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Abstract. In this paper, a Riemannian BFGS method is defined for minimizing
a smooth function on a Riemannian manifold endowed with a retraction and a
vector transport. The method is based on a Riemannian generalization of a cautious
update and a weak line search condition. It is shown that the Riemannian BFGS
method converges (i) globally to a stationary point without assuming that the
objective function is convex and (ii) superlinearly to a nondegenerate minimizer.
The weak line search condition removes completely the need to consider the differ-
entiated retraction. The joint diagonalization problem is used to demonstrate the
performance of the algorithm with various parameters, line search conditions, and
pairs of retraction and vector transport.

1 Introduction

In the Euclidean setting, the BFGS method is widely viewed as the best quasi-
Newton method for solving smooth unconstrained optimization problems
[DS83,NW06]. Its global and superlinear local convergence is well understood
for convex problems (see [DS83] and references therein). However, for non-
convex problems, its convergence properties are more intricate. Recently, Dai
[Dai13] has produced a nonconvex cost function for which the standard BFGS
method does not converge. Modified BFGS methods exist that converge
globally to critical points of nonconvex cost functions [LF01a,LF01b].

Many Riemannian versions of the BFGS method have appeared, e.g.,
[Gab82,SL10,RW12,SKH13,HGA15], but complete global and local conver-
gence analyses that are not restricted to a specific cost function or a manifold
are only given in two of them [RW12,HGA15]. The analyses of both methods
require the cost function to satisfy a Riemannian version of convexity for
global and superlinear local convergence.

In this paper, we generalize to manifolds the approach in [LF01b] for
nonconvex problems by using a Riemannian version of the cautious update
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of the Hessian approximation, and additionally a weak line search condition
[BN89, (3.2), (3.3)]. Global and local superlinear convergence results are
stated and the joint diagonalization problem [TCA09] is used as an example
to demonstrate numerical performance.

A key advantage of the proposed method over those in [RW12,HGA15] is
that it offers more leeway on the choice of the vector transport. The version
in [RW12] requires vector transport by differentiated retraction, which may
not be available to users or may be too expensive. The version in [HGA15]
requires only the action of the differentiated retraction along a particular
direction. In fact, any method that uses the Riemannian second Wolfe con-
dition will require at least the action of the differentiated retraction along
some particular direction. The proposed method is even less demanding: it no
longer requires the second Wolfe condition, and the differentiated retraction
can be completely avoided.

This paper is organized as follows. Section 2 presents notation used in
this paper. Section 3 defines the Riemannian version of BFGS. Global and
local convergence results are stated in Section 4. Numerical experiments are
reported in Section 5.

2 Notation

The underlying concepts of Riemannian geometry can be found, e.g., in
[Boo86,AMS08]. We follow the notation of [AMS08]. Let f denote a cost
function defined on a d-dimensional Riemannian manifold M with the Rie-
mannian metric g : (ηx, ξx) 7→ gx(ηx, ξx) ∈ R. Tx M denotes the tangent
space of M at x and TM denotes the tangent bundle, i.e., the set of all
tangent spaces. For any ηx ∈ Tx M, η♭x denotes the function such that
η♭x : Tx M → R : ξx 7→ gx(ηx, ξx).

A retraction is a C1 map R : TM → M such that R(0x) = x for
all x ∈ M and d

dtR(tξx)|t=0 = ξx for all ξx ∈ Tx M. The domain of R
does not have to be the entire tangent bundle, however, it is usually the
case in practice. In this paper, we assume that R is well-defined whenever
needed. Rx denotes the restriction of R to Tx M. A vector transport T :
TM ⊕ TM → TM, (ηx, ξx) 7→ Tηxξx with associated retraction R is a
mapping1 such that, for all (x, ηx) in the domain of R and all ξx, ζx ∈ Tx M, it
holds that (i) Tηxξx ∈ TR(ηx) M, (ii) Tηx is a linear map. An isometric vector
transport TS additionally satisfies gRx(ηx)(TSηx

ξx, TSηx
ζx) = gx(ξx, ζx). The

vector transport by differentiated retraction TR is defined to be TRηx
ξx :=

d
dtRx(ηx + tξx)|t=0.

3 Riemannian BFGS Method with Cautious Update

1 This mapping is not even required to be continuous in the definition. The
smoothness is imposed in the convergence analyses.



3

The proposed Riemannian generalization of the BFGS method with cautious
update is stated in Algorithm 1.

Algorithm 1 Cautious RBFGS method

Input: Riemannian manifold M with Riemannian metric g; a retraction R;
isometric vector transport TS, with R as the associated retraction; continuously
differentiable real-valued function f on M, bounded below; initial iterate
x0 ∈ M; initial Hessian approximation B0 that is symmetric positive definite
with respect to the metric g; convergence tolerance ε > 0; constants χ1 > 0 and
χ2 > 0 in the line search condition;

1: k ← 0;
2: while ∥ grad f(xk)∥ > ε do
3: Obtain ηk ∈ TxkM by solving Bkηk = − grad f(xk);
4: Set xk+1 = Rxk (αkηk), where αk > 0 is computed from a line search

procedure to satisfy either

hk(αk)− hk(0) ≤ −χ1
h′
k(0)

2

∥ηk∥2
(1)

or
hk(αk)− hk(0) ≤ χ2h

′
k(0), (2)

where hk(t) = f(Rxk(tηk)).
5: Define the linear operator Bk+1 : Txk+1M→ Txk+1M by (4);
6: k ← k + 1;
7: end while

When M is a Euclidean space, the line search condition in Step 4 of
Algorithm 1 is weak since it has been shown in [BN89, Sections 3 and 4] that
many line search conditions, e.g., the Curry-Altman condition, the Goldstein
condition, the Wolfe condition and the Armijo-Goldstein condition, imply
either (1) or (2) if the gradient of the function is Lipschitz continuous. In the
Riemannian setting, note that the function f ◦ Rx : Tx M → R is defined
on a linear space. It follows that the Euclidean results about line search
are applicable, i.e., the above conditions also imply either (1) or (2) when
the gradient of the function satisfies the Riemannian Lipschitz continuous
condition [AMS08, Definition 7.4.1].

Among several possible Riemannian generalizations of the BFGS update
formula [RW12,SKH13,HGA15], we opt here for

Bk+1 = B̃k − B̃ksk(B̃∗
ksk)

♭

(B̃∗
ksk)

♭sk
+

yky
♭
k

y♭ksk
, (3)

where B̃k = TSαkηk
◦ Bk ◦ T −1

Sαkηk
, yk = β−1

k grad f(xk+1)− TSαkηk
grad f(xk),

sk = TSαkηk
αkηk, and βk is an arbitrary number satisfying |βk − 1| ≤

Lβ∥αkηk∥ and Lβ > 0 is a constant. The motivation for introducing βk
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is to make this update subsume the update in [HGA15], which uses βk =
∥αkηk∥

∥TRαkηk
αkηk∥ .

If y♭ksk > 0, then the symmetric positive definiteness of B̃k implies the
symmetric positive definiteness of Bk+1 [HGA15]. The positive definiteness of
the sequence {Bk} is important in the sense that it guarantees that the search
direction is a descent direction. However, not all line search conditions imply
y♭ksk > 0. In the existing papers [RW12,HGA15], the Wolfe condition with
information about TR is used to guarantee y♭ksk > 0. In this paper, instead of
enforcing y♭ksk > 0 by the Wolfe condition, we guarantee symmetric positive
definiteness of Bk+1 by resorting to the following cautious update formula

Bk+1 =

{
B̃k − B̃ksk(B̃∗

ksk)
♭

(B̃∗
ksk)

♭sk
+

yky
♭
k

y♭
ksk

, if
y♭
ksk

∥sk∥2 ≥ ϑ(∥ grad f(xk)∥)
B̃k, otherwise,

(4)

where ϑ is a monotone increasing function satisfying ϑ(0) = 0 and ϑ strictly
increasing at 0. Formula (4) reduces to the cautious update formula of
[LF01b] when M is a Euclidean space. Using update (4) does not require
the Wolfe condition, which yields more leeway for choosing a line search

condition. When
y♭
ksk

∥sk∥2 ̸≥ ϑ(∥ grad f(xk)∥), Bk+1 can be set to be any given

constant matrix, e.g., id, rather than B̃k . The choice does not affect the
theoretical results given later.

4 Convergence Analysis

Due to length limitations, we only state the convergence results without
proofs. The proofs will be given in a forthcoming paper. Theorems 1 and 2
state the global and local convergence results respectively.

Theorem 1. Let {xk} be a sequence generated by Algorithm 1. Assume that
the level set Ω = {x ∈ M | f(x) ≤ f(x0)} is compact, that there exists L1 > 0
such that ∥Tη grad f(x) − grad f(Rx(η))∥ ≤ L1∥η∥ for all x ∈ U and η such

that Rx(η) ∈ U , and that the function f̂ = f ◦ R is radially L-C1 function
[AMS08, Definition 7.4.1] for all x ∈ Ω. Then lim infk→∞ ∥ grad f(xk)∥ = 0.

Theorem 2. Let {xk} be a sequence generated by Algorithm 1 that converges
to a nondegenerate minimizer x∗ of f . Suppose there exists a neighborhood
Ω̃ of x∗ such that

1. the objective function f is twice continuously differentiable in Ω̃ and there
exists positive constants a10 and a11 such that for all y ∈ Ω̃, ∥Hess f(y)−
TSη Hess f(x∗)T −1

Sη
∥ ≤ a10∥η∥, where η = R−1

x∗ y;

2. the retraction R is twice continuously differentiable in Ω̃ and there is
a constant a5 such that for all x, y ∈ Ω̃, maxt∈[0,1] dist(Rx(tη), x

∗) ≤
a9 max(dist(x, x∗), dist(y, x∗)), where η = R−1

x y;



5

3. the isometric vector transport TS with associated retraction R is continu-
ous and satisfies T0xξx = ξx for all ξx ∈ Tx M, ∥TSη −TRη∥ ≤ L̃∥η∥ and

∥T −1
Sη

− T −1
Rη

∥ ≤ L̃∥η∥ for some constant L̃.

Then there exists an index k0 such that αk = 1 satisfies either (1) or (2) for
k ≥ k0. Moreover, if αk = 1 is used for all k ≥ k0, then xk converges to x∗

superlinearly, i.e., limk→∞
dist(xk+1,x

∗)
dist(xk,x∗) = 0.

It is shown in [Hua13, Theorem 5.2.4] that αk = 1 eventually satisfies the
two frequently used line search conditions, i.e., the Wolfe condition

hk(αk) ≤ hk(0) + c1αkh
′
k(0) (5)

h′
k(αk) ≥ c2h

′
k(0) (6)

where 0 < c1 < 0.5 < c2 < 1 and the Armijo-Goldstein condition

hk(αk) ≤ hk(0) + σαkh
′
k(0), (7)

where αk is the largest value in the set {t(i)|t(i) ∈ [ϱ1t
(i−1), ϱ2t

(i−1)], t(0) = 1},
0 < ϱ1 < ϱ2 < 1 and 0 < σ < 0.5. Therefore, if αk = 1 is attempted first
using one of the line search conditions, then the superlinear convergence of
Algorithm 1 is obtained. At present, no conditions on χ1 and χ2 in (1) and (2)
that guarantee a similar result are known.

If h′(t) must be evaluated at t ̸= 0 in line search conditions, such as
the Wolfe condition, then the action of vector transport by differentiated
retraction is required only in a particular direction. More specifically, the
term

h′(t) = gRxk
(tηk)(grad f(Rxk

(tηk)), TRtηk
ηk)

requires the action of vector transport by differentiated retraction, TRηξ, with
η and ξ on a same direction. This is discussed in [HGA15] and one approach
to resort to as little information on the differentiated retraction as possible is
also proposed. If h′(t) is not required at t ̸= 0, such as in the Armijo-Goldstein
condition, then the differentiated retraction can be completely avoided since
TR0ηk

ηk = ηk.

5 Experiments

In this section, we investigate numerically the impact of choosing the Wolfe
versus the Armijo-Goldstein condition in Step 4 of on Algorithms 1.

5.1 Problem, Retraction, Vector Transport and Step Size

The joint diagonalization (JD) problem on the Stiefel manifold [TCA09] is
used to illustrate the numerical performance:

min
X∈St(p,n)

f(X) = min
X∈St(p,n)

−
N∑
i=1

∥ diag(XTCiX)∥22,
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where St(p, n) = {X ∈ Rn×p|XTX = Ip}, matrices C1, . . . , CN are given
symmetric matrices, diag(M) denotes the vector formed by the diagonal
entries of matrix M , and ∥ · ∥2 denotes the 2-norm.

The Stiefel manifold St(p, n) can be viewed as a submanifold of Rn×p.
The chosen Riemannian metric g on St(p, n) is the metric endowed from
its embedding space, i.e., g(ηX , ξX) = tr(ηTXξX). With this Riemannian
metric g, the gradient is given in [TCA09, Section 2.3]. As discussed in
[HAG15, Section 2.2], a tangent vector ηX ∈ TX M can be represented
by a vector in the embedding space Rn×p or a d-dimensional coefficient
vector of a basis of TX M, where d = np − p(p + 1)/2 is the dimension
of St(p, n). In our experiments, we use a d-dimensional representation of
tangent vectors. By varying the basis and fixing the coefficients, one can
define the vector transport by parallelization [HAG15, Section 2.3.1 and 5].
The implementation of vector transport is then simply an identity [Hua13,
Section 9.5].

The retraction is chosen to be qf retraction [AMS08, (4.7)]

RX(ηX) = qf(X + ηX), (8)

where qf denotes the Q factor of the QR decomposition with nonnegative
elements on the diagonal of R.

5.2 Tests and Results

The Ci matrices are selected as Ci = Ri + RT
i , where the elements of

Ri ∈ Rn×n are independently drawn from the standard normal distribu-
tion. The initial iterate X0 is given by applying Matlab’s function orth to
a matrix whose elements are drawn from the standard normal distribution
using Matlab’s randn. The code can be found in http://www.math.fsu.edu/

~whuang2/papers/ARBMNOP.htm.
Let RBFGS-W and RBFGS-A denote Algorithm 1 with the Wolfe con-

dition and the Armijo-Goldstein condition respectively. Since the Wolfe con-
dition requires the evaluation of h′(t) at t ̸= 0, we use the locking condition
proposed in [HGA15], which restricts the retraction R and the isometric
vector transport TS:

TSξ
ξ = βTRξ

ξ, β =
∥ξ∥

∥TRξ
ξ∥

. (9)

Let RV1 denote retraction (8) and the vector transport by parallelization,
which does not satisfy the locking condition (9); RV2 denote retraction (8)
and the vector transport using the approach of [HGA15, Section 4.2], which
does satisfy the locking condition (9) but the vector transport is not smooth
and relatively expensive.

The experimental results with various parameters and algorithms are
reported in Table 1. Note that there is no result for RBFGS-W with RV1

http://www.math.fsu.edu/~whuang2/papers/ARBMNOP.htm
http://www.math.fsu.edu/~whuang2/papers/ARBMNOP.htm
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Table 1. An average of 1000 random runs of RBFGS. n = 12, p = 8, c1 =
σ = 10−4. The subscript −k indicates a scale of 10−k. iter, nf , ng, nV and
t denote the number of iterations, number of function evaluations, number
of gradient evaluations, number of vector transport and computational time
(millisecond) respectively.

N
Armijo-Goldstien: [ϱ1, ϱ2] Wolfe: c2

[ 12 ,
1
2 ] [ 14 ,

3
4 ] [ 1

16 ,
15
16 ] [ 1

64 ,
63
64 ]

1
2

3
4

15
16

63
64

RV1

128

iter 2.392 1.942 1.912 1.912 \ \ \ \
nf 3.062 2.132 2.062 2.062 \ \ \ \
ng 2.402 1.952 1.922 1.922 \ \ \ \
nV 4.772 3.892 3.812 3.812 \ \ \ \
t 3.18−2 2.63−2 2.58−2 2.61−2 \ \ \ \

512

iter 1.962 1.912 1.912 1.912 \ \ \ \
nf 2.152 2.082 2.082 2.072 \ \ \ \
ng 1.972 1.922 1.922 1.922 \ \ \ \
nV 3.922 3.822 3.832 3.832 \ \ \ \
t 9.32−2 8.96−2 8.88−2 8.92−2 \ \ \ \

RV2

128

iter 1.462 1.642 1.672 1.472 1.232 1.322 1.362 1.422
nf 1.702 1.972 2.032 1.682 1.862 1.842 1.682 1.652
ng 1.472 1.652 1.682 1.482 1.672 1.622 1.502 1.472
nV 2.932 3.272 3.352 2.942 4.132 4.222 4.202 4.262
t 2.64−2 2.89−2 2.94−2 2.64−2 2.80−2 2.76−2 2.60−2 2.56−2

512

iter 1.492 1.492 1.532 1.482 1.312 1.382 1.402 1.512
nf 1.692 1.692 1.752 1.662 1.972 1.892 1.712 1.802
ng 1.502 1.502 1.542 1.492 1.762 1.662 1.532 1.562
nV 2.982 2.992 3.052 2.962 4.342 4.362 4.312 4.492
t 7.82−2 7.76−2 7.89−2 7.75−2 8.92−2 8.47−2 7.91−2 8.00−2

since the well-definedness of RBFGS-W requires the locking condition. It can
be seen that the performances of the Armijo-Goldstein condition and the
Wolfe condition with the chosen algorithms are similar.

RBFGS with RV1 performs worse than RBFGS with RV2 in the sense of
number of function and gradient evaluations. This implies that the locking
condition, to some extent, reduces the number of function and gradient
evaluations in RBFGS with either the Armijo-Goldstein condition or the
Wolfe condition. Note that even though h′(t) at t ̸= 0 is not used in the
Armijo-Goldstein line search condition, the locking condition can still reduce
the number of function and gradient evaluations. However, due to the low
complexities on vector transport, RBFGS-A with RV1 still have competitive
performance in the sense of computational time.

6 Conclusion

The results demonstrate the global convergence expected in the algorithm.
While the locking condition is no longer required, we see that using it reduces
the number of function and gradient evaluations. For problems such as joint
diagonalization with large enough N so those evaluations are dominated
computationally, a reduction in overall time results.
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