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A BROYDEN CLASS OF QUASI-NEWTON METHODS FOR

RIEMANNIAN OPTIMIZATION
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Abstract. This paper develops and analyzes a generalization of the Broyden class of quasi-
Newton methods to the problem of minimizing a smooth objective function f on a Riemannian
manifold. A condition on vector transport and retraction that guarantees convergence and facilitates
efficient computation is derived. Experimental evidence is presented demonstrating the value of
the extension to the Riemannian Broyden class through superior performance for some problems
compared to existing Riemannian BFGS methods, in particular those that depend on differentiated
retraction.
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1. Introduction. In the classical Euclidean setting, the Broyden class (see,
e.g., [22, §6.3]) is a family of quasi-Newton methods that depend on a real parameter,
φ. Its Hessian approximation update formula is Bk+1 = (1 − φk)B

BFGS
k+1 + φkB

DFP
k+1 ,

where BBFGS
k+1 stands for the update obtained by the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) method and BDFP
k+1 for the update of the Davidon–Fletcher–Powell

(DFP) method. Therefore, all members of the Broyden class satisfy the well-known
secant equation, central to many quasi-Newton methods. For many years, BFGS,
φ = 0, was the preferred member of the family, as it tends to perform better in
numerical experiments. Analyzing the entire Broyden class was nevertheless a topic
of interest in view of the insight that it gives into the properties of quasi-Newton
methods; see [11] and the many references therein. Subsequently, it was found that
negative values of φ are desirable [34, 10] and recent results reported in [19] indicate
that a significant improvement can be obtained by exploiting the freedom offered by
φ.

The problem of minimizing a smooth objective function f on a Riemannian mani-
fold has been a topic of much interest over the past few years due to several important
applications. Recently considered applications include matrix completion problem-
s [8, 21, 12, 33], truss optimization [26], finite-element discretization of Cosserat rod-
s [27], matrix mean computation [6, 4], and independent component analysis [31, 30].
Research efforts to develop and analyze optimization methods on manifolds can be
traced back to the work of Luenberger [20]; they concern, among others, steepest-
descent methods [20], conjugate gradients [32], Newton’s method [32, 3], and trust-
region methods [1, 5]; see also [2] for an overview.

The idea of quasi-Newton methods on manifolds is not new, however, the litera-
ture of which we are aware restricts consideration to the BFGS quasi-Newton method.
Gabay [15] discussed a version using parallel transport on submanifolds of Rn. Brace
and Manton [9] applied a version on the Grassmann manifold to the problem of
weighted low-rank approximations. Qi [25] compared the performance of different
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vector transports for a version of BFGS on Riemannian manifolds. Savas and Lim
[28] proposed a BFGS and limited memory BFGS methods for problems with cost
functions defined on a Grassmannian and applied the methods to the best multilinear
rank approximation problem. Ring and Wirth [26] systematically analyzed a version
of the BFGS on Riemannian manifolds which requires differentiated retraction. Seib-
ert et al. [29] discussed the freedom available when generalizing BFGS to Riemannian
manifolds and analyzed one generalization of BFGS method on Riemannian manifolds
that are isometric to R

n.

In view of the above considerations, generalizing the Broyden family to manifolds
is an appealing endeavor, which we undertake in this paper. For φ = 0 (BFGS) the
proposed algorithm is quite similar to the BFGS method of Ring and Wirth [26].
Notably, both methods rely on the framework of retraction and vector transport
developed in [3, 2]. The BFGS method of [26] is more general in the sense that it also
considers infinite-dimensional manifolds. On the other hand, a characteristic of our
work is that we strive to resort as little as possible to the derivative of the retraction.
Specifically, the definition of yk (which corresponds to the usual difference of gradients)
in [26] involves DfRxk

(sk), whose Riesz representation is (DRxk
(sk))

∗∇f |Rxk
(sk); here

we use the notation of [26], i.e., R is the retraction, fR = f ◦ R, sk = R−1xk
(xk+1), ∗

represents the Riemannian adjoint operator, and ∇f is the Riemannian gradient. In
contrast, our definition of yk relies on the same isometric vector transport as the one
that appears in the Hessian approximation update formula. This can be advantageous
in situations where R is defined by means of a constraint restoration procedure that
does not admit a closed-form expression. It may also be the case that the chosen R
admits a closed-form expression but that its derivative is unknown to the user. The
price to pay for using the isometric vector transport in yk is satisfying a novel “locking
condition”. Fortunately, we show simple procedures that can produce a retraction
or an isometric vector transport such that the pair satisfies the locking condition. As
a result, efficient and convergent algorithms can be developed. Another contribution
with respect to [26] is that we propose a limited-memory version of the quasi-Newton
algorithm for large-scale problems.

The paper is organized as follows. The Riemannian Broyden (RBroyden) family of
algorithms and the locking condition are defined in Section 2. A convergence analysis
is presented in Section 3. Two methods of constructing an isometric vector transport
and a method of constructing a retraction related to the locking condition are derived
in Section 4. The limited-memory RBFGS is described in Section 5. The inverse
Hessian approximation formula of Ring and Wirth’s RBFGS is derived in Section 6
and numerical experiments are reported in Section 7 for all versions of the methods.
Conclusions are presented and future work suggested in Section 8.

2. RBroyden family of methods. The RBroyden family of methods is stat-
ed in Algorithm 1, and the details, in particular the Hessian approximation update
formulas in Steps 6 and 7, are explained next. A basic background in differential
geometry is assumed; such a background can be found, e.g., in [7, 2].

The concepts of retraction and vector transport can be found in [2] or [25]. Prac-
tically, the input statement of Algorithm 1 means the following. The retraction R
is a C2 mapping 1 from the tangent bundle TM ontoM such that (i) R(0x) = x for
all x ∈ M (where 0x denotes the origin of TxM) and (ii) d

dtR(tξx)|t=0 = ξx for all
ξx ∈ TxM. The restriction of R to TxM is denoted by Rx. The domain of R does

1The C2 assumption is used in Lemma 3.5.
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not need to be the whole tangent bundle, but in practice it often is, and in this paper
we make the blanket assumption that R is defined wherever needed.

Algorithm 1 RBroyden family

Input: Riemannian manifoldM with Riemannian metric g; retraction R; isometric
vector transport TS, with R as associated retraction, that satisfies (2.8); contin-
uously differentiable real-valued function f onM; initial iterate x0 ∈ M; initial
Hessian approximation B0 which is a linear transformation of the tangent space
Tx0
M that is symmetric positive definite with respect to the metric g; conver-

gence tolerance ε > 0; Wolfe condition constants 0 < c1 < 1
2 < c2 < 1;

1: k ← 0;
2: while ‖ gradf(xk)‖ > ε do

3: Obtain ηk ∈ Txk
M by solving Bkηk = − gradf(xk);

4: Set xk+1 = Rxk
(αkηk) where αk > 0 is computed from a line search procedure

to satisfy the Wolfe conditions

f(xk+1) ≤ f(xk) + c1αkg(grad f(xk), ηk),(2.1)

d

dt
f(R(tηk))|t=αk

≥ c2
d

dt
f(R(tηk))|t=0;(2.2)

5: Set xk+1 = Rxk
(αkηk);

6: Define sk = TSαkηk
αkηk and yk = β−1k gradf(xk+1)− TSαkηk

gradf(xk), where

βk = ‖αkηk‖
‖TRαkηk

αkηk‖
and TR is the differentiated retraction of R;

7: Define the linear operator Bk+1 : Txk+1
M→ Txk+1

M by

Bk+1p = B̃kp−
g(sk, B̃kp)

g(sk, B̃ksk)
B̃ksk +

g(yk, p)

g(yk, sk)
yk + φkg(sk, B̃ksk)g(vk, p)vk,

for all p ∈ Txk+1
M or equivalently

(2.3) Bk+1 = B̃k −
B̃ksk(B̃ksk)♭

(B̃ksk)♭sk
+

yky
♭
k

y♭ksk
+ φkg(sk, B̃ksk)vkv

♭
k,

where vk = yk/g(yk, sk) − B̃ksk/g(sk, B̃ksk), φk is any number in the open
interval (φc

k,∞), B̃k = TSαkηk
◦ Bk ◦ T

−1
Sαkηk

, φc
k = 1/(1 − uk), uk =

(g(yk, B̃
−1
k yk)g(sk, B̃ksk))/g(yk, sk)2, g(·, ·) denotes the Riemannian metric, and

a♭ represents the flat of a, i.e., a♭ : TxM→ R : v → g(a, v);2

8: k ← k + 1;
9: end while

A vector transport T : TM⊕ TM → TM, (ηx, ξx) 7→ Tηx
ξx with associated

retraction R is a smooth mapping such that, for all (x, ηx) in the domain of R and
all ξx, ζx ∈ TxM, it holds that (i) Tηx

ξx ∈ TR(ηx)M, (ii) T0xξx = ξx, (iii) Tηx
is a

linear map. In Algorithm 1, the vector transport TS is isometric, i.e., it additionally

2It can be shown using the Cauchy-Schwarz inequality that uk ≥ 1 and uk = 1 if and only if
there exists a constant κ such that yk = κBksk.
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satisfies (iv)

(2.4) gR(ηx)(TSηx
ξx, TSηx

ζx) = gx(ξx, ζx).

In most practical cases, TSη
exists for all η, and we make this assumption throughout.

In fact, we do not require that the isometric vector transport is smooth. The required
properties are TS ∈ C0 and for any x̄ ∈M, there exists a neighborhood U of x̄ and a
constant c0 such that for all x, y ∈ U

‖TSη
− TRη

‖ ≤ c0‖η‖(2.5)

‖T −1Sη
− T −1Rη

‖ ≤ c0‖η‖(2.6)

where η = R−1x (y), TR denotes the differentiated retraction, i.e.,

(2.7) TRηx
ξx = DR(ηx)[ξx] =

d

dt
Rx(ηx + tξx)|t=0

and ‖ · ‖ denotes the induced norm of the Riemannian metric g. In the following
analysis, we use only these two properties of isometric vector transport.

In Algorithm 1, we require the isometric vector transport TS to satisfy the locking
condition

(2.8) TSξ
ξ = βTRξ

ξ, β =
‖ξ‖

‖TRξ
ξ‖

,

for all ξ ∈ TxM and all x ∈ M. Practical ways of building such a TS are discussed
in Section 4. Observe that, throughout Algorithm 1, the differentiated retraction TR
only appears in the form TRξ

ξ, which is equal to d
dtR(tξ)|t=1. Hence TRαkηk

αkηk
is just the velocity vector of the line search curve α 7→ R(αηk) at time αk and we
are only required to be able to evaluate the differentiated retraction in the direction
transported. The computational efficiency that results is also discussed in Section 4.

The isometry condition (2.4) and the locking condition (2.8) are imposed on TS
notably because, as shown in Lemma 2.1, they ensure that the second Wolfe condi-
tion (2.2) implies g(sk, yk) > 0. Much as in the Euclidean case, it is essential that
g(sk, yk) > 0, otherwise the secant condition Bk+1sk = yk cannot hold with Bk+1 pos-
itive definite, whereas positive definiteness of the Bk’s is key to guaranteeing that the
search directions ηk are descent directions. It is possible to state Algorithm 1 without
imposing the isometry and locking conditions, but then it becomes an open question
whether the main convergence results would still hold. Clearly, some intermediate
results would fail to hold and, assuming that the main results still hold, a completely
different approach would probably be required to prove them.

When φ = 0, the updating formula (2.3) reduces to the Riemannian BFGS formula
of [25]. However, a crucial difference between Algorithm 1 and the Riemannian BFGS
of [25] lies in the definition of yk. Its definition in [25] corresponds to setting βk to

1 instead of ‖αkηk‖
‖TRαkηk

αkηk‖
. Our choice of βk allows for a convergence analysis under

more general assumptions than those of the convergence analysis of Qi [23]. Indeed,
the convergence analysis of the Riemannian BFGS of [25], found in [23], assumes that
retraction R is set to the exponential mapping and that vector transport TS is set to
the parallel transport. These specific choices remain legitimate in Algorithm 1, hence
the convergence analysis given here subsumes the one in [23]; however, several other
choices become possible, as discussed in more detail in Section 4.
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Lemma 2.1 proves that Algorithm 1 is well-defined for φk ∈ (φc
k,∞), where φc

k is
defined in Step 7 of Algorithm 1.

Lemma 2.1. Algorithm 1 constructs infinite sequences {xk}, {Bk}, {B̃k}, {αk},
{sk}, and {yk}, unless the stopping criterion in Step 2 is satisfied at some iteration.
For all k, the Hessian approximation Bk is symmetric positive definite with respect to
metric g, ηk 6= 0, and

(2.9) g(sk, yk) ≥ (c2 − 1)αkg(grad f(xk), ηk).

Proof. We first show that (2.9) holds when all the involved quantities exist and
ηk 6= 0. Define mk(t) = f(Rxk

(tηk/‖ηk‖)). We have

g(sk, yk) = g(TSαkηk
αkηk, β

−1
k grad f(xk+1)− TSαkηk

grad f(xk))

= g(TSαkηk
αkηk, β

−1
k grad f(xk+1))− g(TSαkηk

αkηk, TSαkηk
gradf(xk))

= g(β−1k TSαkηk
αkηk, gradf(xk+1))− g(αkηk, grad f(xk)) (by isometry)

= g(TRαkηk
αkηk, gradf(xk+1))− g(αkηk, grad f(xk)) (by (2.8))

= αk‖ηk‖

(

dmk(αk‖ηk‖)

dt
−

dmk(0)

dt

)

.(2.10)

Note that guaranteeing (2.10), which will be used frequently, is the key reason for
imposing the locking condition (2.8). From the second Wolfe condition (2.2), we have

(2.11)
dmk(αk‖ηk‖)

dt
≥ c2

dmk(0)

dt
.

Therefore, it follows that

(2.12)
dmk(αk‖ηk‖)

dt
−

dmk(0)

dt
≥ (c2 − 1)

dmk(0)

dt
= (c2 − 1)

1

‖ηk‖
g(gradf(xk), ηk).

The claim (2.9) follows from (2.10) and (2.12).
When Bk is symmetric positive definite, ηk is a descent direction. Observe that

the function α 7→ f(R(αηk)) remains a continuously differentiable function from R

to R which is bounded below. Therefore, the classical result in [22, Lemma 3.1]
guarantees the existence of a step size, αk, that satisfies the Wolfe conditions.

The claims are proved by induction. They hold for k = 0 in view of the assump-
tions on B0 of Step 3 and of the results above. Assume now that the claims hold for
some k. From (2.9), we have

g(sk, yk) ≥ (1− c2)αkg(grad f(xk),−ηk)

= (1− c2)αkg(grad f(xk),B
−1
k gradf(xk)) > 0.

Recall that, in the Euclidean case, sTk yk > 0 is a necessary and sufficient condition for
the existence of a positive-definite secant update (see [14, Lemma 9.2.1]), and that
BFGS is such an update [14, (9.2.10)]. From the generalization of these results to the
Riemannian case (see [23, Lemmas 2.4.1 and 2.4.2]), it follows that Bk+1 is symmetric
positive definite when φk ≡ 0.

Consider the function h(φk) : R→ R
d which gives the eigenvalues of Bk+1. Since

Bk+1 is symmetric positive definite when φk ≡ 0, we know all entries of h(0) are
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greater than 0. By calculations similar to those for the Euclidean case [10], we have

det(Bk+1) = det(Bk)
g(yk,sk)

g(sk,Bksk)
(1 + φk(uk − 1)), where φk and uk are defined in Step

7 of Algorithm 1. So det(Bk+1) = 0 if and only if φk = φc
k < 0. In other words,

h(φk) has one or more 0 entries if and only if φk = φc
k. In addition, since all entries

of h(0) are greater than 0 and h(φk) is a continuous function, we have that all entries
of h(φk) are greater than 0 if and only if φk > φc

k. Therefore, the operator Bk+1 is
positive definite when φk > φc

k. Noting that the vector transport is isometric in (2.3),
the symmetry of Bk+1 is easily verified.

3. Global convergence analysis. In this section, global convergence is proven
under a generalized convexity assumption and for φk ∈ [0, 1 − δ], where δ is any
number in (0, 1]. The behavior of the Riemannian Broyden methods with φk not
necessarily in this interval is explored in the experiments. Note the result derived in
this section also guarantees local convergence to an isolated local minimizer.

3.1. Basic assumptions and definitions. Throughout the convergence anal-
ysis, {xk}, {Bk}, {B̃k}, {αk}, {sk}, {yk}, and {ηk} are infinite sequences generated
by Algorithm 1, Ω denotes the sublevel set {x : f(x) ≤ f(x0)}, and x∗ is a local
minimizer of f in the level set Ω. The existence of such an x∗ is guaranteed if Ω is
compact, which happens, in particular, whenever the manifoldM is compact.

Coordinate expressions in a neighborhood and in tangent spaces are used when
appropriate. For an element of the manifold, v ∈M, v̂ ∈ R

d denotes the coordinates
defined by a chart ϕ over a neighborhood U , i.e., v̂ = ϕ(v) for v ∈ U . Coordinate
expressions, F̂ (x), for elements, F (x), of a vector field F onM are written in terms of
the canonical basis of the associated tangent space, TxM, via the coordinate vector
fields defined by the chart ϕ.

The convergence analysis depends on the property of (strong) retraction-convexity
formalized in Definition 3.1 and the following three additional assumptions.

Definition 3.1. For a function f : M → R : x 7→ f(x) on a Riemannian
manifoldM with retraction R, define mx,η(t) = f(Rx(tη)) for x ∈M and η ∈ TxM.
The function f is retraction-convex with respect to the retraction R in a set S if for all
x ∈ S, all η ∈ TxM and ‖η‖ = 1, mx,η(t) is convex for all t which satisfy Rx(τη) ∈ S
for all τ ∈ [0, t]. Moreover, f is strongly retraction-convex in S if mx,η(t) is strongly

convex, i.e., there exist two constants 0 < a0 < a1 such that a0 ≤
d2mx,η

dt2 (t) ≤ a1, for
all x ∈ S, all ‖η‖ = 1 and all t such that Rx(τη) ∈ S for all τ ∈ [0, t].

Assumption 3.1. The objective function f is twice continuously differentiable.
Let Ω̃ be a neighborhood of x∗ and ρ be a positive constant such that, for all

y ∈ Ω̃, Ω̃ ⊂ Ry(B(0y, ρ)) and Ry(·) is a diffeomorphism on B(0y, ρ). The existence of

Ω̃, termed ρ-totally retractive neighborhood of x∗, is guaranteed [18, §3.3]. Shrinking
Ω̃ if necessary, further assume that it is an R-star shaped neighborhood of x∗, i.e.,
Rx∗(tR−1x∗ (x)) ∈ Ω̃ for all x ∈ Ω̃ and t ∈ [0, 1]. The next two assumptions are
a Riemannian generalization of a weakened version of [11, Assumption 2.1]: in the
Euclidean setting (M is the Euclidean space Rn and the retraction R is the standard
one, i.e., Rx(η) = x+η), if [11, Assumption 2.1] holds, then the next two assumptions
are satisfied by letting Ω̃ be the sublevel set Ω.

Assumption 3.2. The iterates xk stay continuously in Ω̃, meaning that Rxk
(tηk) ∈

Ω̃ for all t ∈ [0, αk].
Observe that, in view of Lemma 2.1 (Bk remains symmetric positive definite with

respect to g), for all K > 0, the sequences {xk}, {Bk}, {B̃k}, {αk}, {sk}, {yk},
and {ηk}, for k ≥ K, are still generated by Algorithm 1. Hence, Assumption 3.2
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amounts to requiring that the iterates xk eventually stay continuously in Ω̃. Note that
Assumption 3.2 cannot be removed. To see this, consider for example the unit sphere
with the exponential retraction, where we can have xk = xk+1 with ‖αkηk‖ = 2π. (A
similar comment was made in [18] before Lemma 3.6.)

Assumption 3.3. f is strongly retraction-convex (Definition 3.1) with respect to
the retraction R in Ω̃.

The definition of retraction-convexity generalizes standard Euclidean and Rie-
mannian concepts. It is easily seen that (strong) retraction-convexity reduces to
(strong) convexity when the function is defined on Euclidean space. It can be shown
that when R is the exponential mapping, (strong) retraction-convexity is ordinary
(strong) convexity for a C2 function based on the definiteness of its Hessian. It also
can be shown that a set S as in Definition 3.1 always exists around a nondegenerate
local minimizer of a C2 function (Lemma 3.1).

Lemma 3.1. Suppose Assumption 3.1 holds and Hess f(x∗) is positive definite.
Define mx,η(t) = f(Rx(tη)). Then there exist a ̺-totally retractive neighborhood N
of x∗ and two constants 0 < ã0 < ã1 such that

(3.1) ã0 ≤
d2mx,η

dt2
(t) ≤ ã1,

for all x ∈ N , η ∈ TxM, ‖η‖ = 1 and t < ̺.

Proof. By definition, we have d
dtf(Rx(tη)) = g (gradf(Rx(tη)),DRx(tη)[η]) and

d2

dt2
f(Rx(tη)) =g (Hess f(Rx(tη))[DRx(tη)[η]],DRx(tη)[η])

+ g

(

grad f(Rx(tη)),
D

dt
DRx(tη)[η]

)

,

where the definition of D
dt can be found in [2, §5.4]. Since DRx(tη)[η]|t=0 = η and

gradf(Rx(tη))|t=0,x=x∗ = 0x, it holds that
d2

dt2 f(Rx(tη))|t=0,x=x∗ = g(Hess f(x∗)[η], η).
In addition, since Hess f(x∗) is positive definite, there exist two constants 0 < b0 < b1
such that inequalities b0 < d2

dt2 f(Rx(tη))|t=0,x=x∗ < b1 hold for all η ∈ Tx∗M and

‖η‖ = 1. Note that d2

dt2 f(Rx(tη)) is continuous with respect to (x, t, η). There-
fore, there exist a neighborhood U of x∗ and a neighborhood V of 0 such that

b0/2 < d2

dt2 f(Rx(tη)) < 2b1 for all (x, t) ∈ U × V , η ∈ TxM and ‖η‖ = 1. Choose
̺ > 0 such that [−̺, ̺] ⊂ V and let N ⊂ U be a ̺-totally retractive neighborhood of
x∗.

3.2. Preliminary lemmas. The lemmas in this section provide the results need-
ed to show global convergence stated in Theorem 3.1. The strategy generalizes that
for the Euclidean case in [11]. Where appropriate, comments are included indicating
important adaptations of the reasoning to Riemannian manifolds. The main adap-
tations originate from the fact that the Euclidean analysis exploits the relationship
yk = Ḡksk ([11, (2.3)]), where Ḡ is a average Hessian of f , and this relationship does
not gracefully generalize to Riemannian manifolds (unless the isometric vector trans-
port TS in Algorithm 1 is chosen as the parallel transport, a choice we often want
to avoid in view of its computational cost). This difficulty requires alternative ap-
proaches in several proofs. The key idea of the approaches is to make use of the scaled
function mx,η(t) rather than f , a well-known strategy in the Riemannian setting.
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The first result, Lemma 3.2, is used to prove Lemma 3.4.
Lemma 3.2. If Assumptions 3.1, 3.2 and 3.3 hold then there exists a constant

a0 > 0 such that

(3.2)
1

2
a0‖sk‖

2 ≤ (c1 − 1)αkg(gradf(xk), ηk).

Constant a0 can be chosen as in Definition 3.1.
Proof. In Euclidean space, Taylor’s Theorem is used to characterize a function

around a point. A generalization of Taylor’s formula to Riemannian manifolds was
proposed in [32, Remark 3.2], but it is restricted to the exponential mapping rather
than allowing for an arbitrary retraction. This difficulty is overcome by defining a
function on a curve on the manifold and applying Taylor’s Theorem. Define mk(t) =
f(Rxk

(tηk/‖ηk‖)). Since f ∈ C2 is strongly retraction-convex on Ω̃ by Assumption

3.3, there exist constants 0 < a0 < a1 such that a0 ≤
d2mx,η(t)

dt2 ≤ a1 for all t ∈
[0, αk‖ηk‖]. From Taylor’s theorem, we know

f(xk+1)− f(xk) = mk(αk‖ηk‖)−mk(0) =
dmk(0)

dt
αk‖ηk‖+

1

2

d2mk(p)

dt2
(αk‖ηk‖)

2

= g(grad f(xk), αkηk) +
1

2

d2mk(p)

dt2
(αk‖ηk‖)

2

≥ g(grad f(xk), αkηk) +
1

2
a0(αk‖ηk‖)

2,(3.3)

where 0 ≤ p ≤ αk‖ηk‖. Using (3.3), the first Wolfe condition (2.1) and that ‖sk‖ =
αk‖ηk‖, we obtain (c1 − 1)g(gradf(xk), αkηk) ≥ a0‖sk‖

2/2.
Lemma 3.3 generalizes [11, (2.4)].
Lemma 3.3. If Assumptions 3.1, 3.2 and 3.3 hold then there exist two constants

0 < a0 ≤ a1 such that

(3.4) a0g(sk, sk) ≤ g(sk, yk) ≤ a1g(sk, sk),

for all k. Constants a0 and a1 can be chosen as in Definition 3.1.
Proof. In the Euclidean case of [11, (2.4)], the proof follows easily from the

convexity of the cost function and the resulting positive definiteness of the Hessian
over the entire relevant set. The Euclidean proof exploits the relationship yk = Ḡksk,
where Ḡk is the average Hessian, and that Ḡk must be positive definite to bound
the inner product sTk yk using the largest and smallest eigenvalues that can in turn
be bounded on the relevant set. We do not have this property on a Riemannian
manifold but the locking condition, retraction-convexity and replacing the average
Hessian with a quantity derived from a function defined on a curve on the manifold
allows the generalization.

Definemk(t) = f(Rxk
(tηk/‖ηk‖)). Using the locking condition (2.10) and Taylor’s

Theorem yields

g(sk, yk) = αk‖ηk‖

(

dm(αk‖ηk‖)

dt
−

dm(0)

dt

)

= αk‖ηk‖

∫ αk‖ηk‖

0

d2m

dt2
(s)ds,

and since g(sk, sk) = α2
k‖ηk‖

2, we have

g(sk, yk)

g(sk, sk)
=

1

αk‖ηk‖

∫ αk‖ηk‖

0

d2m

dt2
(s)ds.
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By Assumption 3.3, it follows that a0 ≤
g(sk,yk)
g(sk,sk)

≤ a1.

Lemma 3.4 generalizes [11, Lemma 2.1].
Lemma 3.4. Suppose Assumptions 3.1, 3.2 and 3.3 hold. Then there exist two

constants 0 < a2 < a3 such that

(3.5) a2‖ gradf(xk)‖ cos θk ≤ ‖sk‖ ≤ a3‖ gradf(xk)‖ cos θk,

for all k, where cos θk = −g(grad f(xk),ηk)
‖ grad f(xk)‖‖ηk‖

, i.e., θk is the angle between the search

direction ηk and the steepest descent direction, − gradf(xk).
Proof. Define mk(t) = f(Rxk

(tηk/‖ηk‖)). By (2.9) of Lemma 2.1, we have

g(sk, yk) ≥ αk(c2 − 1)g(gradf(xk), ηk) = αk(1− c2)‖ gradf(xk)‖‖ηk‖ cos θk.

Using (3.4) and noticing ‖αkηk‖ = ‖sk‖, we know ‖sk‖ ≥ a2‖ gradf(xk)‖ cos θk,
where a2 = (1− c2)/a1, proving the left inequality.

By (3.2) of Lemma 3.2, we have (c1− 1)g(gradf(xk), αkηk) ≥ a0‖sk‖2/2. Noting
‖sk‖ = αk‖ηk‖ and by the definition of cos θk, we have ‖sk‖ ≤ a3‖ gradf(xk)‖ cos θk,
where a3 = 2(1− c1)/a0.

Lemma 3.5 is needed to prove Lemmas 3.6 and 3.9. Lemma 3.5 gives a Lipschitz-
like relationship between two related vector transports applied to the same tangent
vector. T1 below plays the same role as TS in Algorithm 1.

Lemma 3.5. Let M be a Riemannian manifold endowed with two vector trans-
ports T1 ∈ C0 and T2 ∈ C∞ where T1 satisfies (2.5) and (2.6) and both transports
are associated with a same retraction R. Then for any x̄ ∈M there exists a constant
a4 > 0 and a neighborhood of x̄, U , such that for all x, y ∈ U

‖T1ηξ − T2ηξ‖ ≤ a4‖ξ‖‖η‖,

where η = R−1x y and ξ ∈ TxM.
Proof. LR(x̂, η̂) and L2(x̂, η̂) denote the coordinate form of TRη

and T2η re-
spectively. Since all norms are equivalent for a finite dimensional space, there exist
0 < b1(x) < b2(x) such that b1(x)‖ξx‖ ≤ ‖ξ̂x‖2 ≤ b2(x)‖ξx‖ for all x ∈ U , where ‖ · ‖2
denotes the Euclidean norm, i.e., 2-norm. By choosing U compact, it follows that
b1‖ξx‖ ≤ ‖ξ̂x‖2 ≤ b2‖ξx‖ for all x ∈ U where 0 < b1 < b2, b1 = minx∈U b1(x) and
b2 = maxx∈U b2(x). It follows that

‖T1ηξ − T2ηξ‖

= ‖T1ηξ − TRη
ξ + TRη

ξ − T2ηξ‖ ≤ c0‖η‖‖ξ‖+ ‖TRη
ξ − T2ηξ‖

≤ c0‖η‖‖ξ‖+
1

b0
‖(LR(x̂, η̂)− L2(x̂, η̂))ξ̂‖2

≤ c0‖η‖‖ξ‖+
1

b0
‖ξ̂‖2‖LR(x̂, η̂)− L2(x̂, η̂)‖2

≤ c0‖η‖‖ξ‖+ b1‖ξ̂‖2‖η̂‖2

(since LR(x̂, 0) = L2(x̂, 0) and L2 is smooth and LR ∈ C1 because R ∈ C2.)

= a4‖ξ‖‖η‖

where b0, b1 are positive constants.
Lemma 3.6 is a consequence of Lemma 3.5.
Lemma 3.6. LetM be a Riemannian manifold endowed with a retraction R whose

differentiated retraction is denoted TR. Let x̄ ∈ M. Then there is a neighborhood U
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of x̄ and a constant ã4 > 0 such that for all x, y ∈ U , any ξ ∈ TxM with ‖ξ‖ = 1,
the effect of the differentiated retraction is bounded with

|‖TRη
ξ‖ − 1| ≤ ã4‖η‖,

where η = R−1x y.
Proof. Applying Lemma 3.5 with T1 = TR and T2 isometric, we have ‖TRη

ξ −
T2ηξ‖ ≤ b0‖ξ‖‖η‖, where b0 is a positive constant. Noticing ‖ξ‖ = 1 and that ‖ · ‖
is the induced norm, we have, by an application of the triangle inequality, b0‖η‖ ≥
‖TRη

ξ − T2ηξ‖ ≥ ‖TRη
ξ‖ − ‖T2ηξ‖ = ‖TRη

ξ‖ − 1. Similarly, we have b0‖η‖ ≥ ‖T2ηξ −
TRη

ξ‖ ≥ ‖T2ηξ‖ − ‖TRη
ξ‖ = 1− ‖TRη

ξ‖ to complete the proof.
Lemma 3.7 generalizes [11, (2.13)] and implies a generalization of the Zoutendijk

Condition [22, Theorem 3.2], i.e., if cos θk does not approach 0, then according to this
lemma, the algorithm is convergent.

Lemma 3.7. Suppose Assumptions 3.1, 3.2 and 3.3 hold. Then there exists a
constant a5 > 0 such that for all k

f(xk+1)− f(x∗) ≤ (1− a5 cos
2 θk)(f(xk)− f(x∗)),

where cos θk = −g(grad f(xk),ηk)
‖ grad f(xk)‖‖ηk‖

.

Proof. The original proof in [11, (2.13)] uses the average Hessian. As when
proving Lemma 3.2, this is replaced by considering a function defined on a curve on
the manifold. Let zk = ‖R−1x∗ xk‖ and ζk = (R−1x∗ xk)/zk. Define mk(t) = f(Rx∗(tζk)).
From Taylor’s Theorem, we have

(3.6) mk(0)−mk(zk) =
dmk(zk)

dt
(0− zk) +

1

2

d2mk(p)

dt2
(0 − zk)

2,

where p is some number between 0 and zk. Notice that x∗ is the minimizer, so

mk(0) − mk(zk) ≤ 0. Also note that a0 ≤
d2mk(p)

dt2 ≤ a1 by Assumption 3.3 and
Definition 3.1. We thus have

(3.7)
dmk(zk)

dt
≥

1

2
a0zk.

Still using (3.6) and noticing that d2mk(p)
dt2 (0− zk)

2 ≥ 0, we have

(3.8) f(xk)− f(x∗) ≤
dmk(zk)

dt
zk.

Combining (3.7) and (3.8) and noticing that dmk(zk)
dt = g(gradf(xk), TRzkζk

ζk), we

have f(xk)− f(x∗) ≤ 2
a0
g2(grad f(xk), TRzkζk

ζk) and

(3.9) f(xk)− f(x∗) ≤
2

a0
‖ gradf(xk)‖

2‖TRzkζk
ζk‖

2 ≤ b0‖ gradf(xk)‖
2,

by Lemma 3.6 and the assumptions on Ω̃, where b0 is a positive constant. Using (3.5),
the first Wolfe condition (2.1) and the definition of cos θk, we obtain f(xk+1)−f(xk) ≤
−b1‖ gradf(xk)‖2 cos2 θk, where b1 is some positive constant. Using (3.9), we obtain
f(xk+1) − f(x∗) ≤ f(xk+1) − f(xk) + f(xk) − f(x∗) ≤ −b1‖ gradf(xk)‖2 cos2 θk +
f(xk)−f(x∗) ≤ − b1

b0
cos2 θk(f(xk)−f(x∗))+f(xk)−f(x∗) = (1−a5 cos

2 θk)(f(xk)−
f(x∗)), where a5 = b1/b0 is a positive constant.
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Lemma 3.8 generalizes [11, Lemma 2.2].
Lemma 3.8. Suppose Assumptions 3.1, 3.2 and 3.3 hold. Then there exist two

constants 0 < a6 < a7 such that

(3.10) a6
g(sk, B̃ksk)

‖sk‖2
≤ αk ≤ a7

g(sk, B̃ksk)

‖sk‖2
,

for all k.
Proof. We have

(1 − c2)g(sk, B̃ksk) = (1− c2)g(αkηk, αkBkηk)

= (c2 − 1)α2
kg(ηk, grad f(xk)) (by Step 3 of Algorithm 1)

≤ αkg(sk, yk) (by (2.9) of Lemma 2.1)

≤ αka1‖sk‖
2 (by (3.4)).

Therefore, we have αk ≥ a6
g(sk,B̃ksk)
‖sk‖2

, where a6 = (1−c2)/a1, giving the left inequality.

By (3.2) of Lemma 3.2, we have (c1−1)αkg(grad f(xk), ηk) ≥
1
2a0‖sk‖

2. It follows
that

(c1 − 1)αkg(gradf(xk), ηk) = (1− c1)g(Bkηk, αkηk) =
1− c1
αk

g(sk, B̃ksk).

Therefore, we have αk ≤ a7
g(sk,B̃ksk)
‖sk‖2

, where a7 = 2(1 − c1)/a0, giving the right

inequality.
Lemma 3.9 generalizes [11, Lemma 3.1, Equation (3.3)].
Lemma 3.9. Suppose Assumption 3.1 holds. Then, for all k there exists a con-

stant a9 > 0 such that

(3.11) g(yk, yk) ≤ a9g(sk, yk).

Proof. Define yPk = grad f(xk+1) − P 1←0
γk

gradf(xk), where γk(t) = Rxk
(tαkηk),

i.e., the retraction line from xk to xk+1 and Pγk
is the parallel transport along γk(t).

Details about the definition of parallel transport can be found, e.g., in [2, §5.4].
From [18, Lemma 8], we have ‖P 0←1

γk
yPk − H̄kαkηk‖ ≤ b0‖αkηk‖2 = b0‖sk‖2, where

H̄k =
∫ 1

0 P 0←t
γk

Hess f(γk(t))P
t←0
γk

dt and b0 > 0. It follows that

‖yk‖ ≤ ‖yk − yPk ‖+ ‖y
P
k ‖ = ‖yk − yPk ‖+ ‖P

0←1
γk

yPk ‖

≤ ‖yk − yPk ‖+ ‖P
0←1
γk

yPk − H̄kαkηk‖+ ‖H̄kαkηk‖

≤ ‖ gradf(xk+1)/βk − TSαkηk
gradf(xk)− grad f(xk+1) + P 1←0

γk
gradf(xk)‖

+ ‖H̄kαkηk‖+ b0‖sk‖
2

≤ ‖ gradf(xk+1)/βk − grad f(xk+1)‖+ ‖P
1←0
γk

gradf(xk)− TSαkηk
gradf(xk)‖

+ ‖H̄kαkηk‖+ b0‖sk‖
2

≤ b1‖sk‖‖ gradf(xk+1)‖+ b2‖sk‖‖ gradf(xk)‖ (by Lemmas 3.5 and 3.6)

+ b3‖sk‖+ b0‖sk‖
2 (By Assumption 3.2 and

‖Hess f‖ is bounded above in a compact set)

≤ b4‖sk‖ (By Assumption 3.2)



12 W. Huang and K. A. Gallivan and P.-A Absil

where b1, b2, b3 and b4 > 0. Therefore, by Lemma 3.3, we have g(yk,yk)
g(sk,yk)

≤ g(yk,yk)
a0g(sk,sk)

≤
b24
a0

giving the desired result.
Lemma 3.10 generalizes [11, Lemma 3.1] and as with the earlier lemmas the proof

does not use an average Hessian.
Lemma 3.10. Suppose Assumptions 3.1, 3.2 and 3.3 hold. Then there exist

constants a10 > 0, a11 > 0, a12 > 0 such that

g(sk, B̃ksk)

g(sk, yk)
≤ a10αk(3.12)

‖B̃ksk‖2

g(sk, B̃ksk)
≥ a11

αk

cos2 θk
(3.13)

|g(yk, B̃ksk)|

g(yk, sk)
≤ a12

αk

cos θk
(3.14)

for all k.
Proof. By (2.9) of Lemma 2.1, we have g(sk, yk) ≥ (c2 − 1)g(gradf(xk), αkηk).

So by the Step 3 of Algorithm 1, we obtain g(sk, yk) ≥
(1−c2)

αk
g(sk, B̃sk) and therefore

g(sk,B̃ksk)
g(sk,yk)

≤ a10αk, where a10 = 1/(1− c2), proving (3.12).

Inequality (3.13) follows from

‖B̃ksk‖2

g(sk, B̃ksk)
=

α2
k‖ gradf(xk)‖2

αk‖sk‖‖ gradf(xk)‖ cos θk

(by Step 3 of Algorithm 1 and the definition of cos θk)

=
αk‖ gradf(xk)‖

‖sk‖ cos θk
≥ a11

αk

cos2 θk
, (by (3.5))

where a11 > 0.
Finally, inequality (3.14) follows from

|g(yk, B̃ksk)|

g(sk, yk)
≤

αk‖yk‖‖ gradf(xk)‖

g(sk, yk)
(by Step 3 of Algorithm 1)

≤
a
1/2
9 αk‖ gradf(xk)‖

g1/2(sk, yk)
(by (3.11))

≤
a
1/2
9 αk‖ gradf(xk)‖

a
1/2
0 ‖sk‖

(by (3.4))

≤ a12
αk

cos θk
, (by (3.5))

where a12 is a positive constant.
Lemma 3.11 generalizes [11, Lemma 3.2].
Lemma 3.11. Suppose Assumptions 3.1, 3.2 and 3.3 hold. φk ∈ [0, 1]. Then

there exists a constant a13 > 0 such that

(3.15)

k
∏

j=1

αj ≥ ak13,

for all k ≥ 1.
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Proof. The major difference between the Euclidean and Riemannian proofs is
that in the Riemannian case, we have two operators Bk and B̃k as opposed to a single
operator in the Euclidean case. Once we have proven that they have the same trace
and determinant, the proof unfolds similarly to the Euclidean proof. The details are
given for the reader’s convenience.

Use hat to denote the coordinates expression of the operators Bk and B̃k in Al-
gorithm 1 and consider trace(B̂) and det(B̂). Note that trace(B̂) and det(B̂) are
independent of the chosen basis. Since TS is an isometric vector transport, we have
that TSαkηk

is invertible for all k, and thus

trace( ˆ̃Bk) = trace(T̂Sαkηk
B̂kT̂

−1
Sαkηk

) = trace(B̂k),

det( ˆ̃Bk) = det(T̂Sαkηk
B̂kT̂

−1
Sαkηk

) = det(B̂k).

From the update formula of Bk in Algorithm 1, the trace of the update formula is

trace(B̂k+1) = trace(B̂k) +
‖yk‖2

g(yk, sk)
+ φk

‖yk‖2

g(yk, sk)

g(sk, B̃ksk)

g(yk, sk)

− (1− φk)
‖B̃ksk‖2

g(sk, B̃ksk)
− 2φk

g(yk, B̃ksk)

g(yk, sk)
.(3.16)

Recall that φkg(sk, B̃ksk) ≥ 0. If we choose a particular basis such that the expression
of the metric is the identity, then the Broyden update equation (2.3) is exactly the

classical Broyden update equation, except that Bk is replaced by ˆ̃Bk, where Bk is
defined in [11, (1.4)], and by [11, (3.9)] we have

(3.17) det(B̂k+1) ≥ det(B̂k)
g(yk, sk)

g(sk, B̃ksk)
.

Since det and g(·, ·) are independent of the basis, it follows that (3.17) holds
regardless of the chosen basis. Using (3.11), (3.12), (3.13) and (3.14) for (3.16), we
obtain

(3.18) trace(B̂k+1) ≤ trace(B̂k) + a9 + φka9a10αk −
a11(1− φk)αk

cos2 θk
+

2φka12αk

cos θk

Notice that

αk

cos θk
=

αk‖ gradf(xk)‖‖ηk‖

−g(gradf(xk), ηk)
=

αk‖B̃ksk‖‖sk‖

g(sk, B̃ksk)

=
‖B̃ksk‖

‖sk‖

αk‖sk‖2

g(sk, B̃ksk)
≤ a7

‖B̃ksk‖

‖sk‖
(by (3.10)).(3.19)

Since the fourth term in (3.18) is always negative, cos θk ≤ 1, φk ≥ 0, (3.19) and
(3.18) imply that

trace(B̂k+1) ≤ trace(B̂k) + a9 + (φka9a10a7 + 2φka12a7)
‖B̃ksk‖

‖sk‖
.
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Since ‖B̃ksk‖
‖sk‖

≤ ‖B̃k‖ = σ1 ≤
∑d

i=1 σi = trace(B̃k), where σ1 ≥ σ2 ≥ . . . ≥

σd are the singular values of B̃k, we have trace(B̂k+1) ≤ a9 + (1 + φka9a10a7 +
2φka12a7) trace(B̂k). This inequality implies that there exists a constant b0 > 0 such
that

(3.20) trace(B̂k+1) ≤ bk0 .

Using (3.12) and (3.17), we have

(3.21) det(B̂k+1) ≥ det(B̂k)
1

a10αk
≥ det(B̂1)

k
∏

j=1

1

a10αj
.

From the geometric/arithmetic mean inequality3 applied to the eigenvalues of B̂k+1,

we know det(B̂k+1) ≤ (
trace(B̂k+1)

d )d, where d is the dimension of manifoldM. There-
fore, by (3.20) and (3.21),

k
∏

j=1

1

a10αj
≤

1

det(B̂1)

(

trace(B̂k+1)

d

)d

≤
1

det(B̂1)dd
(bd0)

k.

Thus there exists a constant a13 > 0 such that
∏k

j=1 αj ≥ ak13, for all k ≥ 1.

3.3. Main convergence result. With the preliminary lemmas in place, the
main convergence result can be stated and proven in a manner that closely follows
the Euclidean proof of [11, Theorem 3.1].

Theorem 3.1. Suppose Assumptions 3.1, 3.2 and 3.3 hold and φk ∈ [0, 1 − δ].
Then the sequence {xk} generated by Algorithm 1 converges to a minimizer x∗ of f .

Proof. Inequality (3.18) can be written as

(3.22) trace(B̂k+1) ≤ trace(B̂k) + a9 + tkαk,

where tk = φka9a10 − a11(1 − φk)/ cos
2 θk + 2φka12/ cos θk. The proof is by contra-

diction. Assume cos θk → 0, then tk → −∞ since φk is bounded away from 1, i.e.,
φk ≤ 1−δ. So there exists a constant K0 > 0 such that tk < −2a9/a13 for all k ≥ K0.
Using (3.22) and that B̂k+1 is positive definite, we have

0 < trace(B̂k+1) ≤ trace(B̂K0
) + a9(k + 1−K0) +

k
∑

j=K0

tjαj

< trace(B̂K0
) + a9(k + 1−K0)−

2a9
a13

k
∑

j=K0

αj .(3.23)

Applying the geometric/arithmetic mean inequality to (3.15), we get
∑k

j=1 αj ≥ ka13
and therefore

(3.24)

k
∑

j=K0

αj ≥ ka13 −
K0−1
∑

j=1

αj .

3For xi ≥ 0, (
∏d

i=1
xi)1/d ≤

∑d
i=1

xi/d.
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Plugging (3.24) into (3.23), we obtain

0 < trace(B̂K0
) + a9(k + 1−K0)−

2a9
a13

ka13 +
2a9
a13

K0−1
∑

j=1

αj

= trace(B̂K0
) + a9(1− k −K0) +

2a9
a13

K0−1
∑

j=1

αj .

For large enough k, the right-hand side of the inequality is negative, which contradicts
the assumption that cos θk → 0. Therefore there exists a constant ϑ and a subsequence
such that cos θkj

> ϑ > 0 for all j, i.e., there is a subsequence that does not converge
to 0. Applying Lemma 3.7 completes the proof.

4. Ensuring the locking condition. In order to apply an algorithm in the
RBroyden family, we must specify a retraction R and an isometric vector transport
TS that satisfy the locking condition (2.8). Exponential mapping and parallel trans-
port satisfy condition (2.8) with β = 1. However, for some manifolds, we do not have
the analytical form of exponential mapping and parallel transport. Even if a form is
known its evaluation may be unacceptably expensive. Two methods of constructing
an isometric vector transport given a retraction and a method for constructing a re-
traction and an isometric vector transport simultaneously are discussed in this section.
In practice, the choice of the pair must also consider if an efficient implementation is
possible.

In Sections 4.1 and 4.2, the differentiated retraction TRη
ξ is only needed for η and

ξ in the same direction, where η, ξ ∈ TxM and x ∈ M. A reduction of complexity
can follow from this restricted usage of TR. We illustrate this point for the Stiefel
manifold St(p, n) = {X ∈ R

n×p|XTX = Ip} as it is used in our experiments. Consider
the retraction by polar decomposition [2, (4.8)],

(4.1) Rx(η) = (x + η)(Ip + ηT η)−1/2.

For retraction (4.1), as shown in [17, (10.2.7)], the differentiated retraction is TRη
ξ =

zΛ + (In − zzT )ξ(zT (x + η))−1, where z = Rx(η), Λ is the unique solution of the
Sylvester equation

(4.2) zT ξ − ξT z = ΛP + PΛ

and P = yT (x+η) = (Ip+ηTη)1/2. Now consider the more specific task of computing
TRη

ξ for η and ξ in the same direction. Since TRη
ξ is linear in ξ, we can assume

without loss of generality that ξ = η. Then the solution of (4.2) has a closed form,
i.e., Λ = P−1xT ηP−1. This can be seen from

zT η − ηT z = zT (η + x− x) − (η + x− x)T z = xT z − zTx+ zT (η + x)− (η + x)T z

=xT z − zTx = xT (x+ η)(Ip + ηT η)−1/2 − (Ip + ηT η)−1/2(x+ η)Tx

=xT ηP−1 − P−1ηTx = xT ηP−1 + P−1xT η (xT η is a skew symmetric matrix)

=P (P−1xT ηP−1) + (P−1xT ηP−1)P.

The closed form solution of Λ yields a form, TRη
η = (In − zP−1ηT )ηP−1, with lower

complexity. We are not aware of such a low-complexity closed-form solution for TRη
ξ

when η and ξ are not in the same direction.
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4.1. Method 1: from a retraction and an isometric vector transport.

Given a retraction R, if an associated isometric vector transport, TI, for which there
is an efficient implementation, is known then TI can be modified so that it satisfies
condition (2.8). Consider x ∈ M, η ∈ TxM, y = Rx(η) and define the tangent

vectors ξ1 = TIηη and ξ2 = βTRη
η with the normalizing scalar β = ‖η‖

‖TRηη‖
. The

desired isometric vector transport is

(4.3) TSη
ξ =

(

id−
2ν2ν

♭
2

ν♭2ν2

)(

id−
2ν1ν

♭
1

ν♭1ν1

)

TIηξ,

where ν1 = ξ1 − ω and ν2 = ω − ξ2. ω could be any tangent vector in TyM which
satisfies ‖ω‖ = ‖ξ1‖ = ‖ξ2‖. If ω is any unit-norm vector in the space spanned by
{ξ1, ξ2}, e.g., ω = −ξ1 or −ξ2, then Py is the well-known direct rotation from ξ1 to
ξ2 in the inner product that defines ·♭. The use of the negative sign avoids numerical
cancelation as ξ1 approaches ξ2, i.e., near convergence. Two Householder reflectors are
used to preserve the orientation, which is sufficient to make TS satisfy the consistency
condition (ii) of vector transport. It can be shown that this TS satisfies conditions
(2.5) and (2.6) [17, Theorem 4.4.1].

4.2. Method 2: from a retraction and bases of tangent spaces. Method
1 modifies a given isometric vector transport TI. In this section, we show how to
construct an isometric vector transport TI from a field of orthonormal tangent bases.
Let d denote the dimension of manifoldM and let the function giving a basis of TxM
be B : x → B(x) = (b1, b2, . . . bd), where bi, 1 ≤ i ≤ d form an orthonormal basis of
TxM.

Consider x ∈ M, η, ξ ∈ TxM, y = Rx(η), B1 = B(x) and B2 = B(y). Define

B♭
1 : TxM → R

d : ηx 7→
[

gx(b
(1)
1 , ηx) . . . gx(b

(1)
d , ηx)

]T

, where b
(1)
i is the i-th

element of B1 and likewise for B♭
2. Then TI in Method 1 can be chosen to be defined

by TIη = B2B
♭
1. Simplifying (4.3) yields the desired isometric vector transport

TSη
ξ = B2

(

I −
2v2v

T
2

vT2 v2

)(

I −
2v1v

T
1

vT1 v1

)

B♭
1ξ,

where v1 = B♭
1η−w, v2 = w−βB♭

2TRη
η. w can be any vector such that ‖w‖ = ‖B♭

1η‖ =

‖βB♭
2TRη

η‖, and choosing w = −B♭
1η or −βB♭

2TRη
η yields a direct rotation.

The problem therefore becomes how to build the function B. Absil et al. [2,
p. 37] give an approach based on (U , ϕ), a chart of the manifold M, that yields
a smooth B defined in the chart domain. Ei, the i-th coordinate vector field of
(U , ϕ) on U , is defined by (Eif)(x) := ∂i(f ◦ ϕ−1)(ϕ(x)) = D(f ◦ ϕ−1)(ϕ(x))[ei].
These coordinate vector fields are smooth and every vector field ξ ∈ TM admits
the decomposition ξ =

∑

i(ξϕi)Ei on U , where ϕi is the i-th component of ϕ. The

function B̃ : x 7→ B̃(x) = (E2, E2, . . . , Ed) is a smooth function that builds a basis
on U . Finally, any orthogonalization method, such as the Gram-Schmidt algorithm
or a QR decomposition, can be used to get an orthonormal basis giving the function
B : x → B(x) = B̃(x)M(x), where M(x) is an upper triangle matrix with positive
diagonal terms.

4.3. Method 3: from a transporter. Let L(TM,TM) denote the fiber bun-
dle with base spaceM×M such that the fiber over (x, y) ∈ M×M is L(TxM,TyM),
the set of all linear maps from TxM to TyM. We define a transporter L on M
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to be a smooth section of the bundle L(TM,TM)—that is, for (x, y) ∈ M ×M,
L(x, y) ∈ L(TxM,TyM)—such that, for all x ∈M, L(x, x) = id. Given a retraction
R, it can be shown that T defined by

(4.4) Tηx
ξx = L(x,Rx(ηx)) ξx

is a vector transport with associated retraction R. Moreover, if L(x, y) is isomet-
ric from TxM to TyM, then the vector transport (4.4) is isometric. (The term
transporter was used previously in [24] in the context of embedded submanifolds.)

In this section, it is assumed that an efficient transporter L is given, and we show
that the retraction R defined by the differential equation

(4.5)
d

dt
Rx(tη) = L(x,Rx(tη))η, Rx(0) = x

and the resulting vector transport T defined by (4.4) satisfy the locking condition (2.8).
To this end, let η be an arbitrary vector in TxM. We have Tηη = L(x,Rx(η))η =
d
dtRx(tη)|t=1 = d

dτRx(η+ τη))|τ=0 = TRη
η, where we have used (4.4), (4.5) and (2.7).

That is, R and T satisfy the locking condition (2.8) with β = 1. For some manifolds,
there exist transporters such that (4.5) has a closed solution, e.g., the Stiefel manifold
[17, §10.2.3] and the Grassmann manifold [17, §10.6.3].

5. Limited-memory RBFGS. In the form of RBroyden methods discussed
above, explicit representations are needed for the operators Bk, B̃k, TSαkηk

, and

T −1Sαkηk

. These may not be available. Furthermore, even if explicit expressions are

known, applying them may be unacceptably expensive computationally, e.g., the ma-
trix multiplication required in the update of Bk. Generalizations of the Euclidean
limited-memory BFGS method can solve this problem for RBFGS. The idea of limited-
memory RBFGS (LRBFGS) is to store some number of the most recent sk and yk
and to transport those vectors to the new tangent space rather than the entire matrix
Hk.

For RBFGS, the inverse update formula is Hk+1 = V♭
kH̃kVk + ρksks

♭
k, where

H̃k = TSαkηk
◦Hk ◦T

−1
Sαkηk

, ρk = 1
g(yk,sk)

and Vk = id−ρkyks♭k. If the ℓ+1 most recent

sk and yk are stored then we have

Hk+1 = Ṽ♭
kṼ

♭
k−1 · · · Ṽ

♭
k−ℓH̃

0
k+1Ṽk−ℓ · · · Ṽk−1Ṽk

+ ρk−ℓṼ
♭
kṼ

♭
k−1 · · · Ṽ

♭
k−ℓ+1s

(k+1)
k−ℓ s

(k+1)
k−ℓ

♭
Ṽk−ℓ+1 · · · Ṽk−1Ṽk

+ · · ·+ ρks
(k+1)
k s

(k+1)
k ,

where Ṽi = id−ρiy
(k+1)
i s

(k+1)
i

♭
, H̃0

k+1 is the initial Hessian approximation for step

k + 1, s
(k+1)
i represents a tangent vector in Txk+1

M given by transporting si and

likewise for y
(k+1)
i . The details of transporting si, yi to s

(k+1)
i , y

(k+1)
i are given later.

Note that H̃0
k+1 is not necessarily H̃k−ℓ. It can be any positive definite self-adjoint

operator. Similar to the Euclidean case, we use

(5.1) H̃0
k+1 =

g(sk, yk)

g(yk, yk)
id .

It is easily seen that Step 4 to Step 13 of Algorithm 2 yield ηk+1 = −Hk+1 gradf(xk+1)
(generalized from the two-loop recursion, see e.g., [22, Algorithm 7.4]), and only the
action of TS is needed.
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Algorithm 2 LRBFGS

Input: Riemannian manifoldM with Riemannian metric g; a retraction R; isometric
vector transport TS that satisfies (2.8); smooth function f on M; initial iterate
x0 ∈M; an integer ℓ > 0.

1: k = 0, ε > 0, 0 < c1 < 1
2 < c2 < 1, γ0 = 1, l = 0;

2: while ‖ gradf(xk)‖ > ε do

3: H0
k = γk id. Obtain ηk ∈ Txk

M by the following algorithm:
4: q ← grad f(xk)
5: for i = k − 1, k − 2, . . . , l do

6: ξi ← ρig(s
(k)
i , q);

7: q ← q − ξiy
(k)
i ;

8: end for

9: r ← H0
kq;

10: for i = l, l + 1, . . . , k − 1 do

11: ω ← ρig(y
(k)
i , r);

12: r ← r + s
(k)
i (ξi − ω);

13: end for

14: set ηk = −r;
15: find αk that satisfies Wolfe conditions

f(xk+1) ≤ f(xk) + c1αkg(gradf(xk), ηk)

d

dt
f(Rx(tηk))|t=αk

≥ c2
d

dt
f(Rx(tηk)|t=0

16: Set xk+1 = Rxk
(αkηk);

17: Define s
(k+1)
k = TSαkηk

αkηk, y
(k+1)
k = gradf(xk+1)/βk−TSαkηk

grad f(xk), ρk =

1/g(s
(k+1)
k , y

(k+1)
k ), γk+1 = g(s

(k+1)
k , y

(k+1)
k )/‖y

(k+1)
k ‖2, and βk = ‖αkηk‖

‖TRαkηk
αkηk‖

;

18: Let l = max{k − ℓ, 0}. Add s
(k+1)
k , y

(k+1)
k and ρk into storage and if k > ℓ,

then discard vector pair {s
(k)
l−1, y

(k)
l−1} and scalar ρl−1 from storage; Transport

s
(k)
l , s

(k)
l+1, . . . , s

(k)
k−1 and y

(k)
l , y

(k)
l+1, . . . , y

(k)
k−1 from Txk

M to Txk+1
M by TS, then

get s
(k+1)
l , s

(k+1)
l+1 , . . . , s

(k+1)
k−1 and y

(k+1)
l , y

(k+1)
l+1 , . . . , y

(k+1)
k−1 ;

19: k = k + 1;
20: end while

Algorithm 2 is a limited-memory algorithm based on this idea.

Note Step 18 of Algorithm 2. The vector s
(k+1)
k−m is obtained by transporting

s
(k−m+1)
k−m m times. If the vector transport is insensitive to finite precision then the

approach is acceptable. Otherwise, s
(k+1)
k−m may be not in Txk+1

M. Care must be taken

to avoid this situation. One possibility is to project s
(k+1)
i , y

(k+1)
i , i = l, l+1, . . . , k−1

to tangent space Txk+1
M after every transport.

6. Ring and Wirth’s RBFGS update formula. In Ring andWirth’s RBFGS
[26] for infinite dimensional Riemannian manifolds, the direction vector ηk is chosen as
the solution in Txk

M of the equation BRW
k (ηk, ξ) = D fRxk

(0)[ξ] = g(− gradf(xk), ξ)
for all ξ ∈ Txk

M, where fRxk
= f ◦Rxk

.
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The update in [26] is

BRW
k+1(TSαkηk

ζ, TSαkηk
ξ) = BRW

k (ζ, ξ)−
BRW
k (sk, ζ)BRW

k (sk, ξ)

BRW
k (sk, sk)

+
yRWk (ζ)yRWk (ξ)

yRWk (sk)
,

where sk = R−1xk
(xk+1) ∈ Txk

M and yRWk = D fRxk
(sk) − D fRxk

(0) is a cotangent
vector at xk, i.e., D fRxk

(sk)[ξ] = g(gradf(Rxk
(sk)), TRsk

ξ) for all ξ ∈ Txk
M. One

can equivalently define yRWk to be y♭k, where yk = T ∗Rsk
grad f(Rxk

(sk)) − grad f(xk)

is in the tangent space Txk
M. Similarly, in order to ease the comparison by falling

back to the conventions of Algorithm 1, define Bk to be the linear transformation of
Txk
M by BRW

k (ζ, ξ) = ζ♭Bkξ. Then the update in [26] becomes

T −1Sαkηk
◦ Bk+1 ◦ TSαkηk

= Bk −
Bksk(Bksk)♭

(Bksk)♭sk
+

yky
♭
k

y♭ksk
.

Since the vector transport is isometric, the update can be equivalently applied on
Txk+1

M and yields

Bk+1 = B̃k −
B̃ksk(B̃ksk)♭

(B̃ksk)♭sk
+

ỹkỹ
♭
k

ỹ♭ksk
,

where sk and B̃k are defined in Algorithm 1 and

(6.1) ỹk = TSαkηk
T ∗Rsk

grad f(Rxk
(sk))− TSαkηk

grad f(xk) ∈ Txk+1
M.

Comparing the definition of yk in Algorithm 1 to (6.1), one can see that the difference
between the updates in Algorithm 1 and [26] is that yk uses a scalar 1

βk
while ỹk uses

TSαkηk
T ∗Rsk

.

7. Experiments. To investigate the performance of the RBroyden family of
methods, we consider the minimization of the Brockett cost function

f : St(p, n)→ R : X 7→ trace(XTAXN),

which finds p smallest eigenvalues and corresponding eigenvectors of A, where N =
diag(µ1, . . . , µp) with µ1 > · · · > µp > 0, A ∈ R

n×n and A = AT . It has been shown
that the columns of a global minimizer, X∗ei, are eigenvectors for the p smallest
eigenvalues, λi, ordered so that λ1 ≤ · · · ≤ λp [2, §4.8].

The Brockett cost function is not a retraction-convex function on the entire do-
main. However, for generic choices of A, the cost function is strongly retraction-convex
in a sublevel set around any global minimizer. RBroyden algorithms do not require
retraction-convexity to be well-defined and all converge to a global minimizer of the
Brockett cost function if started sufficiently close.

For our experiments we view St(p, n) as an embedded submanifold of the Eu-
clidean space R

n×p endowed with the Euclidean metric 〈A,B〉 = trace(ATB). The
corresponding gradient can be found in [2, p. 80].

7.1. Methods tested. For problems with sizes moderate enough to make dense
matrix operations acceptable in the complexity of a single step, we tested algorithms
in the RBroyden family using the inverse Hessian approximation update

(7.1) Hk+1 = H̃k −
H̃kyk(H̃∗kyk)

♭

(H̃∗kyk)
♭yk

+
sks

♭
k

s♭kyk
+ φ̃kg(yk, H̃kyk)uku

♭
k,



20 W. Huang and K. A. Gallivan and P.-A Absil

where uk = sk/g(sk, yk) − H̃kyk/g(yk, H̃kyk). It can be shown that if Hk = B−1k ,
φk ∈ [0, 1) and

(7.2) φ̃k =
(1− φk)g

2(yk, sk)

(1 − φk)g2(yk, sk) + φkg(yk, H̃kyk)g(sk, B̃ksk)
∈ (0, 1],

then Hk+1 = B−1k+1. The Euclidean version of the relationship between φk and φ̃k can

be found, e.g., in [16, (50)]. In our tests, we set variable φ̃k to Davidon’s value φ̃D
k

defined in (7.6) or we set φ̃k = φ̃ = 1.0, 0.8, 0.6, 0.4, 0.2, 0.1, 0.01, 0. For these problem
sizes the inverse Hessian approximation update tends to be preferred to the Hessian
approximation update since it avoids solving a linear system. Our experiments on
problems of moderate size also include the RBFGS in [26] with the inverse Hessian
update formula [26, (7)].

Finally, we investigate the performance of the LRBFGS for problems of moderate
size and problems with much larger sizes. In the latter cases, since dense matrix
operations are too expensive computationally and spatially, LRBFGS is compared to
a Riemannian conjugate gradient method, RCG, described in [2]. All experiments are
performed in Matlab R2014a on a 64 bit Ubuntu platform with 3.6 GHz CPU(Intel(R)
Core(TM) i7-4790).

7.2. Vector transport and retraction. Sections 2.2 and 2.3 in [18] provide
methods for representing a tangent vector and constructing isometric vector transports
when the d-dimensional manifoldM is a submanifold of Rw. If the codimension w−d
is not much smaller than w, then a d-dimensional representation for a tangent vector
and an isometric transporter by parallelization

L(x, y) = ByB
♭
x

are preferred, where B : V → R
w×d : z 7→ Bz is a smooth function defined on an open

set V ofM and the columns of Bz form an orthonormal basis of TzM. Otherwise,
a w-dimensional representation for a tangent vector and an isometric transporter by
rigging

L(x, y) = G
− 1

2
y (I −QxQ

T
x −QyQ

T
x )G

1
2
x

are preferred, where Gz denotes a matrix expression of gz, i.e., gz(ηz , ξz) = ηTz Gzηz ,
Qx is given by orthonormalizing (I − Nx(N

T
x Nx)

−1NT
x )Ny, likewise with x and y

interchanged for Qy, and N : V → R
(w−d)×d : z 7→ Nz is a smooth function defined

on an open set V of M and the columns of Nz form an orthonormal basis of the
normal space at z. In particular for St(p, n), w and d are np and np − p(p + 1)/2
respectively. Methods of obtaining smooth functions to build smooth bases of the
tangent and normal spaces for St(p, n) are discussed in [18, Section 5].

We use the ideas in Section 4.3 applied to the isometric transporter derived from
the parallelizationB introduced in [18, Section 5] to define a retractionR. The details,
worked out in [17, §10.2.3], yield the following result. Let X ∈ St(p, n). We have

(7.3) (RX(η) RX(η)⊥) = (X X⊥)

(

exp

(

Ω −KT

K 0(n−p)×(n−p)

))

,

where Ω = XT η, K = XT
⊥η and given M ∈ R

n×p, M⊥ ∈ R
n×(n−p) denotes a matrix

that satisfies MT
⊥M⊥ = I(n−p)×(n−p) and MTM⊥ = Ip×(n−p). The function

(7.4) Y = RX(η)
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is the desired retraction. The matrix Y⊥ required in the definition of the basis BY is
set to be RX(η)⊥ given by (7.3).

Since the RBFGS in [26] does not require the locking condition, retractions other
than (7.4) may be used. For example, the qf retraction [2, (4.7)],

(7.5) Rx(η) = qf(x+ η),

where qf denotes the Q factor of the QR decomposition with nonnegative elements on
the diagonal of R, does not satisfy the locking condition and is less computationally
expensive than (4.1) and (7.4). We have verified experimentally that using the qf
retraction rather than (7.4) in the RBFGS of [26] produces smaller computational
times. Therefore, the RBFGS of [26] experiments use the qf retraction and vector
transport by parallelization.

The closed form of the differentiated qf retraction exists and the cotangent vector
D fRx

(s) required by Ring and Wirth is computationally inexpensive for the Stiefel
manifold. The computational details can be found in [17, §10.2.4] and we give the
result:

D fRx
(s) = ((yT (x + s))−1(2 triu(grad f(Rx(s))

T y)yT + gradf(Rx(s))
T (I − yyT ))),

where y = Rx(s) and (triu(M))i,j = Mi,j if i < j and (triu(M))i,j = 0 otherwise.

7.3. Notation, algorithm parameters and test data parameters. Given
a search direction for a RBroyden algorithm, the step size αk is set using the line
search algorithm in [14, Algorithm A6.3.1mod] for optimizing a smooth function of
a scalar. The constants c1 and c2 in the Wolfe conditions are taken to be 10−4 and
0.999 respectively. The initial step size for the line search algorithm is given by the
approach in [22, Page 60].

Unless otherwise indicated in the description of the experiments, the problems
are defined by setting A = Z + ZT where the elements of Z are drawn from the
standard normal distribution using Matlab’s randn with seed 1, N is a diagonal
matrix whose diagonal elements are integers from 1 to p, i.e., N = diag(p, p−1, . . . , 1).
The initial iterate X0 is given by applying Matlab’s function orth to a matrix whose
elements are drawn from the standard normal distribution. The identity is used as the
initial Hessian inverse approximation, the intrinsic dimension representation is used
for a tangent vector, and vector transport is defined by parallelization. The stopping
criterion requires that the ratio of the norm of initial gradient and the norm of final
gradient is less than 10−6.

To obtain sufficiently stable timing results, an average time is taken of several
runs with identical parameters for a total runtime of at least 1 minute.

7.4. Performance for different φ. Most of the existing literature investigates
the effects of the coefficient φk in the Hessian approximation update formula. In [11],
Byrd et al. claim that in Euclidean space, the ability to correct eigenvalues of the
Hessian approximation that are much larger than the eigenvalues of the true Hessian
degrades for larger φ values. Our experiments show the same trend on manifolds (see
Table 1) and RBFGS is seen to be the best at such a correction among the restricted
RBroyden family methods.

Strategies for choosing φk and allowing it to be outside [0, 1] have been investi-
gated. Davidon [13] defines an update for φk by minimizing the condition number of
B−1k Bk+1, subject to preserving positive definiteness. We have generalized this up-
date to Riemannian manifolds for both the Hessian approximation (2.3) and inverse
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Hessian approximation (7.1) forms to obtain

φD
k =







g(yk,sk)(g(yk,B̃
−1

k
yk)−g(yk,sk))

g(sk,B̃ksk)g(yk,B̃
−1

k
yk)−g(yk,sk)2

, if g(yk, sk) ≤
2g(sk,B̃ksk)g(yk,B̃

−1

k
yk)

g(sk,B̃ksk)+g(yk,B̃
−1

k
yk)

;
g(yk,sk)

g(yk,sk)−g(sk,B̃ksk)
, otherwise

φ̃D
k =







g(yk,sk)(g(sk,H̃
−1

k
sk)−g(yk,sk))

g(yk,H̃kyk)g(sk,H̃
−1

k
sk)−g(yk,sk)2

, if g(yk, sk) ≤
2g(sk,H̃

−1

k
sk)g(yk,H̃kyk)

g(sk,H̃
−1

k
sk)+g(yk,H̃kyk)

;
g(yk,sk)

g(yk,sk)−g(yk,H̃kyk)
, otherwise.

(7.6)

The “otherwise” clauses in the definitions correspond to the two forms of the Rie-
mannian SR-1 method [18].

We point out that Byrd et al. [10] use negative values of φ to improve the
performance of the Hessian approximation form. However, their experiments require
solving a linear system to find zk = Hess f(xk)

−1vk. Their purpose was, of course,
to demonstrate a theoretical value of φk and not to recommend the specific form for
computation which by involving the Hessian is inconsistent with the goal of quasi-
Newton methods. In the Riemannian setting, the action of the Hessian is often known
rather than the Hessian itself, i.e., given η ∈ TxM, Hess f(x)[η] is known. So zk could
be approximated by applying a few steps of an iterative method such as CG to the
system of equations. Also, the Hessian could be recovered given a basis for TxM and
the linear system solved but this is an excessive amount of work. Therefore, we test
only the generalization of Davidon’s update, φ̃D

k .

Since we work on the inverse Hessian approximation update, φ̃k ≡ 1 corresponds
to RBFGS and φ̃k ≡ 0 corresponds to RDFP. Also note we are testing the restricted
RBroyden family since 0 ≤ φ̃k ≤ 1 implies 0 ≤ φk ≤ 1. The parameters n and p
are chosen to be 12 and 8 respectively. To show the differences among the RBroyden
family with different φk, the initial inverse Hessian approximation H0 is set to be
diag(1, 1, . . . , 1, 1/50, 1/10000) ∈ R

d×d. This kind of choice for H0 has been
used in [10]. The matrix A is set to be QDQT where Q is obtained by applying
matlab ORTH command on a matrix whose entries are drawn from the standard
normal distribution, D = diag(0, 0, . . . , 0, 0.01/(n − p), 0.02/(n − p), . . . , 0.01(n −
p)/(n− p)), the number of 0 is p. Note that minimizers are not isolated with this D.
The experiments thus illustrate the fact, well-known in the Euclidean case, that the
method may converge when the strong convexity assumption (Assumption 3.3) is not
satisfied.

Table 1 shows the average results of 10 runs with random Q and initial iterate.
There is a clear preference in performance for choosing the constant φ̃ near 1.0 to yield
RBFGS or a nearby method. Davidon’s update does not perform better than RBFGS
in general. However, for the Brockett cost function with this particular eigenvalue
distribution, i.e., the form of D, Davidon’s update performs better than RBFGS in
the sense of number of iterations. How to efficiently and effectively choose φ̃k or φk

for general problems is still an open question in Riemannian optimization research.

7.5. Comparison of RBFGS, Ring and Wirth’s RBFGS and LRBFGS.

Ring and Wirth’s RBFGS [26] is a potentially competitive alternative to the family
of RBroyden methods. This is particularly true on the Stiefel manifold, since the qf
retraction, transport using the differentiated qf retraction and the intrinsic dimension
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φ̃k φ̃D
k 1.0 0.8 0.6 0.4 0.2 0.1 0.01 0

iter 1.632 1.842 1.982 2.232 2.642 3.552 4.712 1.493 1.235
nf 1.642 1.852 1.992 2.242 2.652 3.572 4.722 1.493 1.235
ng 1.642 1.852 1.992 2.242 2.652 3.572 4.722 1.493 1.235
nH 3.242 3.662 3.942 4.432 5.262 7.092 9.392 2.983 2.455
nV 4.872 5.502 5.922 6.662 7.912 1.063 1.413 4.473 3.685
nR 1.632 1.842 1.982 2.232 2.642 3.562 4.712 1.493 1.235
gff 3.45−8 3.29−8 4.43−8 4.39−8 4.90−8 5.07−8 5.27−8 5.31−8 5.52−8

gff
gf0

6.26−7 6.07−7 7.87−7 7.87−7 8.80−7 9.08−7 9.40−7 9.48−7 9.85−7

t 1.47−1 1.51−1 1.65−1 1.82−1 2.15−1 2.84−1 3.73−1 1.19 9.731
Table 1

Comparison of RBroyden family for φ̃D
k and several constant φ̃k. As mentioned in Section 7.4,

φ̃k ≡ 1 corresponds to RBFGS and φ̃k ≡ 0 to RDFP. The average number of Riemannian SR1
updates in Davidon’s update is 5.1. The subscript −k indicates a scale of 10−k. iter, nf, ng, nV, nR
denote the number of iterations, the number of function evaluations, the number of gradient e-
valuations, the number of actions of a vector transport and the number of actions of a retraction
respectively. nH denotes the number of operations of the form Hess f(x)η or Bη. t denotes the run
time (seconds). gf0 and gff denote the initial and final norm of the gradient.

(n, p) (12, 6) (12, 12) (24, 12) (24, 24)
method RBFGS RW RBFGS RW RBFGS RW RBFGS RW
iter 6.631 8.541 7.931 7.981 2.052 2.472 2.342 2.312
nf 7.441 9.631 8.721 9.171 2.112 2.532 2.372 2.352
ng 6.641 8.561 7.931 8.001 2.052 2.472 2.352 2.312
nV 1.962 1.702 2.352 1.582 6.132 4.922 7.002 4.602
nR 7.341 9.531 8.621 9.071 2.102 2.522 2.362 2.342
gff 4.34−5 5.17−5 5.11−5 6.15−5 2.23−4 2.15−4 3.04−4 3.08−4

gff/gf0 6.39−7 7.53−7 5.57−7 6.76−7 8.40−7 8.09−7 9.18−7 9.26−7

t 5.30−2 6.97−2 6.64−2 6.59−2 2.39−1 2.78−1 3.21−1 3.25−1

Table 2

Comparison of RBFGS and RW for an average of 10 random runs. The subscript −k indicates
a scale of 10−k.

form of a cotangent vector all have relatively efficient computational forms described
in Section 7.2.

Table 2 contains the results for Brockett’s cost function with multiple sizes of
the Stiefel manifold for the efficient Ring and Wirth algorithm (RW) and RBFGS
using isometric vector transport by parallelization and retraction (7.4). RBFGS is
a competitive method even though RW was run with the retraction (qf) that makes
it most efficient. The smaller time advantage on the largest problem indicates that
the dense matrix computations are beginning to mask the effects of other algorithmic
choices. This motivates a comparison with the LRBFGS method intended to limit
the use of dense matrices with the full dimension of the problem.

The performance results for RBFGS and LRBFGS with different values of the
parameter ℓ are given in Table 3 for Brockett’s cost function with n = p = 32. As
expected, the number of iterations required by LRBFGS to achieve a reduction in
the norm of the gradient comparable to RBFGS decreases as ℓ increases but remains
higher than the number required by RBFGS. The benefit of LRBFGS is seen in
computation times that are superior or similar to that of RBFGS for ℓ ≤ 8. This
clearly indicates that, for this range of ℓ, the approximation of the inverse of the
Hessian is of suitable quality in LRBFGS so that the number of less complex iterations
is kept sufficiently small to solve the problem in an efficient manner. The advantage
is lost, as expected, once ℓ becomes too large for the size of the given problem. In
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method RBFGS LRBFGS
ℓ 1 2 4 8 16 32

iter 3.402 7.602 6.782 6.092 5.842 5.382 4.912
nf 3.432 8.012 6.912 6.142 5.872 5.422 4.942
ng 3.402 7.602 6.782 6.092 5.842 5.382 4.912
nV 1.023 2.283 3.393 5.473 9.863 1.754 3.094
nR 3.422 8.002 6.902 6.132 5.862 5.412 4.932
gff 5.72−4 5.28−4 5.25−4 5.21−4 5.35−4 5.69−4 5.44−4

gff/gf0 9.62−7 8.90−7 8.82−7 8.74−7 8.98−7 9.57−7 9.15−7

t 1.02 6.53−1 6.62−1 7.41−1 9.73−1 1.36 2.08
Table 3

Comparison of LRBFGS and RBFGS for an average of 10 random runs. The subscript −k
indicates a scale of 10−k.

(n, p) (1000, 2) (1000, 3) (1000, 4) (1000, 5)
LRBFGS RCG LRBFGS RCG LRBFGS RCG LRBFGS RCG

iter 2.332 2.382 3.682 4.412 4.492 4.782 5.262 5.442
nf 2.362 7.532 3.742 1.383 4.542 1.483 5.312 1.663
ng 2.332 7.502 3.692 1.383 4.492 1.483 5.262 1.663
nV 2.093 9.862 3.303 1.813 4.033 1.953 4.723 2.203
nR 2.352 7.522 3.732 1.383 4.532 1.483 5.302 1.663
gff 1.69−4 1.90−4 2.98−4 3.21−4 4.33−4 4.76−4 5.98−4 6.49−4

gff
gf0

8.53−7 9.57−7 8.95−7 9.65−7 8.89−7 9.76−7 9.04−7 9.81−7

t 8.07−1 1.02 1.70 2.47 2.70 3.75 4.48 6.52
Table 4

Comparison of LRBFGS and RCG for an average of 10 random runs. The subscript −k
indicates a scale of 10−k.

practice, for moderately sized problems, exploiting the potential benefits of LRBFGS
requires an efficient method of choosing ℓ which depends strongly on the problem.
The results are encouraging in the sense of potential for problems large enough to
preclude the use of RW, RBFGS, or other RBroyden family members.

7.6. A large-scale problem. In the final set of experiments illustrating the
potential of the methods, LRBFGS is applied to Brockett’s cost function for several
sufficiently large values of n and p. The qf retraction is used and the isometric vector
transport is defined by applying ideas of Section 4.1 to the vector transport by rigging.
The parameter ℓ in LRBFGS is set to 4. The performance of LRBFGS is compared
to that of a Riemannian conjugate gradient algorithm (RCG) defined in [2] that is
suitable for large-scale problems. RCG uses a modified Polak-Ribiére formula (see
[22, (5.45)]) and imposes the strong Wolfe conditions with c1 = 10−4 and c2 = 10−2

by using [22, Algorithm 3.5].

The performance results for RCG and LRBFGS for several values of (n, p) are
shown in Table 4. The reductions of the norm of the initial gradient are comparable
so both algorithms provide similar optimization performance. However, the compu-
tation time required by LRBFGS to achieve the reduction is notably smaller than
the computation time required by RCG. The number of iterations for LRBFGS is
smaller or comparable to RCG but the main source of the difference in computation
time is seen in the much larger numbers of function and gradient evaluations required
by RCG. This is due to the line search having difficulty satisfying the Wolfe condi-
tions, and we conclude that LRBFGS is a viable approach for large-scale problems
characterized by Brockett’s cost function.
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8. Conclusion. We have developed a new generalization of the Broyden family
of optimization algorithms to solve problems on a Riemannian manifold. The Rie-
mannian locking condition was defined to provide a simpler approach to guaranteeing
convergence of the RBroyden family while allowing a relatively efficient implemen-
tation for many manifolds. Global convergence for a retraction-convex function was
also shown. Superlinear convergence of the RBroyden family is known to hold and
will be discussed in a forthcoming paper.

Methods of deriving efficient isometric vector transport and an associated re-
traction were given and a limited-memory version of the RBFGS was described for
storage and computational efficiency for large-scale problems. The potential of the
methods was illustrated using a range of problem sizes for Brockett’s cost function
and comparison to Ring and Wirth’s RBFGS and RCG.

Future work will address more comprehensive analysis of the choice of the param-
eters φ̃k and φk. Even though the explicit computation of the differentiated retraction
is not required by our new methods, some information about it is required. A critical
future task is the development and analysis of additional methods to derive compu-
tationally efficient retractions and isometric vector transports that require even less
information about the associated differentiated retraction or avoid it completely.
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