ∈ Tx M. The domain of

R does not need the entire tangent bundle. However, it is usually the case in practice. In this paper, we
assume that R is well-defined whenever needed. Rx denotes the restriction of R to Tx M. A vector transport
T : TM⊕TM → TM, (ηx, ξx) 󰀁→ Tηxξx with associated retraction R is a mapping1 such that, for all (x, ηx)
in the domain of R and all ξx ∈ Tx M, it holds that (i) Tηxξx ∈ TR(ηx) M, (ii) Tηx is a linear map. An
isometric vector transport TS additionally satisfies gRx(ηx)(TSηx

ξx, TSηx
ζx) = gx(ξx, ζx), where ζx ∈ Tx M.

The vector transport by differentiated retraction TR is defined to be TRηx
ξx := d

dtRx(ηx + tξx)|t=0.
Coordinate expressions are denoted with a hat. Let (U ,ϕ) be a chart of a manifold M and x ∈ U . The

coordinate expression of x is defined by x̂ = ϕ(x). Ei, the i-th coordinate vector field of (U ,ϕ), is defined by

(Eif)(x) := ∂i(f ◦ ϕ−1)(ϕ(x)) = D(f ◦ ϕ−1)(ϕ(x))[ei].

These coordinate vector fields are smooth and every vector field ξ on U has a decomposition

ξ =
󰁛

i

(ξϕi)Ei.

Therefore, (Ei)x, i = 1, . . . , d is a basis of Tx M and the coordinate expression ξ̂x of ξx with this basis is
(ξxϕ1, . . . , ξxϕd). The coordinate expressions of a vector transport T and a linear operator A on a tangent
space are represented by matrices T̂ and Â respectively.

1This mapping is not required to be continuous. We make further assumptions when needed. Note that in the global
convergence analysis (Section 4), the only constraints on TS are given in Assumption 4.2.
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3 Riemannian BFGS Method with Cautious Update

The proposed Riemannian BFGS method with cautious update is stated in Algorithm 1.

Algorithm 1 Cautious RBFGS method

Input: Riemannian manifold M with Riemannian metric g; retraction R; isometric vector transport TS,
with R as the associated retraction; continuously differentiable real-valued function f on M, bounded
below; initial iterate x0 ∈ M; initial Hessian approximation B0 that is symmetric positive definite with
respect to the metric g; convergence tolerance ε > 0;

1: k ← 0;
2: while 󰀂 grad f(xk)󰀂 > ε do
3: Obtain ηk ∈ Txk

M by solving Bkηk = − grad f(xk);
4: Set

xk+1 = Rxk
(αkηk), (1)

where αk > 0 is computed by a line-search procedure that guarantees the existence of 0 < χ1 < 1 and
0 < χ2 < 1, independent of k such that

hk(αk)− hk(0) ≤ −χ1
h′
k(0)

2

󰀂ηk󰀂2
(2)

or
hk(αk)− hk(0) ≤ χ2h

′
k(0), (3)

where hk(t) = f(Rxk
(tηk)).

5: Define the linear operator Bk+1 : Txk+1
M → Txk+1

M by (7);
6: k ← k + 1;
7: end while

When M is a Euclidean space, the line search condition in Step 4 of Algorithm 1 is weak since it has
been shown in [BN89, Sections 3 and 4] and references therein that many line search conditions, e.g., the
Curry-Altman condition, the Goldstein condition, the Wolfe condition and the Armijo-Goldstein condition,
imply either (2) or (3) if the gradient of the function is Lipschitz continuous. In the Riemannian setting,
note that function f ◦ Rx : Tx M → R is defined on a linear space. It follows that the Euclidean results
about line search are applicable, i.e., the conditions above also imply either (2) or (3) if the gradient of the
function satisfies the Riemannian Lipschitz continuous condition in Definition 3.1:

Definition 3.1. [AMS08, Definition 7.4.1] The function f̂ = f ◦ R is radially L-C1 function for all x ∈ Ω
if there exists a positive constant L2 such that for all x ∈ Ω and all ηx ∈ Tx M, it holds that

| d
dτ

f̂(τηx)|τ=t −
d

dτ
f̂(τηx)|τ=0| ≤ L2t󰀂η󰀂2 (4)

where t and ηx satisfy that Rx(tηx) ∈ Ω.

In an RBFGS method, the search direction ηk is given by solving

ηk = −B−1
k grad f(xk), (5)

where B−1
k , a linear operator on Txk

M, approximates the action of the inverse Hessian along grad f(xk)
direction. It remains to define the update formula for Bk to be used in line 5 of Algoriithm 1. The classical
(Euclidean) BFGS update admits several Riemannian generalizations; see [HGA15, Section 6]. We will start
from the following one:

Bk+1 = B̃k − B̃ksk(B̃∗
ksk)

󰂐

(B̃∗
ksk)

󰂐sk
+

yky
󰂐
k

y󰂐ksk
, (6)
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where B̃k = TSαkηk

◦ Bk ◦ T −1
Sαkηk

, yk = β−1
k grad f(xk+1) − TSαkηk

grad f(xk), sk = TSαkηk
αkηk, and βk is

arbitrary number satisfying that |βk − 1| ≤ Lβ󰀂αkηk󰀂, |β−1
k − 1| ≤ Lβ󰀂αkηk󰀂 and Lβ > 0 is a constant.

The motivation for introducing βk is to make this update subsume the update in [HGA15], which uses

βk = 󰀂αkηk󰀂
󰀂TRαkηk

αkηk󰀂 . In Algorithm 1, βk can be chosen as 1 for all k. Note that it is well-known that there

exists an update formula for B−1
k , which is given later in (50).

If y󰂐ksk > 0, then the symmetric positive definiteness of B̃k implies the symmetric positive definiteness of
Bk+1 [HGA15]. The positive definiteness of the sequence {Bk} is important in the sense that it guarantees
that the search direction (5) is a descent direction. However, not all line search conditions imply y󰂐ksk > 0.
In [RW12] and [HGA15], the Wolfe condition with information about the differential of the retraction R,
TR, is used to guarantee y󰂐ksk > 0. In this paper, instead of enforcing y󰂐ksk > 0, we guarantee the symmetric
positive definiteness of Bk+1 by resorting to the following cautious update formula

Bk+1 =

󰀫
B̃k − B̃ksk(B̃∗

ksk)
󰂐

(B̃∗
ksk)

󰂐sk
+

yky
󰂐
k

y󰂐
ksk

, if
y󰂐
ksk

󰀂sk󰀂2 ≥ ϑ(󰀂 grad f(xk)󰀂)
B̃k, otherwise,

(7)

where ϑ is a monotone increasing function satisfying ϑ(0) = 0 and ϑ is strictly increasing at 0. Formula (7)
reduces to the cautious update formula of [LF01b] when M is a Euclidean space. Since y󰂐ksk > 0 is not
longer enforced, we have more flexibility in the line search procedure, which only needs to satisfy Line 4 of
Algorithm 1. It is pointed out that one also can reset Bk+1 to be any given matrix, e.g., id, rather than B̃k

when
y󰂐
ksk

󰀂sk󰀂2 ∕≥ ϑ(󰀂 grad f(xk)󰀂). Using either approach does not affect the theoretical results given later.

Note that it is important to ensure that ϑ(0) = 0 and ϑ is strictly increasing at 0. If ϑ is not strictly
increasing at 0, then the update (7) still guarantees the positive definiteness of the Hessian approximation
sequence {Bk}. However, the global convergence of Algorithm 1 for nonconvex problems may not hold (let
ϑ ≡ 0 and see the example in [Dai13]). If ϑ(0) > 0, then the global convergence of Algorithm 1 holds for
nonconvex problems but the local superlinear convergence does not hold generally (see the proofs in Theorem
5.1). If ϑ(0) < 0, then Algorithm 1 may not be well defined in the sense that the search direction (5) may
not be descent.

4 Global Convergence Analysis

The global convergence analysis of Algorithm 1 is generalized from the Euclidean analysis in [BN89, LF01b]
and the differences for the Riemannian setting are highlighted.

The convergence analysis is built on the next two assumptions, which are not blanket assumptions and
invoked only when needed. Assumptions 4.1 and 4.2 generalize the assumptions of Euclidean setting [LF01b,
Assumption A].

Assumption 4.1. The level set Ω = {x ∈ M | f(x) ≤ f(x0)} is compact.

Multiple Riemannian versions of Lipschitz continuous differentiable functions have been defined, e.g.,
[AMS08, Definitions 7.4.1 and 7.4.3]. Definition 4.1 gives another version which is slightly more general than
[AMS08, Definition 7.4.3] in the sense that Definition 4.1 reduces to [AMS08, Definition 7.4.3] when T is
chosen to be the parallel translation along the shortest geodesic. Assumption 4.2 assumes that the function
f satisfies the Lipschitz continuous differentiability in Definition 4.1. Note that if f further satisfies [AMS08,
Definitions 7.4.1] or equivalently Definition 3.1, then the line search conditions e.g., the Wolfe condition and
the Armijo-Goldstein condition imply condition either (2) or (3).

Definition 4.1. Let T be a vector transport associated with a retraction R. A function f̃ on M is said to
be Lipschitz continuously differentiable with respect to T on U ⊂ M if there exists L1 > 0 such that

󰀂Tη grad f̃(x)− grad f̃(Rx(η))󰀂 ≤ L1󰀂η󰀂

for all x ∈ U and η such that Rx(η) ∈ U .
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Assumption 4.2. The function f is Lipschitz continuously differentiable with respect to the isometric vector
transport TS on Ω.

Theorem 4.1 gives a sufficient condition for global convergence of Algorithm 1. This theorem is generalized
from [LF01b, Theorem 3.1] but the proof is different since a different line search condition is used.

Theorem 4.1. Let {xk} and ηk be sequences generated by Algorithm 1. If there are positive constants κ1,
κ2 and κ3 such that the inequalities

󰀂Bkηk󰀂 ≤ κ1󰀂ηk󰀂, κ2󰀂ηk󰀂2 ≤ η󰂐kBkηk ≤ κ3󰀂ηk󰀂2 (8)

hold for infinitely many k’s, then lim infk→∞ 󰀂 grad f(xk)󰀂 = 0.

Proof. Let K denote the index set such that (8) holds. Using (5) and (8) yields

κ2󰀂ηk󰀂 ≤ 󰀂 grad f(xk)󰀂 ≤ κ1󰀂ηk󰀂. (9)

It follows from either (2) or (3) that

∞ > f(x0)− f(xk+1) =

k󰁛

i=0

(f(xi)− f(xi+1)) =

k󰁛

i=0

(hi(0)− hi(αi))

≥
k󰁛

i=0

min(χ1
h′
i(0)

2

󰀂ηi󰀂2
,−χ2h

′
i(0)) =

k󰁛

i=0

min(χ1
g(grad f(xi), ηi)

2

󰀂ηi󰀂2
,−χ2g(grad f(xi), ηi))

=

k󰁛

i=0

min(−χ1
g(Bkηk, ηk)

󰀂ηi󰀂2
g(grad f(xi), ηi),−χ2g(grad f(xi), ηi))

≥min(χ1κ2,χ2)

k󰁛

i=0,i∈K
(−g(grad f(xi), ηi)).

Therefore, it holds that
lim inf
k→∞

−g(grad f(xk), ηk) = 0. (10)

Combining (10) with (9), (8) yields

󰀂 grad f(xk)󰀂2 ≤ κ2
1󰀂ηk󰀂2 ≤ κ2

1κ
−1
2 g(ηk,Bkηk) = κ2

1κ
−1
2 g(ηk,− grad f(xk)),

which implies lim infk→∞ 󰀂 grad f(xk)󰀂 = 0.

Theorem 4.1 shows that the global convergence is ensured if there exist three positive constants κ1,κ2,κ3

such that (8) holds for infinitely many k’s. Lemma 4.1 proves that if (11) holds, then such three constants
exist. Lemma 4.1 is generalized from [BN89, Theorem 2.1]. The main difference is that in the Euclidean
setting, Bk+1 is equal to Bk if the update is skipped. However, in the Riemannian setting, even the update
is skipped, Bk+1 is still different from Bk due to the existence of the vector transport TS.

Lemma 4.1. Let Ĩ = {j0, j1, j2, . . .} be an infinite index set, and {Bk} be the sequence generated by the
Riemannian BFGS update

Bk+1 =

󰀫
B̃k − B̃ksk(B̃∗

ksk)
󰂐

(B̃∗
ksk)

󰂐sk
+

yky
󰂐
k

y󰂐
ksk

, if k ∈ Ĩ;
B̃k, otherwise.

Suppose B0 is symmetric and positive definite and there are positive constants a0 ≤ a1 such that for all
k ≥ 0, yjk and sjk satisfy

y󰂐jksjk
󰀂sjk󰀂2

≥ a0,
󰀂yjk󰀂2

y󰂐jksjk
≤ a1. (11)
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Then for any p ∈ (0, 1) there exist constants κ̃1, κ̃2, κ̃3 > 0 such that, for any positive integer k,

cos θji ≥ κ̃1, (12)

κ̃2 ≤ qji ≤ κ̃3, (13)

κ̃2 ≤ 󰀂Bjiηji󰀂
󰀂ηji󰀂

≤ κ̃3

κ̃1
, (14)

hold for at least ⌈(k+1)p⌉ values of i ∈ {0, 1, . . . , k}, where cos θji =
g(ηji

,Bji
ηji

)

󰀂ηji
󰀂󰀂Bji

ηji
󰀂 , qji =

g(ηji
,Bji

ηji
)

󰀂ηji
󰀂2 and ⌈a⌉

denote the greatest integer that is smaller than a.

Proof. Since both tr(B̂k) and det(B̂k) are independent of the choice of basis, they are well-defined. Since

Bjk = TSαjk−1ηjk−1
◦ . . . ◦ TSαjk−1+1ηjk−1+1

◦ Bjk−1+1 ◦ T −1
Sαjk−1+1ηjk−1+1

◦ . . . ◦ T −1
Sαjk−1ηjk−1

,

we have tr(B̂jk) = tr(B̂jk−1+1) and det(B̂jk) = det(B̂jk−1+1). Using the update formula of (6) yields that

tr(B̂jk+1
) = tr(B̂jk)−

󰀂B̃jksjk󰀂2

g(sjk , B̃jksjk)
+

󰀂yjk󰀂2
g(yjk , sjk)

.

det(B̂jk+1
) =det(B̂jk)

g(yjk , sjk)

g(sjk , B̃jksjk)
,

which have been used in [HGA15, pp. 5 and 13]. The Euclidean versions of these equations can be found
in [NW06, (6.44) and (6.45)]. Define ψ(B̂jk) = tr(B̂jk) − ln(det(B̂jk)) and it follows from the approach in
[BN89, Section 2] or [NW06, Section 6.4] that

ψ(B̂jk+1
) =ψ(B̂jk) +

󰀂yjk󰀂2
g(yjk , sjk)

− 1− ln
g(yjk , sjk)

󰀂sjk󰀂2
+ ln cos2 θjk

+ 1− qjk
cos2 θjk

+ ln
qjk

cos2 θjk
. (15)

Using (11) and (15) yields

ψ(B̂jk+1
) ≤ ψ(B̂jk) + a1 − 1− ln a0 + ln cos2 θjk + 1− qjk

cos2 θjk
+ ln

qjk
cos2 θjk

≤ ψ(B̂0) + (a1 − 1− ln a0)(k + 1) +

k󰁛

i=0

(ln cos2 θji + 1− qji
cos2 θji

+ ln
qji

cos2 θji
).

Define τji = − ln cos2 θji − (1− qji
cos2 θji

+ ln
qji

cos2 θji
). Note that the function ℓ(t) = 1− t+ ln(t) is nonpositive

for all t and ln cos2 θji ≤ 0 and therefore τji ≥ 0. Also note that ψ(B̂jk+1
) =

󰁓d
i=1(λi − lnλi) > 0, where d

is the dimension of M and λi is the eigenvalue of B̂k+1. It follows that

1

k + 1

k󰁛

i=0

τji <
ψ(B̂0)

k + 1
+ (a1 − 1− ln a0). (16)

Define Jk to be the set of the ⌈(k+ 1)p⌉ indices corresponding to ⌈(k+ 1)p⌉ smallest values of τji for i ≤ k.
Let τmk

denote the largest of the τji for i ∈ Jk. It follows that

1

k + 1

k󰁛

i=0

τji ≥
1

k + 1
(τmk

+

k󰁛

i=0,i/∈Jk

τji) ≥ τmk
(1− p). (17)
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Combining (16) with (17) yields

τji <
1

1− p
(ψ(B̂0) + a1 − 1− ln a0) := ω

for all i ∈ Jk. By the definition of τji , we have that

− ln cos2 θji < ω (18)

1− qji
cos2 θji

+ ln
qji

cos2 θji
> −ω (19)

for all i ∈ Jk. Inequality (18) implies cos θji > exp(−ω/2) := κ̃1 which completes the proof of (12).
Using (19) and noting ℓ(t) → −∞ both as t → 0 and as t → ∞, it follows that there exist positive

constants κ̃3 and b for all i ∈ Jk 0 < b ≤ qji
cos2 θji

≤ κ̃3. Additionally using (12) yields κ̃2 := κ̃2
1b ≤ qji ≤ κ̃3

for all i ∈ Jk which completes the proof of (13).

Finally, inequalities κ̃2 ≤ 󰀂Bji
ηji

󰀂
󰀂ηji

󰀂 ≤ κ̃3

κ̃1
follow from 󰀂Bjiηji󰀂/󰀂ηji󰀂 = qji/ cos θji .

The desired global convergence result for a nonconvex function f is stated in Theorem 4.2.

Theorem 4.2. Let {xk} be sequences generated by Algorithm 1. If Assumptions 4.1, and 4.2 hold, then

lim inf
k→∞

󰀂 grad f(xk)󰀂 = 0. (20)

Proof. Define the index set from Algorithm 1

I = {k| y
󰂐
ksk

󰀂sk󰀂2
≥ ϑ(󰀂 grad f(xk)󰀂)}.

If I is finite, then there exists a k0 > 0 such that Bk has the same eigenvalues as Bk0 for all k ≥ k0. Since
Bk0

is symmetric positive definite, it is obvious that (8) holds. Therefore, Theorem 4.1 yields the desired
result.

Contradiction is used to prove the result when I is infinite. Suppose (20) does not hold. Therefore, there
exists a constant δ > 0 such that 󰀂 grad f(xk)󰀂 ≥ δ for all k. It follows that from the definition of I that

y󰂐ksk
󰀂sk󰀂2

≥ ϑ(δ) (21)

holds for all k ∈ I. Note Assumption 4.2, the definition of βk, and the compactness of Ω, we have

󰀂yk󰀂 =󰀂β−1
k grad f(xk+1)− TSαkηk

grad f(xk)󰀂
≤󰀂β−1

k grad f(xk+1)− grad f(xk+1)󰀂+ 󰀂 grad f(xk+1)− TSαkηk
grad f(xk)󰀂

≤Lβ󰀂sk󰀂󰀂 grad f(xk+1)󰀂+ L1󰀂sk󰀂 ≤ L3󰀂sk󰀂

where L3 is a constant. It follows that 󰀂yk󰀂2

y󰂐
ksk

≤ L2
3

ϑ(δ) Therefore, (20) follows from Lemma 4.1 and Theorem

4.1, a contradiction.

5 Local Convergence Analysis

Section 5.1 lists the assumptions and definitions used in the local convergence analyses. Section 5.2 builds
the connections between the global and local convergence analyses and shows that Algorithm 1 eventually
reduces to the ordinary RBFGS method, i.e., Algorithm 1 without skipping updates. Since Algorithm 1 is
equivalent to an ordinary RBFGS locally, the R-linear and superlinear convergence analyses are presented
for the ordinary RBFGS in Sections 5.3 and 5.4 respectively.
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5.1 Basic Assumptions and Definitions

Throughout the local convergence analyses, let x∗ denote a nondegenerate local minimizer, i.e., Hess f(x∗)
is nonsingular. Three blanket assumptions are made in Assumption 5.1. Note that it follows that f ◦R is a
twice continuously differentiable function.

Assumption 5.1. (i) The objective function f is twice continuously differentiable in the level set Ω; (ii)
the retraction R is twice continuously differentiable; (iii) the isometric vector transport TS with associated
retraction R is continuous, satisfies TS0x

ξx = ξx for all ξx ∈ Tx M. Additionally, given any x ∈ M, there

exists a neighborhood U of x such that TS satisfies 󰀂TSη − TRη󰀂 ≤ L̃󰀂η󰀂 and 󰀂T −1
Sη

− T −1
Rη

󰀂 ≤ L̃󰀂η󰀂, where
Rx(tη) ∈ U for all t ∈ [0, 1] and L̃ is a positive constant.

Since η = 0 implies 󰀂TSη −TRη󰀂 = 0 and 󰀂T −1
Sη

−T −1
Rη

󰀂 = 0, we have that TS ∈ C1 implies 󰀂TSη −TRη󰀂 ≤
L̃󰀂η󰀂 and 󰀂T −1

Sη
−T −1

Rη
󰀂 ≤ L̃󰀂η󰀂. It follows that Assumption 5.1 (iii) is weaker than TS ∈ C1. This assumption

has been used in [HGA15] and therefore the analysis framework of [HGA15] can be applied here.
As in the Euclidean setting, we also have the result that a C2 function on a compact set implies its

gradient is Lipschitz continuous on the set, i.e., f ∈ C2 implies the function f satisfies Assumptions 4.2 and
Definition 3.1 (see [AMS08, Section 7.4] and [Hua13, Section 5.2.2] for details).

Definition 5.1, given in [HGA15, Definition 3.1], generalizes the convexity of a function on S ⊆ M from
the Euclidean setting to the Riemannian setting.

Definition 5.1. For a function f : M → R : x 󰀁→ f(x) on a Riemannian manifold M with retraction R,
define mx,η(t) = f(Rx(tη)) for x ∈ M and η ∈ Tx M. The function f is retraction-convex with respect to
the retraction R in a set S if for all x ∈ S, all η ∈ Tx M and 󰀂η󰀂 = 1, mx,η(t) is convex for all t which
satisfy Rx(τη) ∈ S for all τ ∈ [0, t]. Moreover, f is strongly retraction-convex in S if mx,η(t) is strongly

convex, i.e., there exist two constants 0 < a7 < a8 such that a7 ≤ d2mx,η

dt2 (t) ≤ a8, for all x ∈ S, all 󰀂η󰀂 = 1
and all t such that Rx(τη) ∈ S for all τ ∈ [0, t].

It has been shown in [HGA15, Lemma 3.1] that such a neighborhood, in which the function f is strongly
retraction-convex, always exists around a nondegenerate minimizer. In addition, for any neighborhood W
of x ∈ M, it can be shrunk such that it is an R-star shaped neighborhood of x, i.e., Rx(tR

−1
x (z)) ∈ W for

all z ∈ W and t ∈ [0, 1]. Therefore, there exists a neighborhood W̃ of x∗ satisfying

A.1 W̃ is a R-star shape of x∗;

A.2 The object function f is strongly retraction-convex in W̃;

A.3 For any x, x̃ ∈ W̃, inequalities (23) hold. (This can be seen from Lemma 5.1 given later)

Assumption 5.2 is used in the later proofs with Ω̃ satisfying some or all of A.1–A.3 .

Assumption 5.2. There exists K > 0 such that the iterates xk stay continuously in a neighborhood Ω̃ of
x∗ for all k ≥ K, meaning that Rxk

(tηk) ∈ Ω̃ ⊆ Ω for all t ∈ [0,αk].

Note that the iterates xk must stay in Ω̃ continuously. The ”continuously” assumption cannot be
removed. To see this, consider the unit sphere with the exponential retraction, where we can have xk+1 ≈ xk

with αkηk ≈ 2π. (A similar comment was made in [HAG15] before Assumption 6 and in [HGA15] before
Assumption 3.3.)

Assumption 5.3 is used to guarantee that R−1
x (y) is well-defined and has been used in existing papers,

e.g., [HAG15, HGA15]. This assumption is also a blanket assumption for the local convergence analysis.

Assumption 5.3. There exists r > 0 such that for each x ∈ Ω̃, Rx(B(0x, r)) ⊃ Ω̃ and Rx(·) is a diffeomor-
phism on B(0x, r), where Ω̃ is defined in Assumption 5.2.



Riemannian BFGS method for nonconvex problem 9
Assumptions 5.2 and 5.3 are used in Section 5.3 to show R-linear convergence. Assumptions 5.4 and 5.5

are used in Section 5.4 to prove superlinear convergence.
When a retraction is considered, a generalization of the Euclidean triangle inequality in Ω̃ must be

assumed in the proofs below. As shown in [Hua13, Lemma 6.2.1], choosing the exponential mapping for the
retraction R implies Assumption 5.4.

Assumption 5.4. There is a constant a9 such that for all x, y ∈ Ω̃,

max
t∈[0,1]

dist(Rx(tη), x
∗) ≤ a9 max(dist(x, x∗), dist(y, x∗)),

where η = R−1
x y.

Assumption 5.5 generalizes the Euclidean property of twice Hölder continuously differentiability of f at
x∗ to a Riemannian manifold.

Assumption 5.5. There exist positive constants a10 and a11 such that for all y ∈ Ω̃,

󰀂Hess f(y)− TSη Hess f(x∗)T −1
Sη

󰀂 ≤ a10󰀂η󰀂a11 ,

where η = R−1
x∗ y.

It can be shown that Assumptions 5.3, 5.4, and 5.5 hold if Ω̃ is sufficiently small. It follows that if
f,R ∈ C2, T ∈ C1, and the series {xk} converges to x∗, then all the assumptions in this section hold for
{xk}∞k=K with K sufficiently large.

5.2 Preliminaries

Before giving the local convergence analysis, we first state an important property that holds in the Euclidean
setting but may not hold in the Riemannian setting. The property is used in Theorem 5.1 and Section 5.1.

In the Euclidean setting, suppose f is strongly convex on S ⊂ Rd. It is well-known that yk = Ḡksk, where

yk = grad f(xk+1)− grad f(xk), sk = xk+1 − xk and Ḡk =
󰁕 1

0
Hess f(xk + τsk)dτ is the average Hessian. It

follows that
a4󰀂sk󰀂2 ≤ yTk sk ≤ a5󰀂sk󰀂2 and 󰀂yk󰀂2 ≤ a6y

T
k sk, (22)

where a4, a5 and a6 are positive constants. Derivations can be found in, e.g., [BN89, NW06].
The RBFGS generalized by Ring and Wirth [RW12] satisfies (22) when the cost function is uniformly

convex, see, [RW12, Proposition 10]. The Riemannian Broyden family of methods generalized by Huang et al.
[HGA15] also satisfies (22) when the cost function is retraction-convex. However, the RBFGS in this paper
does not generally imply (22) for either uniformly convex or retraction-convex cost functions. This is the main
difference and probably the main difficulty compared to the existing work in [LF01b, BN89, RW12, HGA15].
Nevertheless, as shown in Lemma 5.1, we know (22) holds when iterates {xk} are in a neighborhood of the
nondegenerate minimizer x∗.

Lemma 5.1. Suppose Assumptions 5.1, 5.2 and 5.3 hold. Let x∗ be a nondegenerate minimizer of f . Then
there exists a neighborhood V of x∗ and positive constants ã4, ã5 and ã6 such that for all x, x̃ ∈ V satisfying
Rx(tR

−1
x (x̃)) ∈ V for t ∈ [0, 1], it holds that

ã4󰀂s󰀂2 ≤ g(y, s) ≤ ã5󰀂s󰀂2 and 󰀂y󰀂2 ≤ ã6g(y, s), (23)

where y = 1
β(ξ) grad f(x̃) − TSξ

grad f(x), ξ = R−1
x (x̃), s = TSξ

ξ, β : TM → R satisfies β(ξ) = 1 + O(󰀂ξ󰀂),
and O(t) means that limt→0 O(t)/t is bounded.

Proof. Define yL and sL to be
󰀂TRξ

ξ󰀂
󰀂ξ󰀂 grad f(x̃)− T L

Sξ
grad f(x) and T L

Sξ
ξ respectively, where T L

S denotes an

isometric vector transport satisfying the locking condition, i.e., T L
Sη
η = 󰀂η󰀂

󰀂TRηη󰀂
TRηη, for all η ∈ TM. The
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existence of T L

S (at least locally) can be seen from [HGA15, Section 4]. It follows from [HGA15, Lemmas
3.3 and 3.9] that there exist positive constants b0, b1 and b2 such that

b0󰀂sL󰀂2 ≤ g(yL, sL) ≤ b1󰀂sL󰀂2 and 󰀂yL󰀂2 ≤ b2g(y
L, sL).

Using β(ξ) = 1 +O(󰀂ξ󰀂), [HGA15, Lemmas 3.5, 3.6] and [GQA12, Lemma 14.5] yields

|g(s, y)− g(sL, yL)| = |g
󰀕󰀕

1

β(ξ)
TSξ

−
󰀂TRξ

ξ󰀂
󰀂ξ󰀂 T L

Sξ

󰀖
ξ, grad f(x̃)

󰀖
| = O(󰀂s󰀂2󰂃),

where 󰂃 = max(dist(x̃, x∗), dist(x, x∗)). It follows that

b0󰀂sL󰀂2 ≤ g(y, s) +O(󰀂s󰀂2󰂃) ≤ b1󰀂sL󰀂2 and 󰀂yL󰀂2 ≤ b2g(y, s) +O(󰀂s󰀂2󰂃).

Therefore, by choosing sufficiently small neighborhood V such that 󰂃 is small enough, we have that there
exist constants ã4, ã5 and ã6 such that (23) holds.

We can now prove Theorem 5.1, which states that if the iterates {xk} stay in a sufficient small neigh-
borhood of a nondegenerate minimizer x∗, i.e., Hess f(x∗) is positive definite, then xk converges to x∗ and
Algorithm 1 reduces to an ordinary RBFGS. This implies that the local convergence analysis of an ordinary
RBFGS is equivalent to the local convergence analysis of Algorithm 1. This theorem is generalized from
[LF01b, Theorem 3.5].

Theorem 5.1. Under the assumptions of Lemma 5.1, if sk → 0 and x∗ is an accumulation point of {xk}
generated by Algorithm 1, then the sequence {xk} converges to x∗ and Algorithm 1 reduces to the ordinary
RBFGS when xk is sufficiently close to x∗.

Proof. The assumptions about x∗ imply that x∗ is an isolated minimizer of f . Since x∗ is an accumulation
point and sk → 0, we have xk → x∗. It follows that

lim
k→∞

󰀂 grad f(xk)󰀂 = 0. (24)

By (23) of Lemma 5.1, there exists constant b2 > 0 and an integer K > 0 such that
y󰂐
ksk

󰀂sk󰀂2 > b2 for all

k > K. Therefore, by (24), the cautious update formula (7) reduces to the ordinary update formula (6)
when ϑ(󰀂 grad f(xk)󰀂) < b2 and k > K.

5.3 R-Linear Convergence Analysis

Theorem 5.2 gives sufficient conditions that guarantee R-linear convergence for all quasi-Newton methods
with a line search condition satisfying either (2) or (3). It is generalized from [BN89, Theorem 3.1].

Theorem 5.2. Suppose Assumption 5.1 holds and Assumption 5.2 holds with Ω̃ satisfy A.1 and A.2; {xk}
is generated by (1) and (5) such that the step size αk satisfies either (2) or (3); and Bk is positive definite
for all k > K. Assume that there exists p ∈ (0, 1) and a12, a13 > 0, such that for any k ≥ K, the inequalities

cos θj ≥ a12, (25)

󰀂Bjsj󰀂
󰀂sj󰀂

≤ a13 (26)

hold for at least ⌈(k −K + 1)p⌉ values of j ∈ [K, k], where cos θj =
g(ηj ,Bjηj)
󰀂ηj󰀂󰀂Bjηj󰀂 . Then {xk} → x∗; moreover

∞󰁛

k=K

󰀂ζk󰀂 < ∞, (27)

and there is a constant 0 ≤ a14 < 1 such that

f(xk+1)− f(x∗) ≤ ak−K+1
14 (f(xK)− f(x∗)) (28)

holds for all k ≥ K, where ζk = R−1
x∗ (xk).
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Proof. Let J denote the set of indices for which (25) and (26) hold. Consider an iterate xj with j ∈ J .
Using (2), (3), (25), and (26) yields that

hj(0)− hj(αj) ≥ χ󰀂 grad f(xj)󰀂2, (29)

where χ = χ1a
2
12 if the line search condition (2) holds, or χ = χ2a12/a13 if the condition (3) holds. Define

mx∗,k(t) to be f(Rx∗(tζk/󰀂ζk󰀂)). Taylor’s Theorem gives

f(xk)− f(x∗) = mx∗,k(󰀂ζk󰀂)−mx∗,k(0) =
1

2

d2

dt2
mx∗,k(t)|t=τ󰀂ζk󰀂2,

where τ ∈ [0, 󰀂ζk󰀂]. It follows from Assumption 5.2 and Definition 5.1 that f(xk)−f(x∗) ≥ 1
2a7󰀂ζk󰀂

2. Using
the result from [HGA15, (3.9) in Lemma 3.7] gives f(xk) − f(x∗) ≤ b0󰀂 grad f(xk)󰀂2 for some constant b0.
Therefore, we have for all k ≥ K,

1

2
a7󰀂ζk󰀂2 ≤ f(xk)− f(x∗) ≤ b0󰀂 grad f(xk)󰀂2. (30)

By (29) and (30), we obtain that for all j ∈ J , f(xj)− f(xj+1) ≥ χ(f(xj)− f(x∗))/b0, which yields

f(xj+1)− f(x∗) ≤ a
1/p
14 (f(xj)− f(x∗)),

where a
1/p
14 = 1− χb−1

0 . Since J ∩ [K, k] has at least ⌈(k −K + 1)p⌉ elements, and since {fk} is decreasing,
it follows that

f(xk+1)− f(x∗) ≤ ak−K+1
14 (f(xK)− f(x∗)).

By the lower bound of (30), we obtain

∞󰁛

k=K

󰀂ζk󰀂 ≤
󰁵

2

a7

∞󰁛

k=K

󰁳
f(xk)− f(x∗) ≤

󰁶
2(f(xK)− f(x∗))

a7

∞󰁛

k=K

a
k/2
14 < ∞.

The R-linear convergence rate of Algorithm 1 is seen easily and is given in Corollary 5.1.

Corollary 5.1. Suppose Assumption 5.1 holds; Assumption 5.2 holds with Ω̃ satisfy A.1–A.2; and Assump-
tion 5.3 holds. Let {xk} be the sequence generated by Algorithm 1. Then the iterates xk converge to x∗ and
(27) and (28) hold.

Proof. The results of Lemma 4.1 follows from Lemma 5.1 and the results of this corollary follows from
Lemma 4.1 and Theorem 5.2.

5.4 Superlinear Convergence Analysis

In this section, {xk}, {Bk}, {B̃k}, {αk}, {sk}, {yk}, and {ηk}, are infinite sequences generated by Algorithm
1. The following notation is used:

󰂃k = max(dist(xk+1, x
∗), dist(xk, x

∗)), H∗ = Hess f(x∗), ζk = R−1
x∗ xk,

Hk = TSζk
H∗T −1

Sζk
, s̄k = H

1/2
k+1sk, ȳk = H

−1/2
k+1 yk, B̄k = H

−1/2
k BkH

−1/2
k ,

Ck = H
−1/2
k+1 B̃kH

−1/2
k+1 , cos θ̄k =

g(s̄k, Cks̄k)
󰀂s̄k󰀂󰀂Cks̄k󰀂

, q̄k =
g(s̄k, Cks̄k)

󰀂s̄k󰀂2

where H
1/2
k = TSζk

H
1/2
∗ T −1

Sζk
denotes a linear operator on Txk

M, H
1/2
∗ satisfies H

1/2
∗ H

1/2
∗ = H∗, and H

1/2
∗

is self-adjoint.
Lemma 5.2 generalizes [BN89, (3.23), (3.25)]. It is used in Theorem 5.3.
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Lemma 5.2. If Assumptions 5.1, 5.2, 5.3, 5.4 and 5.5 hold, then there exists a neighborhood U of x∗ such
that for xk, xk+1 ∈ U , it holds that

󰀂ȳk − s̄k󰀂 ≤ a15󰂃
min(1,a11)
k 󰀂s̄k󰀂 and g(ȳk, s̄k) ≥ (1− a16󰂃

min(1,a11)
k )󰀂s̄k󰀂2,

where a15 and a16 are positive constants.

Proof. Define yPk = grad f(xk+1)−P 1←0
γk

grad f(xk), where P is parallel transport and γk is the retraction line

from xk to xk+1, i.e., γk(t) = Rxk
(tR−1

xk
(xk+1)). From [HAG15, Lemma 8], we have 󰀂P 0←1

γk
yPk − H̄kαkηk󰀂 ≤

b0󰀂αkηk󰀂2 = b0󰀂sk󰀂2, where H̄k =
󰁕 1

0
P 0←t
γk

Hess f(γk(t))P
t←0
γk

dt and b0 is a positive constant. It follows that

󰀂yk −Hk+1sk󰀂 ≤ 󰀂yk − yPk 󰀂
+ 󰀂P 0←1

γk
yPk − H̄kαkηk󰀂+ 󰀂P 1←0

γk
H̄kP

0←1
γk

P 1←0
γk

αkηk −Hk+1TSαkηk
αkηk󰀂

≤ 󰀂 grad f(xk+1)/βk − grad f(xk+1)󰀂+ 󰀂P 1←0
γk

grad f(xk)− TSαkηk
grad f(xk)󰀂

+ b0󰀂sk󰀂2 + 󰀂P 1←0
γk

H̄kP
0←1
γk

P 1←0
γk

αkηk − P 1←0
γk

H̄kP
0←1
γk

TSαkηk
αkηk󰀂

+ 󰀂P 1←0
γk

H̄kP
0←1
γk

TSαkηk
αkηk −Hk+1TSαkηk

αkηk󰀂

Simplifying the right hand side yields

󰀂yk−Hk+1sk󰀂 ≤ 󰀂 grad f(xk+1)󰀂|1/βk − 1| (using [GQA12, Lemma 14.5])

+ 󰀂P 1←0
γk

grad f(xk)− TSαkηk
grad f(xk)󰀂

(using [GQA12, Lemma 14.5] and [HGA15, Lemma 3.6])

+ b0󰀂sk󰀂2 + 󰀂H̄k󰀂󰀂P 1←0
γk

αkηk − TSαkηk
αkηk󰀂 (using [HGA15, Lemma 3.6])

+ 󰀂P 1←0
γk

H̄kP
0←1
γk

−Hk+1󰀂󰀂sk󰀂
(using Assumptions 5.4, 5.5 and [Hua13, Lemma 6.2.5])

≤ b1󰂃k󰀂sk󰀂+ b2󰂃k󰀂sk󰀂+ b3󰂃k󰀂sk󰀂+ b4󰂃
min(1,a11)
k 󰀂sk󰀂

= b5󰂃
min(1,a11)
k 󰀂sk󰀂,

where b1, b2, b3, b4 and b5 are positive constants. Therefore, we have

󰀂ȳk − s̄k󰀂 ≤ b6󰂃
min(1,a11)
k 󰀂s̄k󰀂, (31)

where b6 is a positive constant. It follows that 󰀂ȳk󰀂 − 󰀂s̄k󰀂 ≤ b6󰂃
min(1,a11)
k 󰀂s̄k󰀂 and 󰀂s̄k󰀂 − 󰀂ȳk󰀂 ≤

b6󰂃
min(1,a11)
k 󰀂s̄k󰀂, which yields

(1− b6󰂃
min(1,a11)
k )󰀂s̄k󰀂 ≤ 󰀂ȳk󰀂 ≤ (1 + b6󰂃

min(1,a11)
k )󰀂s̄k󰀂. (32)

By squaring (31) and using (32), we have

(1− b6󰂃
min(1,a11)
k )2󰀂s̄k󰀂2 − 2g(ȳk, s̄k) + 󰀂s̄k󰀂2 ≤ 󰀂ȳk󰀂2 − 2g(ȳk, s̄k) + 󰀂s̄k󰀂2

≤ (b6󰂃
min(1,a11)
k )2󰀂s̄k󰀂2,

and therefore g(ȳk, s̄k) ≥ (1− b6󰂃
min(1,a11)
k )󰀂s̄k󰀂2.

Theorem 5.3 generalized from [BN89, Theorem 3.2] is the main result of this section. When Theorem 5.3
is combined with a Riemannian version of the Dennis-Moré condition, superlinear convergence follows, as
shown in Corollary 5.2.
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Theorem 5.3. Suppose Assumption 5.1 holds; Assumption 5.2 holds with Ω̃ satisfy A.1–A.3; Assumption 5.5
holds with a11 = 1; and Assumptions 5.3 and 5.4. Then

lim
k→∞

󰀂 grad f(xk) + Hess f̂xk
(0xk

)ηk󰀂
󰀂ηk󰀂

= 0. (33)

Proof. By pre- and post- multiplying the update formula (6) by H
−1/2
k+1 , we have

B̄k+1 = Ck − Cks̄k(C∗
k s̄k)

󰂐

(C∗
k s̄k)

󰂐s̄k
+

ȳkȳ
󰂐
k

ȳ󰂐ks̄k
, (34)

It follows from the idea used in deriving (15) that

tr( ˆ̄Bk+1) = tr(Ĉk) +
󰀂ȳk󰀂2

g(ȳk, s̄k)
− q̄k

cos2 θ̄k
(35)

ln(det( ˆ̄Bk+1)) = ln(det(Ĉk)) + ln
g(ȳk, s̄k)

󰀂s̄k󰀂2
− ln cos2 θ̄k − ln

q̄k
cos2 θ̄k

. (36)

Using the property of a determinant, det(M1M2) = det(M1) det(M2), yields

det(Ĉk) =det(Ĥ
−1/2
k+1

ˆ̃BkĤ
−1/2
k+1 ) = det(Ĥ

−1/2
∗ ) det(B̂k) det(Ĥ

−1/2
∗ ) = det( ˆ̄Bk). (37)

It follows that

− ln(det(Ĉk+1)) = − ln(det(Ĉ0)) +
k󰁛

i=0

(− ln
g(ȳi, s̄i)

󰀂s̄i󰀂2
+ ln cos2 θ̄i + ln

q̄i
cos2 θ̄i

). (38)

Observing the relationship between tr(Ĉk) and tr( ˆ̄Bk), we have

tr(Ĉk)− tr( ˆ̄Bk) = tr(T̂ −1
Sζk+1

T̂Sαkηk
B̂kT̂ −1

Sαkηk
T̂Sζk+1

Ĥ−1
∗ )− tr(T̂ −1

Sζk
B̂kT̂ −1

Sαkηk
T̂Sζk+1

Ĥ−1
∗ )

+ tr(T̂ −1
Sζk

B̂kT̂ −1
Sαkηk

T̂Sζk+1
Ĥ−1

∗ )− tr(T̂ −1
Sζk

B̂kT̂Sζk
Ĥ−1

∗ )

≤ 󰀂T̂ −1
Sζk+1

T̂Sαkηk
− T̂ −1

Sζk
󰀂F 󰀂B̂kT̂ −1

Sαkηk
T̂Sζk+1

Ĥ−1
∗ 󰀂F

+ 󰀂T̂ −1
Sαkηk

T̂Sζk+1
− T̂Sζk

󰀂F 󰀂Ĥ−1
∗ T̂ −1

Sζk
B̂k󰀂F

≤ b0(󰀂T̂ −1
Sζk+1

T̂Sαkηk
− T̂ −1

Sζk
󰀂󰀂B̂kT̂ −1

Sαkηk
T̂Sζk+1

Ĥ−1
∗ 󰀂

+ 󰀂T̂ −1
Sαkηk

T̂Sζk+1
− T̂Sζk

󰀂󰀂Ĥ−1
∗ T̂ −1

Sζk
B̂k󰀂) (by [Hua13, Lemma 6.2.6])

≤ b0(󰀂T̂ −1
Sζk+1

T̂Sαkηk
T̂Sζk

− I󰀂󰀂B̂k󰀂󰀂Ĥ−1
∗ 󰀂+ 󰀂T̂ −1

Sζk
T̂ −1
Sαkηk

T̂Sζk+1
− I󰀂󰀂Ĥ−1

∗ 󰀂󰀂B̂k󰀂)

≤ b1ςk󰀂 ˆ̄Bk󰀂F ≤ b2ςk tr(
ˆ̄Bk), (by [Hua13, Lemma 6.2.6]) (39)

where b0, b1 and b2 are positive constants, ςk = 󰀂T̂ −1
Sζk

T̂ −1
Sαkηk

T̂Sζk+1
− I󰀂. It follows that

tr(Ĉk+1) ≤(1 + b2ςk+1) tr(
ˆ̄Bk+1) = (1 + b2ςk+1)

󰀕
tr(Ĉk) +

󰀂ȳk󰀂2
g(ȳk, s̄k)

− q̄k
cos2 θ̄k

󰀖

≤ tr(Ĉ0)
k+1󰁜

i=1

(1 + b2ςi) +

k󰁛

i=0

󰀳

󰁃
󰀕

󰀂ȳi󰀂2
g(ȳi, s̄i)

− q̄i
cos2 θ̄i

󰀖 k+1󰁜

j=i+1

(1 + b2ςj)

󰀴

󰁄
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Note that 1 ≤

󰁔k+1
i=1 (1 + b2ςi) ≤

󰁔∞
i=1(1 + b2ςi) = exp(

󰁓∞
i=1 log(1 + b2ςi)) ≤ exp(

󰁓∞
i=1 b2ςi) = b3 < ∞ by

(27) in Theorem 5.2, [HAG15, Lemma 3] and [Hua13, Lemma 6.2.5]. We have

tr(Ĉk+1) ≤ b3 tr(Ĉ0) + b3

k󰁛

i=0

󰀕
󰀂ȳi󰀂2

g(ȳi, s̄i)
− q̄i

cos2 θ̄i

󰀖
. (40)

It follows from (38) and (40) that

tr(Ĉk+1)/b3 − ln(det(Ĉk+1)) ≤ψ(Ĉ0) +
k󰁛

i=0

󰀕
󰀂ȳi󰀂2

g(ȳi, s̄i)
− 1− ln

g(ȳi, s̄i)

󰀂s̄i󰀂2
+ ln cos2 θ̄i

+ 1− q̄i
cos2 θ̄i

+ ln
q̄i

cos2 θ̄i

󰀖
. (41)

On one hand, it holds that t/b3 − ln t = t/b3 − ln(t/b3) − ln b3 ≥ 1 − ln b3. Therefore, tr(Ĉk+1)/b3 −
ln(det(Ĉk+1)) =

󰁓d
i=1(λi/b3 − lnλi) ≥ d− d ln b3, where d is the dimension of the manifold M and λi is the

i-th eigenvalue of Ĉk+1. On the other hand, using Lemma 5.2 yields that 󰀂ȳi󰀂2

g(ȳi,s̄i)
−1−ln g(ȳi,s̄i)

󰀂s̄i󰀂2 ≤ b4󰂃
min(1,a11)
k

holds for all sufficient large i, where b4 is a positive constant. Therefore, it follows from (41), (27) in Theorem
5.2 and [HAG15, Lemma 3] that

d− d ln b3 ≤ψ(Ĉ0) + b4

k󰁛

i=0

󰂃i +

k󰁛

i=0

󰀕
ln cos2 θ̄i + [1− q̄i

cos2 θ̄i
+ ln

q̄i
cos2 θ̄i

]

󰀖
+ b5

=ψ(Ĉ0) + b4b6 +

k󰁛

i=0

󰀕
ln cos2 θ̄i + [1− q̄i

cos2 θ̄i
+ ln

q̄i
cos2 θ̄i

]

󰀖
+ b5,

where b5, b6 are some constants. Both ln cos2 θ̄i and 1 − q̄i
cos2 θ̄i

+ ln q̄i
cos2 θ̄i

are non-positive and we have

limi→∞ ln cos2 θ̄i = 0 and limi→∞ 1− q̄i
cos2 θ̄i

+ ln q̄i
cos2 θ̄i

= 0. Note that the function ℓ(t) = 1− t+ ln(t), t > 0

has a unique maximizer at t = 1. It follows that limi→∞ cos θ̄i = limi→∞ q̄i = 1, which implies

lim
k→∞

󰀂(Ck − id)s̄󰀂2
󰀂s̄k󰀂2

= lim
k→∞

q̄2k
cos θ̄2k

− 2q̄k + 1 = 0.

Since

󰀂H
1
2
∗ 󰀂2󰀂(Ck − I)s̄k󰀂

󰀂s̄k󰀂
=

󰀂H
1
2

k+1󰀂2󰀂(H
− 1

2

k+1B̃kH
− 1

2

k+1 − I)H
1
2

k+1sk󰀂

󰀂H
1
2

k+1sk󰀂
≥ 󰀂(B̃k −Hk+1)sk󰀂

󰀂sk󰀂
,

we have

lim
k→∞

󰀂(B̃k −Hk+1)sk󰀂
󰀂sk󰀂

= 0. (42)

Let s̃k = αkηk = T −1
Sαkηk

sk. It follows that

󰀂(Bk −Hk)ηk󰀂
󰀂ηk󰀂

=
󰀂(Bk −Hk)s̃k󰀂

󰀂s̃k󰀂
=

󰀂(BkT −1
Sαkηk

−HkT −1
Sαkηk

)sk󰀂
󰀂sk󰀂

=
󰀂(TSαkηk

BkT −1
Sαkηk

− TSαkηk
HkT −1

Sαkηk
)sk󰀂

󰀂sk󰀂

=
󰀂(B̃k −Hk+1 +Hk+1 − TSαkηk

HkT −1
Sαkηk

)sk󰀂
󰀂sk󰀂

≤ 󰀂(B̃k −Hk+1)sk󰀂
󰀂sk󰀂

+
󰀂(Hk+1 − TSαkηk

HkT −1
Sαkηk

)sk󰀂
󰀂sk󰀂

→ 0. (by (42) and [Hua13, Lemma 6.2.5])
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What is more, from Assumption 5.5 and Bkηk = − grad f(xk), it holds that

lim
k→∞

󰀂 grad f(xk) + Hess f(xk)ηk󰀂
󰀂ηk󰀂

= 0.

Define f̂x = f ◦ Rx. Using the continuity of Hess f and Hess f̂ and Hess f(x∗) = Hess f̂x∗(0x∗) yields the
desired result (33).

Corollary 5.2. Suppose Assumptions 5.1 holds; Assumption 5.2 holds with Ω̃ satisfying A.1–A.3; Assump-
tions 5.3 and 5.4 hold; and Assumption 5.5 holds with a11 = 1. Then there exists an index k0 such that
αk = 1 satisfies either (2) or (3) for k ≥ k0. Moreover, if αk = 1 is used for all k ≥ k0, then xk converges
to x∗ superlinearly.

Proof. By [RW12, Proposition 5], (33) in Theorem 5.3 implies that αk = 1 satisfies the Wolfe condition
for all k ≥ k0. Therefore, αk = 1 also satisfies either (2) or (3) for k ≥ k0. Furthermore, using [RW12,
Proposition 8] yields the superlinear convergence result.

Note that Assumption 5.5 with a11 = 1 reduces to a Riemannian generalization of twice Lipschitz con-
tinuous differentiability. We note here without proof that, analogous to the Euclidean setting, Corollary 5.2
still holds as long as a11 > 0.

It is shown in [Hua13, Theorem 5.2.4] that αk = 1 eventually satisfies the two frequently used line search
conditions, i.e., the Wolfe conditions

hk(αk) ≤ hk(0) + c1αkh
′
k(0) (43)

h′
k(αk) ≥ c2h

′
k(0), (44)

where 0 < c1 < 0.5 < c2 < 1 and the Armijo-Goldstein condition

hk(αk) ≤ hk(0) + σαkh
′
k(0), (45)

where αk is the largest value in the set {t(i)|t(i) ∈ [󰂄1t
(i−1), 󰂄2t

(i−1)], t(0) = 1}, 0 < 󰂄1 < 󰂄2 < 1 and
0 < σ < 0.5.2 Therefore, if αk = 1 is attempted first using one of the line search conditions, then the
superlinear convergence of Algorithm 1 is obtained.

If h′(t) must be evaluated at t ∕= 0 in line search conditions, such as the Wolfe condition, then the action
of vector transport by differentiated retraction is necessary at least on a single direction. More specifically,
the term h′(t) = gRxk

(tηk)(grad f(Rxk
(tηk)), TRtηk

ηk) requires the action of vector transport by differentiated

retraction, TRη
ξ, with η and ξ in the same direction. This has been discussed in [HGA15] and one approach

to resort to as little information on differentiated retraction as possible is also proposed therein. With line
search conditions (such as the Armijo-Goldstein condition) that do not require h′(t) at t ∕= 0, the use of
differentiated retraction can be completely avoided since TR0ηk

ηk = ηk.

6 Limited-memory Riemannian BFGS Method

Analogous to the Euclidean BFGS method, the RBFGS method uses a dense matrix as the Hessian approx-
imation, which is not efficient in the sense of computations and storage especially in the case of large-scale
problems. In addition, the computations of B̃k = TSαkηk

◦Bk ◦T −1
Sαkηk

may need matrix multiplication, which

may not be cheap. In [HGA15], a limited-memory RBFGS was proposed to overcome the difficulties. The
RBFGS method in this paper, Algorithm 1, also allows the definition of a limited-memory RBFGS method,
stated in Algorithm 2. Compared to the LRBFGS in [HGA15], Algorithm 2 avoids the dependence on
differentiated retraction.

2If 󰂄1 = 󰂄2, then αk is the largest value in the set {1, 󰂄1, 󰂄21, . . .}. The difference of 󰂄1 and 󰂄2 allows the use of a more

sophisticated approach to choose a point between 󰂄1t(i−1) and 󰂄2t(i−1), such as based on a polynomial interpolation (see [DS83,
Section 6.3.2]).
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Algorithm 2 LRBFGS

Input: Riemannian manifold M with Riemannian metric g; retraction R; isometric vector transport TS,
with R as associated retraction; continuously differentiable real-valued function f on M, bounded below;
initial iterate x0 ∈ M; convergence tolerance ε > 0; integer m > 0.

1: k = 0, γ0 = 1, l = 0.
2: H0

k = γk id. Obtain ηk ∈ Txk
M by the following algorithm:

3: q ← grad f(xk)
4: for i = k − 1, k − 2, . . . , k − l do

5: ξi ← ρig(s
(k)
i , q);

6: q ← q − ξiy
(k)
i ;

7: end for
8: r ← H0

kq;
9: for i = k − l, k − l + 1, . . . , k − 1 do

10: ω ← ρig(y
(k)
i , r);

11: r ← r + s
(k)
i (ξi − ω);

12: end for
13: set ηk = −r;
14: find αk that satisfies either (2) or (3);
15: Set xk+1 = Rxk

(αkηk). If 󰀂 grad f(xk+1)󰀂 > ε, then break.

16: Define s
(k+1)
k = TSαkηk

αkηk and yk = β−1
k grad f(xk+1)− TSαkηk

grad f(xk);

17: if
y󰂐
ksk

󰀂sk󰀂2 ≥ ϑ(󰀂 grad f(xk)󰀂) then
18: Define ρk = 1/g(s

(k+1)
k , y

(k+1)
k ) and γk+1 = g(s

(k+1)
k , y

(k+1)
k )/󰀂y(k+1)

k 󰀂2.
19: Add s

(k+1)
k , y

(k+1)
k and ρk into storage and if l ≥ m, then discard vector pair {s(k)k−l, y

(k)
k−l} and scalar

ρk−l from storage, else l ← l+1; Transport s
(k)
k−l+1, s

(k)
k−l+2, . . . , s

(k)
k−1 and y

(k)
k−l+1, y

(k)
k−l+2, . . . , y

(k)
k−1 from

Txk
M to Txk+1

M by TS, to get s
(k+1)
k−l+1, s

(k+1)
k−l+2, . . . , s

(k+1)
k−1 and y

(k+1)
k−l+1, y

(k+1)
k−l+2, . . . , y

(k+1)
k−1 .

20: else
21: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l}, {s(k+1)

k , . . . , s
(k+1)
k−l+1} ←

{TSαkηk
s
(k)
k−1, . . . , TSαkηk

s
(k)
k−l} and {y(k+1)

k , . . . , y
(k+1)
k−l+1} ← {TSαkηk

y
(k)
k−1, . . . , TSαkηk

y
(k)
k−l}

22: end if
23: k = k + 1, goto Step 2.
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7 Experiments

In this section, we compare the numerical performance of the Wolfe condition and the Armijo-Goldstein
condition on Algorithms 1 and 2. Since the Wolfe condition requires the evaluation of h′(t) at t ∕= 0,
the evaluation of the vector transport by differentiated retraction is needed. We use the locking condition
proposed in [HGA15], which restricts the retraction R and the isometric vector transport TS:

TSξ
ξ = βTRξ

ξ, β =
󰀂ξ󰀂

󰀂TRξ
ξ󰀂 . (46)

This condition requires less information about the differentiated retraction than the approach in [RW12].
However, it may need more computations in the vector transport compared to vector transports without
any information from vector transport by differentiated retraction. As shown in [HGA15, Section 4], a few
extra low-rank updates may be necessary in the vector transport. In contrast with the Wolfe condition, the
Armijo-Goldstein condition does not require any information from the differentiated retraction. Therefore,
it allows a cheaper isometric vector transport in general.

7.1 Problem, Retraction, Vector Transport and Step Size

The joint diagonalization (JD) problem on the Stiefel manifold [TCA09] is used to illustrate the performance
of the proposed algorithms:

min
X∈St(p,n)

f(X) = min
X∈St(p,n)

−
N󰁛

i=1

󰀂 diag(XTCiX)󰀂22,

where St(p, n) = {X ∈ Rn×p|XTX = Ip}, matrices C1, . . . , CN are given symmetric matrices, diag(M)
denotes a vector formed by the diagonal entries of matrix M , and 󰀂 · 󰀂2 denotes the 2-norm.

The algorithms proposed in this paper have been used to efficiently solve applications such as the geo-
metric mean of symmetric positive definite (SPD) matrices [YHAG17] and the phase retrieval problem [?].
We are also working on other applications including the matrix singular value problems [SI13], dictionary
learning on SPD matrices [CS17], computations in elastic shape analysis of curves [HGSA15, YHGA15], and
the matrix completion problem [Van13, BA14, Mis14].

The Riemannian metric g on St(p, n) is the Euclidean metric g(ηX , ξX) = tr(ηTXξX). With this Rieman-
nian metric g, the gradient is given in [TCA09, Section 2.3]. As discussed in [HAG15, Section 2.2] or more
specifically in [HAG16b], a tangent vector ηX ∈ TX St(p, n) can be represented by a vector in the embed-
ding space Rn×p or a d-dimensional coefficient vector of a basis of TX St(p, n), where d = np − p(p + 1)/2
is the dimension of St(p, n). Note that TX St(p, n) = {XΩ + X⊥K : ΩT = −Ω, K ∈ R(n−p)×p}, where
the columns of X⊥ ∈ Rn×(n−p) form an orthonormal basis of the orthogonal complement of the column
space of X. Hence, an orthonormal basis of TX St(p, n) is given by { 1√

2
X(eie

T
j − eje

T
i ) : i = 1, . . . , p, j =

i + 1, . . . , p} ∪ {X⊥ẽie
T
j , i = 1, . . . , n − p, j = 1, . . . , p}, where (e1, . . . , ep) is the canonical basis of Rp and

(ẽ1, . . . , ẽn−p) is the canonical basis of Rn−p. In practice, one does not have to form the matrix X⊥. Only the
actions of X⊥ and XT

⊥ are needed, i.e., XT
⊥ηX and X⊥K are needed given ηX ∈ TX M and K ∈ R(n−p)×p re-

spectively. It has been shown in [HAG16b] that the time and space complexities of computing d-dimensional
representation of a tangent vector are O(np2) and O(np) respectively.

By varying the basis and fixing the coefficients, one can define vector transport by parallelization [HAG15,
Section 2.3.1 and 5]. The implementation of this vector transport using a d-dimensional representation for
tangent vectors is the identity [Hua13, Section 9.5] and is used in our experiment. For detailed discussions
about the d-dimensional representation for tangent vectors and vector transport by parallelization on the
Stiefel manifold, we refer to [HAG16b].

Three retractions are used. The first is the qf retraction [AMS08, (4.7)]

RX(ηX) = qf(X + ηX), (47)
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where qf denotes the Q factor of the QR decomposition with nonnegative elements on the diagonal of R.
The pair of qf retraction and vector transport by parallelization does not satisfy the locking condition, in
general, so we use the approach in [HGA15, Section 4.2] to modify the vector transport by parallelization in
order to satisfy the locking condition. The implementation of the modified vector transport is a rank-two
update matrix.

The second retraction is given in [Zhu17, (14)]

RX(ηX) =

󰀕
I − 1

2
WηX

󰀖−1 󰀕
I +

1

2
WηX

󰀖
X, (48)

where WηX
= PXηXXT − XηTXPX and PX = I − 1

2XXT . A Cayley-based isometric vector transport
associated with this retraction is also given in [Zhu17, (22)]. This pair of retraction and vector transport
does not satisfy the locking condition and the approach in [HGA15, Section 4.2] also can be used, which
yields extra cost of rank-two update. It can be shown that the complexities of this retraction and the action
of this isometric vector transport, i.e., given ξX ∈ TX M, the evaluation of TηX

ξX , are both O(np2). Note
that the isometric vector transport in [Zhu17, (22)] uses vectors in Rn×p to represent tangent vectors rather
than a d-dimensional representation.

The third retraction [HGA15, (7.3)] is given by the approach in [HGA15, Section 4.3]

󰀃
RX(ηX) (RX(ηX))⊥

󰀄
=

󰀃
X X⊥

󰀄
exp

󰀕
A −KT

K 0(n−p)×(n−p)

󰀖
(49)

where RX(ηX) defines the retraction, A = XT ηX , K = XT
⊥ηX . As shown in [HGA15], the pair of re-

traction (49) and vector transport by parallelization, which uses (RX(ηX))⊥ in (49) to form the basis of
TRX(ηX) St(p, n), satisfies the locking condition with β ≡ 1. Therefore, the X⊥ in (49) is computed and
stored explicitly. The time and space complexities are O(n3) and O(n2) respectively.

The initial step size at each line search follows from [NW06, (3.60) and p. 60]. In our Riemannian
experiments, this initial step size in the line search algorithm eventually is one. The two algorithms for
finding a step size αk satisfying the Armijo-Goldstein condition and the Wolfe condition are both based on
quadratic or cubic polynomial interpolation. Specifically, they are [DS83, Algorithm A6.3.1 and Algorithm
A6.3.1mod] respectively. We refer to [DS83, Section 6.3.2] for the technical details.

7.2 Environment and Parameters

All experiments are performed in C++ with compiler g++-4.7 on a 64 bit Ubuntu platform with 3.6 GHz
CPU(Intel(R) Core(TM) i7-4790).3

The inverse Hessian approximation update formula

Hk+1 =

󰀕
id− sky

󰂐
k

g(yk, sk)

󰀖
H̃k

󰀕
id− yks

󰂐
k

g(yk, sk)

󰀖
+

sks
󰂐
k

g(yk, sk)
, H̃k = TSαkηk

◦Hk ◦ T −1
Sαkηk

(50)

is used since computing ηk = −Hk grad f(xk) is cheaper than solving the linear system Bkηk = − grad f(xk).
The function ϑ(t) in Algorithms 1 and 2 is chosen to be 10−4t. The stopping criterion is gff/gf0 <

10−6, where gff and gf0 denote the final and initial norms of the gradients. The initial inverse Hessian
approximation is chosen to be the identity. The value m in Algorithm 2 is set to be 4.

The Ci matrices are selected as Ci = diag(n, n−1, . . . , 1)+0.1(Ri+RT
i ), where the elements of Ri ∈ Rn×n

are independently drawn from the standard normal distribution. The initial iterate X0 is given by applying
Matlab’s function orth to a matrix whose elements are drawn from the standard normal distribution using
Matlab’s randn.

3The code is available at www.math.fsu.edu/~whuang2/papers/ARBMDRNOP.htm.

www.math.fsu.edu/~whuang2/papers/ARBMDRNOP.htm
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7.3 Tests and Results

The values n and p are chosen to be 12 and 8 respectively. The parameters c1 and σ are set to be a same
value 10−4 since they play a same role the in line search conditions. Experimental results of averages of 1000
random runs for RBFGS and LRBFGS with various values of N , c2, 󰂄1 and 󰂄2 are reported in Tables 1 and
2.

Let RBFGSW and RBFGSA denote Algorithm 1 with the Wolfe condition and the Armijo-Goldstein
condition respectively and LRBFGSW and LRBFGSA denote corresponding limited-memory versions. Let
RV1 and RV4 respectively denote the pair of retraction (47) and the vector transport by parallelization
and the pair of retraction (48) and the Cayley-based vector transport, both of which do not satisfy the
locking condition; RV2 and RV5 respectively denote RV1 using approach [HGA15, Section 4.2] and RV4
using approach [HGA15, Section 4.2], both of which satisfy the locking condition but the vector transports
are not smooth; RV3 denote retraction (49) and the vector transport by parallelization, which satisfy the
locking condition and have a smooth vector transport.

Note that there are not results for RBFGSW and LRBFGSWwith RV1 and RV4 since the well-definedness
of RBFGSW and LRBFGSW requires the locking condition. We observed in our experiments that the search
direction may not be a descent direction in these cases. It follows that the algorithms do not converge.

We do not report the experimental results of RBFGS with RV4 and RV5 since the complexities of
H̃k = TSαkηk

◦Hk ◦T −1
Sαkηk

in RBFGS’s update is O(n2p3) for the Cayley-based vector transport. In contrast,

the complexity of vector transport by parallelization is only O(1) when the intrinsic representation is used
for tangent vectors..

We can see that increasing the range of [󰂄1, 󰂄2] does not influence the performance of RBFGSA and
LRBFGSA significantly. However, as c2 increases, RBFGSW and LRBFGSW tend to perform better in
the sense that the numbers of function and gradient evaluations and computational time decrease in most
cases. These phenomena lead us to recommend choosing a large c2 < 1 for the Wolfe condition. There is
no significant difference between the performance of RBFGSW with the largest c2 and RBFGSA when the
same pair of retraction and vector transport is used.

RBFGS with RV1 performs worse than RBFGS with RV2 in the sense of number of function and gradient
evaluations. This implies that the locking condition, to some extent, reduces the number of function and
gradient evaluations in RBFGS with either the Armijo-Goldstein condition or the Wolfe condition. Note that
even though h′(t) at t ∕= 0 is not used in the Armijo-Goldstein line search condition, the locking condition can
still reduce the number of function and gradient evaluations. However, due to the lower complexities of vector
transport (compared to RV2), the relationship between the efficiencies of RBFGS with RV1 and RBFGS
with RV2 depends on the costs on the function, gradient evaluation and the vector transport. Specifically,
if the cost on vector transport is not negligible compared to the function and gradient evaluation, then the
RBFGS with RV2 can be slower, such as results of N = 32 in Table 1. Otherwise, the RBFGS with RV1
can be slower, such as results of N = 512 in Table 1.

The pair of vector transport and retraction in RV3 satisfies the locking condition (46). Unsurprisingly,
the numbers of function and gradient evaluations and vector transports of RBFGS with RV3 are smaller than
RBFGS with RV1. Therefore, if the costs on the retraction and vector transport of RV1 and RV3 are not
significantly different, which is true for n = 12, p = 8, and N = 512, then RBFGS with RV3 is faster than
RBFGS with RV1 in the sense of computational time. Otherwise, RBFGS with RV3 can be unacceptably
slow, as we see in Table 3 discussed later.

Regarding LRBFGS method, Table 2 shows that the numbers of function, gradient evaluations and vector
transports are not influenced significantly by the choices of retraction and vector transports. Therefore, the
lower the complexity of retraction and vector transport is, the faster the algorithm is in terms of compu-
tational time. As discussed in Section 7.1, RV1 has lower complexity than RV2 and RV3, RV4 has lower
complexity than RV5. It is pointed out first that RV1 has lower cost than RV4. In LRBFGS method,
multiple tangent vectors need be transported to a new tangent space, as shown in Step 21 of Algorithm 2.
Suppose the number of tangent spaces is k. In RV1, the complexity of vector transport is independent of k,
i.e., O(np2). However, in the Cayley-based vector transport of RV4, the complexity is O(kn2p). It follows
that LRBFGSA with RV1 is the faster algorithm among all of them.
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Table 1: An average of 1000 random runs of RBFGS. iter, nf , ng, nV and t denote the number of iterations,
the number of function evaluations, the number of gradient evaluations, the number of vector transports and
the computational wall time in seconds. The subscript −k indicates a scale of 10−k.

N
Armijo-Goldstien: [󰂄1, 󰂄2] Wolfe: c2

[ 12 ,
1
2 ] [ 14 ,

3
4 ] [ 1

16 ,
15
16 ] [ 1

64 ,
63
64 ]

1
2

3
4

15
16

63
64

RV1

32

iter 143 140 140 140 \ \ \ \
nf 152 148 148 148 \ \ \ \
ng 144 141 141 141 \ \ \ \
nV 286 280 280 280 \ \ \ \
t 6.39−3 6.36−3 6.40−3 6.46−3 \ \ \ \

512

iter 163 161 160 160 \ \ \ \
nf 175 171 171 170 \ \ \ \
ng 164 162 161 161 \ \ \ \
nV 326 321 321 321 \ \ \ \
t 5.16−2 4.94−2 4.88−2 4.84−2 \ \ \ \

RV2

32

iter 96 95 95 95 89 91 94 95

nf 103 102 101 101 113 105 102 101

ng 97 96 96 96 107 99 96 96

nV 192 191 190 190 285 280 282 284

t 7.55−3 7.54−3 7.47−3 7.46−3 7.96−3 7.68−3 7.70−3 7.80−3

512

iter 108 108 107 107 95 97 101 104

nf 118 116 115 115 126 117 114 114

ng 109 109 108 108 118 110 107 107

nV 217 215 215 215 308 303 308 314

t 3.97−2 3.84−2 3.79−2 3.83−2 4.14−2 3.85−2 3.63−2 3.55−2

RV3

32

iter 121 116 116 116 109 110 114 115

nf 132 126 126 126 141 129 126 126

ng 122 117 117 117 131 119 117 117

nV 241 232 231 231 349 338 343 347

t 9.76−3 9.36−3 9.40−3 9.42−3 1.01−2 9.71−3 9.16−3 9.45−3

512

iter 141 135 134 134 122 121 127 131

nf 156 147 146 146 163 149 146 147

ng 142 136 135 135 150 137 135 136

nV 283 269 268 269 392 379 388 397

t 4.89−2 4.53−2 4.54−2 4.48−2 5.00−2 4.91−2 4.70−2 4.61−2

In Table 3, we use LRBFGS to compare the performance of RV3 to RV1, RV2, RV4, and RV5 when
p ≪ n. Only the Armijo-Goldstein condition is used and N is chosen to be 4. Multiple n and p are tested to
show the trend of computational time as n and p increase. As discussed in Section 7.1, RV3 is not competitive
with RV1 and RV2 in the sense of computational time due to the significant cost on X⊥ and the matrix
exponential. Specifically, using RV3 can be slower by orders of magnitude than using the other four pairs.
RV1 again is the fastest methods in the sense of computational time.

8 Conclusion

In this paper, we generalize the cautious BFGS update in [LF01b] and the weak line search condition in
[BN89] to the Riemannian setting and define a framework for the RBFGS method by merging those two
ideas that allows differentiated retraction to be avoided completed. It is proven that the RBFGS method,
Algorithm 1, converges globally to a stationary point for a general nonconvex function, which has not been
done for earlier Riemannian versions of the BFGS method. A local superlinear convergence analysis is also
given. Experiments show that Algorithms 1 and 2 i) avoid the requirement of differentiated retraction and
therefore are easy to use in practice; and ii) have competitive performance compared with the RBFGS
and LRBFGS methods in [HGA15] which require information from differentiated retraction. Therefore,
Algorithms 1 and 2 should be the first choice of Riemannian BFGS method due to their robustness and
efficiency. They have been implemented in ROPTLIB [HAGH16] as the default RBFGS and LRBFGS
methods.
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Table 2: An average of 1000 random runs of LRBFGS. The subscript −k indicates a scale of 10−k.

N
Armijo-Goldstien: [󰂄1, 󰂄2] Wolfe: c2

[ 12 ,
1
2 ] [ 14 ,

3
4 ] [ 1

16 ,
15
16 ] [ 1

64 ,
63
64 ]

1
2

3
4

15
16

63
64

RV1

32

iter 142 142 142 142 \ \ \ \
nf 145 145 145 145 \ \ \ \
ng 143 143 143 143 \ \ \ \
nV 1124 1122 1122 1122 \ \ \ \
t 4.35−3 4.28−3 4.28−3 4.22−3 \ \ \ \

512

iter 139 138 138 138 \ \ \ \
nf 142 142 142 142 \ \ \ \
ng 140 139 139 139 \ \ \ \
nV 1097 1093 1093 1093 \ \ \ \
t 3.94−2 3.87−2 3.88−2 3.87−2 \ \ \ \

RV2

32

iter 141 140 140 140 136 139 140 140

nf 144 144 144 144 170 146 144 144

ng 142 141 141 141 168 144 142 141

nV 1112 1111 1111 1111 1242 1244 1249 1251

t 1.23−2 1.22−2 1.22−2 1.22−2 1.28−2 1.19−2 1.19−2 1.19−2

512

iter 137 136 136 136 133 135 136 136

nf 140 139 139 139 167 141 139 139

ng 138 137 137 137 165 139 137 137

nV 1082 1077 1077 1077 1218 1202 1210 1212

t 5.17−2 4.69−2 4.68−2 4.64−2 5.44−2 4.63−2 4.60−2 4.65−2

RV3

32

iter 142 141 141 141 136 139 140 141

nf 145 144 144 144 171 146 144 145

ng 143 142 142 142 169 144 142 142

nV 1122 1114 1114 1114 1247 1242 1248 1254

t 8.68−3 8.60−3 8.60−3 8.61−3 1.02−2 8.88−3 8.62−3 8.62−3

512

iter 138 136 136 136 133 136 136 136

nf 142 140 140 140 168 143 140 140

ng 139 137 137 137 165 140 138 138

nV 1090 1080 1080 1080 1220 1214 1214 1216

t 4.44−2 4.34−2 4.34−2 4.30−2 5.30−2 4.49−2 4.33−2 4.35−2

RV4

32

iter 141 141 141 141 \ \ \ \
nf 145 145 145 145 \ \ \ \
ng 142 142 142 142 \ \ \ \
nV 1115 1115 1115 1115 \ \ \ \
t 7.21−3 6.97−3 7.04−3 7.05−3 \ \ \ \

512

iter 138 137 137 137 \ \ \ \
nf 142 140 140 140 \ \ \ \
ng 139 138 138 138 \ \ \ \
nV 1093 1080 1081 1081 \ \ \ \
t 4.27−2 4.25−2 4.23−2 4.23−2 \ \ \ \

RV5

32

iter 141 141 141 141 137 139 140 140

nf 145 144 144 144 172 147 145 144

ng 142 142 142 142 170 144 142 142

nV 1117 1113 1112 1112 1250 1244 1249 1251

t 1.68−2 1.65−2 1.69−2 1.68−2 1.74−2 1.67−2 1.65−2 1.66−2

512

iter 137 136 136 136 133 135 136 136

nf 140 140 140 140 167 143 140 140

ng 138 137 137 137 165 140 138 137

nV 1082 1077 1077 1077 1214 1208 1212 1212

t 5.16−2 5.15−2 5.16−2 5.17−2 5.88−2 5.10−2 5.06−2 5.06−2
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Table 3: An average of 10 random runs of LRBFGS with Armijo-Goldstein condition, 󰂄1 = 1/64, 󰂄2 = 63/64,
and N = 4. The subscript −k indicates a scale of 10−k. NA denotes “not run” due to its cost.

n : 50 n : 100 n : 100 n : 200 n : 200 n : 400 n : 400 n : 1600

p : 2 p : 2 p : 4 p : 4 p : 8 p : 8 p : 16 p : 32

RV1

iter 137 203 729 954 1602 2461 3644 6993

nf 142 209 737 966 1616 2484 3672 7045

ng 138 204 730 955 1603 2462 3645 6994

nV 1087 1615 5816 7623 12807 19677 29137 55924

t 2.65−3 5.66−3 2.86−2 6.20−2 1.66−1 8.69−1 2.07 6.991

RV2

iter 124 205 777 1187 1785 2713 3233 7307

nf 127 210 785 1198 1800 2736 3258 7357

ng 125 206 778 1188 1786 2714 3234 7308

nV 979 1628 6206 9485 14270 21690 25849 58435

t 9.13−3 1.96−2 8.06−2 1.70−1 3.63−1 1.75 3.25 8.541

RV3

iter 140 220 768 1128 1809 2581 3409 NA

nf 145 225 779 1139 1825 2603 3440 NA

ng 141 221 769 1129 1810 2582 3410 NA

nV 1110 1750 6134 9015 14458 20632 27254 NA

t 1.44−1 6.76−1 2.43 1.991 3.291 1.712 2.322 NA

RV4

iter 133 205 783 1122 1605 2641 3421 7557

nf 138 210 793 1133 1618 2663 3450 7614

ng 134 206 784 1123 1606 2642 3422 7558

nV 1051 1628 6254 8966 12820 21114 27351 60437

t 3.24−3 6.63−3 3.98−2 1.20−1 2.69−1 1.34 2.47 8.131

RV5

iter 133 211 749 1096 1842 2895 3320 7897

nf 137 217 758 1105 1858 2916 3347 7957

ng 134 212 750 1097 1843 2896 3321 7898

nV 1054 1679 5981 8759 14723 23145 26544 63161

t 1.13−2 1.89−2 9.34−2 2.29−1 6.07−1 2.58 4.62 1.072
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