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Abstract. This paper presents line search algorithms for finding extrema of locally Lipschitz
functions defined on Riemannian manifolds. To this end we generalize the so-called Wolfe conditions
for nonsmooth functions on Riemannian manifolds. Using ε-subgradient-oriented descent directions
and the Wolfe conditions, we propose a nonsmooth Riemannian line search algorithm and establish
the convergence of our algorithm to a stationary point. Moreover, we extend the classical BFGS
algorithm to nonsmooth functions on Riemannian manifolds. Numerical experiments illustrate the
effectiveness and efficiency of the proposed algorithm.
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1. Introduction. This paper is concerned with the numerical solution of op-
timization problems defined on Riemannian manifolds where the objective function
may be nonsmooth. Such problems arise in a variety of applications, e.g., in com-
puter vision, signal processing, motion and structure estimation, and numerical linear
algebra; see, for instance, [1, 2, 20, 30].

It is well known that the line search strategy is one of the basic iterative ap-
proaches to find a local minimum of an objective function defined on a linear space.
For smooth functions defined on linear spaces, each iteration of a line search method
computes a search direction and then shows how far to move along that direction.
Let f : Rn → R be a smooth function and the direction p be given, and define

φ(α) = f(x+ αp).

The problem that finds a step size in the direction p such that φ(α) ≤ φ(0) is just
line search about α. If we find α such that the objective function in the direction p
is minimized, such a line search is called an exact line search. If we choose α such
that the objective function has an acceptable descent amount, such a line search is
called an inexact line search. Theoretically, an exact line search may not accelerate a
line search algorithm due to, for example, the hemstitching phenomenon. Practically,
exact optimal step sizes generally cannot be found, and it is also expensive to find
almost exact step sizes. Therefore the inexact line search with less computation load
is highly popular.

∗Received by the editors December 15, 2016; accepted for publication (in revised form) January
17, 2018; published electronically March 6, 2018.

http://www.siam.org/journals/siopt/28-1/M110814.html
Funding: This paper presents research results of the Belgian Network DYSCO (Dynamical

Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme
initiated by the Belgian Science Policy Office. This work was supported by FNRS under grant PDR
T.0173.13.
†Hausdorff Center for Mathematics and Institute for Numerical Simulation, University of Bonn,

53115 Bonn, Germany (hosseini@ins.uni-bonn.de).
‡Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005

(huwst08@gmail.com).
§Department of Mathematical Sciences, University of Mazandaran, Babolsar, Iran (yousefpour@

umz.ac.ir).

596

D
ow

nl
oa

de
d 

03
/0

8/
18

 to
 1

28
.4

2.
22

7.
20

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siopt/28-1/M110814.html
mailto:hosseini@ins.uni-bonn.de
mailto:huwst08@gmail.com
mailto:yousefpour@umz.ac.ir
mailto:yousefpour@umz.ac.ir


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RIEMANNIAN OPTIMIZATION FOR LIPSCHITZ FUNCTIONS 597

A popular inexact line search condition stipulates that α should first of all give
sufficient decrease in the objective function f , as usually measured by the following
inequality, called the Armijo condition:

f(x+ αp)− f(x) ≤ c1α〈grad f(x), p〉2(1.1)

for some c1 ∈ (0, 1), where grad f(x) denotes the gradient of f at x and 〈u, v〉2
denotes the Euclidean inner product uT v. To rule out unacceptably short steps, a
second requirement called the curvature condition is used, which requires α to satisfy

〈p, grad f(x+ αp)〉2 ≥ c2〈grad f(x), p〉2

for some c2 ∈ (c1, 1), where c1 is the constant in (1.1). If α satisfies the Armijo and
curvature conditions, then we say α satisfies the Wolfe conditions.

In smooth optimization algorithms on linear spaces, Zoutendijk’s theorem de-
scribes how far the descent direction p at x can deviate from − grad f(x) to have a
globally convergent iteration. In particular, if the cosine of the angle between the
search direction p and negative of the gradient at the iteration x, defined as

cos θ =
〈− grad f(x), p〉2
‖ grad f(x)‖‖p‖

,(1.2)

is bounded away from zero and the Wolfe conditions at every iteration are satisfied,
then the convergence results can be obtained; see [25]. Indeed, classical convergence
results establish that accumulation points of the sequence of iterates are stationary
points of the objective function f and the convergence of the whole sequence to
a single limit-point is not guaranteed. The question is whether similar results are
correct in nonsmooth optimization problems. In [34], the authors generalized the
aforementioned Wolfe conditions for nonsmooth convex functions. They used the
Clarke subdifferential instead of the gradient. But to obtain convergence, one must
have not only well-chosen step lengths but also well-chosen search directions. In
nonsmooth problems the angle defined in (1.2) does not propose a proper set of search
directions. However, a condition on descent directions called subgradient-oriented for
nonsmooth objective functions on linear spaces, to find a proper search direction, has
been introduced in [26].

Euclidean spaces are not the only spaces in which optimization algorithms are
used. There are many applications of optimization on Riemannian manifolds. A
manifold, in general, does not have a linear structure, hence the usual techniques,
which are often used to study optimization problems on linear spaces, cannot be
applied and new techniques need to be developed. The common denominator of
approaches in optimization methods on manifolds is that instead of conducting a
linear step during the line search procedure, one uses retractions or defines the step
along a geodesic via the use of the exponential map.

Contribution. Our main contributions are fourfold. First, we generalize the
concept of a subgradient-oriented descent sequence from [26], to Riemannian mani-
folds. We define also a new notion called the ε-subgradient-oriented descent sequence.
Then we present a numerical search direction algorithm to find a descent direction for
a nonsmooth objective function defined on a Riemannian manifold. In this algorithm,
we use a positive definite matrix P in order to define a P-norm equivalent to the
usual norm induced by the inner product on our tangent space. If we use the iden-
tity matrix and, therefore, work with the usual norm on the tangent space, then the
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598 S. HOSSEINI, W. HUANG, AND R. YOUSEFPOUR

algorithm reduces to the descent search algorithm presented in [9]. Second, we define
a nonsmooth Armijo condition on Riemannian manifolds, which is a generalization
of the nonsmooth Armijo condition presented in [34] to a Riemannian setting. Simi-
lar to Euclidean spaces we can add a curvature condition to the nonsmooth Armijo
condition to get a nonsmooth generalization of the Wolfe conditions on Riemannian
manifolds. This curvature condition is indeed a Riemannian version of the curvature
condition presented in [34]. However, due to working on different tangent spaces, it
is not a trivial generalization and using a notion of vector transport is needed. We
present also numerical line search algorithms to find a suitable step length satisfying
the Wolfe conditions for nonsmooth optimization problems on Riemannian manifolds
and study the behavior of the algorithms. The idea of these algorithms is inspired by
some similar algorithms from [35]. Third, we combine the search direction algorithm
with the line search algorithm to define a minimization algorithm for a nonsmooth
optimization problem on a Riemannian manifold. To prove the convergence results
for our minimization algorithm, we need to have a sequence of ε-subgradient-oriented
descent directions; hence it is important to update the sequence of positive definite
matrices, which define the equivalent norms on the tangent spaces, such that the
sequences of their smallest and largest eigenvalues are bounded. As our last con-
tribution in this paper, we also plan to present a practical strategy to update the
sequence of matrices to impose such a condition on the sequences of eigenvalues. This
strategy can be seen as a version of the nonsmooth BFGS method on Riemannian
manifolds, which is presented in this setting for the first time and can be considered
as a generalization of the smooth BFGS on Riemannian manifolds in [15]. To the best
of our knowledge, this version of nonsmooth BFGS has not been presented before for
optimization problems on linear spaces; therefore it is new not only for Riemannian
settings but also for linear spaces.

This paper is organized as follows. Section 2 presents the proposed Riemannian
optimization for nonsmooth cost functions. Specifically, sections 2.1 and 2.2 respec-
tively analyze the line search conditions and search direction for nonsmooth functions
theoretically. Sections 2.3 and 2.4 respectively give a practical approach to compute
a search direction and a step size. Section 2.5 combines the search direction with
the line search algorithm and gives a minimization algorithm. This algorithm can be
combined with the BFGS strategy and the result is presented in section 3. Finally,
experiments that compare the proposed algorithm with the Riemannian BFGS and
Riemannian gradient sampling (RGS) are reported in section 4.

Previous work. For the smooth optimization on Riemannian manifolds the
line search algorithms have been studied in [1, 29, 32, 33]. In considering optimiza-
tion problems with nonsmooth objective functions on Riemannian manifolds, it is
necessary to generalize concepts of nonsmooth analysis to Riemannian manifolds. In
the past few years a number of results have been obtained on numerous aspects of
nonsmooth analysis on Riemannian manifolds, [3, 4, 11, 12, 13, 22]. Papers [9, 10]
are among the first papers on numerical algorithms for minimization of nonsmooth
functions on Riemannian manifolds.

2. Line search algorithms on Riemannian manifolds. In this paper, we use
the standard notation and known results of Riemannian manifolds; see, e.g., [19, 31].
Throughout this paper, M is an n-dimensional complete manifold endowed with a
Riemannian metric 〈., .〉 on the tangent space TxM . We identify tangent space of M
at a point x, denoted by TxM , with the cotangent space at x (via the Riemannian
metric), denoted by TxM

∗. We denote by clN the closure of the set N and by convN
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the convex hull of the set N . Also, let S be a nonempty closed subset of a Riemannian
manifold M , we define distS : M −→ R by

distS(x) := inf{dist(x, s) : s ∈ S},

where dist is the Riemannian distance on M . We use of a class of mappings called
retractions.

Definition 2.1 (retraction). A retraction on a manifold M is a smooth map
R : TM → M with the following properties. Let Rx denote the restriction of R to
TxM .

• Rx(0x) = x, where 0x denotes the zero element of TxM .
• With the canonical identification T0xTxM ' TxM , DRx(0x) = idTxM , where

idTxM denotes the identity map on TxM .

By the inverse function theorem, we have that Rx is a local diffeomorphism. For
example, the exponential map defined by exp : TM → M , v ∈ TxM → expx v,
expx(v) = γ(1), where γ is a geodesic starting at x with initial tangent vector v, is
a retraction; see [1]. The exponential map is the most natural retraction to use on
Riemannian manifolds and is used frequently in the early literature on the develop-
ment of numerical algorithms on manifolds. Unfortunately, the exponential map is
itself defined as the solution of a nonlinear ordinary differential equation and generally
poses significant numerical challenges to be computed cheaply. Therefore, we consider
alternatives in the form of retractions, which can be computed more cheaply; see [1,
section 4.1] for examples of retractions on sphere and Stiefel manifolds. We define
BR(x, ε) to be {Rx(ηx)|‖ηx‖ < ε}. If the retraction R is the exponential function exp,
then BR(x, ε) is the open ball centered at x with radius ε. By using retractions, we
extend the concepts of nonsmooth analysis on Riemannian manifolds.

Recall that if G is a locally Lipschitz function defined from a Hilbert space X
to R, the Clarke generalized directional derivative of G at the point x ∈ X in the
direction v ∈ X, denoted by G◦(x; v), is defined by

G◦(x; v) = lim sup
y→x, t↓0

G(y + tv)−G(y)

t
,

and the generalized subdifferential of G at x, denoted by ∂G(x), is defined by

∂G(x) := {ξ ∈ X : 〈ξ, v〉 ≤ G◦(x; v) for all v ∈ X}.

Let f : M → R be a locally Lipschitz function on a Riemannian manifold. For
x ∈ M , we let f̂x = f ◦ Rx denote the restriction of the pullback f̂ = f ◦ R to TxM .
The Clarke generalized directional derivative of f at x in the direction p ∈ TxM ,

denoted by f◦(x; p), is defined by f◦(x; p) = f̂x
◦
(0x; p), where f̂x

◦
(0x; p) denotes the

Clarke generalized directional derivative of f̂x : TxM → R at 0x in the direction
p ∈ TxM . Therefore, the generalized subdifferential of f at x, denoted by ∂f(x), is

defined by ∂f(x) = ∂f̂x(0x). Note that there are other equivalent definitions for the
Clarke generalized directional derivative and generalized subdifferential of functions
defined on Riemannian manifolds; see [3, 6, 11]. The point x is a stationary point of
f if 0 ∈ ∂f(x). A necessary condition that f achieves a local minimum at x is that
x is a stationary point of f ; see [9, 11]. Theorem 2.2 can be proved along the same
lines as [11, Theorem 2.9].
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Algorithm 1. A line search minimization algorithm on a Riemannian manifold.

1: Require: A Riemannian manifold M , a function f : M → R.
2: Input: x0 ∈M,k = 0.
3: Output: Sequence {xk}.
4: repeat
5: Choose a retraction Rxk : TxkM →M .
6: Choose a descent direction pk ∈ TxkM .
7: Choose a step length αk ∈ R.
8: Set xk+1 = Rxk(αkpk); k = k + 1.
9: until xk+1 sufficiently minimizes f .

Theorem 2.2. Let M be a Riemannian manifold, x ∈ M , and f : M → R be a
Lipschitz function of Lipschitz constant L near x, i.e., |f(x)−f(y)| ≤ Ldist(x, y), for
all y in a neighborhood x. Then

(a) ∂f(x) is a nonempty, convex, compact subset of TxM , and ‖ξ‖ ≤ L for
every ξ ∈ ∂f(x);

(b) for every v in TxM, we have

f◦(x; v) = max{〈ξ, v〉 : ξ ∈ ∂f(x)};

(c) if {xi} and {ξi} are sequences in M and TM such that ξi ∈ ∂f(xi) for each
i, and if {xi} converges to x and ξ is a cluster point of the sequence {ξi},
then we have ξ ∈ ∂f(x);

(d) ∂f is upper semicontinuous at x.

In classical optimization on linear spaces, line search methods are extensively
used. They are based on updating the iterate by finding a direction and then adding
a multiple of the obtained direction to the previous iterate. The extension of line
search methods to manifolds is possible by the notion of retraction. We consider
algorithms of the general forms stated in Algorithm 1.

Once the retraction Rxk is defined, the search direction pk and the step length
αk remain. We say pk is a descent direction at xk if there exists α > 0 such that for
every t ∈ (0, α), we have

f(Rxk(tpk))− f(xk) < 0.

It is obvious that if f◦(xk; pk) < 0, then pk is a descent direction at xk.
In order to have global convergence results, some conditions must be imposed on

the descent direction pk as well as the step length αk.

2.1. Step length. The step length αk has to cause a substantial reduction of
the objective function f . The ideal choice would be αk = argminα>0f(Rxk(αpk)) if
this exact line search can be carried out efficiently. But in general, it is too expensive
to find this value. A more practical strategy to identify a step length that achieves
adequate reductions in the objective function at minimal cost is an inexact line search.
A popular inexact line search condition stipulates that the step length αk should give
a sufficient decrease in the objective function f , which is measured by the following
condition.

Definition 2.3 (Armijo condition). Let f : M → R be a locally Lipschitz
function on a Riemannian manifold M with a retraction R, x ∈M , and p ∈ TxM . If
the inequality for a step length α and a fixed constant c1 ∈ (0, 1)
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f (Rx(αp))− f(x) ≤ c1αf◦(x; p)

holds, then α satisfies in the Armijo condition.

The existence of such a step size is proven later in Theorem 2.8.

2.1.1. The Wolfe conditions. As shown in the proof of Theorem 2.8, a short
enough step size satisfies the Armijo condition. However, too small a step size prevents
convergence of an algorithm. There are useful conditions to rule out unacceptably
short step lengths. For example, one can use a requirement called the curvature
condition. To present this requirement for nonsmooth functions on nonlinear spaces,
some preliminaries are needed. To define the curvature condition on a Riemannian
manifold, we have to translate a vector from one tangent space to another one.

Definition 2.4 (vector transport). A vector transport associated to a retraction
R is defined as a continuous function T : TM×TM → TM , (ηx, ξx) 7→ Tηx(ξx), which
for all (ηx, ξx) satisfies the following conditions:

(i) Tηx : TxM → TR(ηx)M is a linear map,
(ii) T0x(ξx) = ξx.

In short, if ηx ∈ TxM and Rx(ηx) = y, then Tηx transports vectors from the
tangent space of M at x to the tangent space at y. Two additional properties are
needed in this paper. First, the vector transport needs to preserve inner products,
that is,

〈Tηx(ξx), Tηx(ζx)〉 = 〈ξx, ζx〉.(2.1)

In particular, ξx 7→ Tηx(ξx) is then an isometry and possesses an isometric inverse.
Second, we will assume that T satisfies the following condition, called locking

condition in [17], for transporting vectors along their own direction:

Tξx(ξx) = βξxTRξx (ξx), βξx =
‖ξx‖

‖TRξx ξx‖
,(2.2)

where

TRηx (ξx) = DRx(ηx)(ξx) =
d

dt
Rx(ηx + tξx)|t=0.

These conditions can be difficult to verify but are in particular satisfied for the most
natural choices of R and T ; for example, the exponential map as a retraction and
the parallel transport as a vector transport satisfy these conditions with βξx = 1.
For a further discussion, especially on construction of vector transports satisfying the
locking condition, we refer to [17, section 4]. We introduce more intuitive notation:

Tx→y(ξx) = Tηx(ξx), Tx←y(ξy) = (Tηx)−1(ξy) whenever y = Rx(ηx).

Now we present the nonsmooth curvature condition for locally Lipschitz functions on
Riemannian manifolds.

Definition 2.5 (curvature condition). The step length α satisfies in the curva-
ture condition if the following inequality holds for the constant c2 ∈ (c1, 1):

sup
ξ∈∂f(Rx(αp))

〈
ξ,

1

βαp
Tx→Rx(αp)(p)

〉
≥ c2f◦(x; p),

where c1 is the constant in Definition 2.3.
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Note that if there exists ξ ∈ ∂f(Rx(αp)) such that〈
ξ,

1

βαp
Tx→Rx(αp)(p)

〉
≥ c2f◦(x; p),

then the curvature inequality holds. As in the smooth case, we can define a strong
curvature condition by∣∣∣∣∣ sup

ξ∈∂f(Rx(αp))

〈
ξ,

1

βαp
Tx→Rx(αp)(p)

〉∣∣∣∣∣ ≤ −c2f◦(x; p).

The following lemma can be proved using Lemma 3.1 of [23].

Lemma 2.6. Let f : M → R be a locally Lipschitz function on a Riemannian
manifold M and the function W defined by

W (α) := f(Rx(αp))− f(x)− c2αf◦(x; p),(2.3)

where c2 ∈ (c1, 1), x ∈ M , and p ∈ TxM , be increasing on a neighborhood of some
α0; then α0 satisfies the curvature condition.

Indeed, if W is increasing on a neighborhood of some α0, then there exists ξ in

∂W (α0) ⊂ 〈∂f(Rx(α0p)), DRx(α0p)(p)〉 − c2f◦(x; p)

such that ξ ≥ 0. Then the result will be obtained using the locking condition.

Definition 2.7 (Wolfe conditions). Let f : M → R be a locally Lipschitz func-
tion and p ∈ TxM . If α satisfies the Armijo and curvature conditions, then we say α
satisfies the Wolfe conditions.

In the following theorem the existence of step lengths satisfying the Wolfe condi-
tions under some assumptions is proved.

Theorem 2.8. Assume that f : M → R is a locally Lipschitz function on a
Riemannian manifold M , Rx : TxM → M is a retraction, p ∈ TxM is chosen such
that f◦(x; p) < 0, and f is bounded below on {Rx(αp) : α > 0}; if 0 < c1 < c2 < 1,
then there exist step lengths satisfying the Wolfe conditions.

Proof. First, we prove that the line l(α) = f(x)+αc1f
◦(x; p) intersects the graph

of the function φ(α) = f(Rx(αp)) at least once. Let us assume on the contrary that
this line never intersects the graph of the function φ. Since l − φ is a continuous
function and l(α) − φ(α) 6= 0 for all α > 0, we conclude that either l(α) < φ(α) for
all α > 0 or l(α) > φ(α) for all α > 0. If l(α) < φ(α) for all α > 0, then

f◦(x; p) < c1f
◦(x; p) ≤ lim sup

α→0

f(Rx(αp))− f(x)

α
≤ f◦(x; p),

which is a contradiction. It means that l(α) > φ(α) for all α > 0. But since l(α)
is not bounded below and φ(α) is bounded below, this cannot be true and we get
again a contradiction. Therefore, there exists α̂ > 0 such that l(α̂) = φ(α̂). Let α1 be
the smallest intersecting value of α. It can be shown that α1 > 0 as follows. Since
c1 ∈ (0, 1) and f◦(x, p) < 0, there exists t∗ ∈ (0, 1) such that f(Rx(tp)) − f(x) <
tc1f

◦(x, p) for all t ∈ (0, t∗). This implies that 0 < t∗ ≤ α1.
Hence

f(Rx(α1p)) = f(x) + α1c1f
◦(x; p).(2.4)
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Algorithm 2. A backtracking line search on a Riemannian manifold.

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a
retraction R from TM to M , scalars c1, ρ ∈ (0, 1).

2: Input: α0 > 0.
3: Output: αk.
4: α = α0.
5: repeat
6: α = ρα.
7: until f(Rxk(αpk))− f(xk) ≤ c1αf◦(xk; pk).
8: Terminate with αk = α.

We claim that φ(α) < l(α) for all α < α1 and therefore the Armijo condition is satisfied
for all α < α1. To prove the claim, note that since α1 is the smallest step size for
which φ(α)− l(α) = 0 holds, hence for every α < α1, we have either φ(α)− l(α) < 0
or φ(α)− l(α) > 0. If φ(α)− l(α) > 0 for all α < α1, then

f◦(x; p) < c1f
◦(x; p) ≤ lim sup

α→0

f(Rx(αp))− f(x)

α
≤ f◦(x; p),

which is a contradiction. Hence we have φ(α)− l(α) < 0 for all α < α1, which proves
the claim. Now by the mean value theorem for locally Lipschitz functions on Rieman-
nian manifolds [11, Theorem 3.3], there exist ε∗ ∈ (0, 1) and ξ ∈ ∂f(Rx(ε∗α1p)) such
that

f(Rx(α1p))− f(x) = α1〈ξ,DRx(ε∗α1p)(p)〉.(2.5)

By combining (2.4) and (2.5), we obtain 〈ξ,DRx(ε∗α1p)(p)〉 = c1f
◦(x; p) > c2f

◦(x; p).
Using the locking condition, we conclude that ε∗α1 satisfies the curvature
condition.

Remark 2.9. There are a number of rules for choosing the step length α for prob-
lems on linear spaces; see [24, 34]. We can define their generalizations on Riemannian
manifolds using the concepts of nonsmooth analysis on Riemannian manifolds and
the notions of retraction and vector transport. For instance, one can use a general-
ization of the Mifflin condition, proposed first by Mifflin in [24]. The step length α
satisfies the Mifflin condition if the following inequalities hold for the fixed constants
c1 ∈ (0, 1), c2 ∈ (c1, 1):

f(Rx(αp))− f(x) ≤ −c1α‖p‖,

sup
ξ∈∂f(Rx(αp))

〈
ξ,

1

βαp
Tx→Rx(αp)(p)

〉
≥ −c2‖p‖.

2.1.2. Sufficient decrease and backtracking. As explained in subsection
2.1.1, the Armijo condition does not ensure that the line search algorithm makes
reasonable progress. But if the line search algorithm selects its step lengths appropri-
ately, by using a backtracking approach, we can dispense with the curvature condition
and use just the Armijo condition to terminate the line search procedure. We present
here a backtracking line search algorithm, which makes adequate progress. An ad-
equate step length will be found after a finite number of iterations, because αk will
finally become small enough that the Armijo condition holds.
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604 S. HOSSEINI, W. HUANG, AND R. YOUSEFPOUR

2.2. Descent directions. To obtain a global convergence result for a line search
method, we must have not only well-chosen step lengths but also well-chosen search
directions. The following definition is equivalent to gradient-orientedness carried over
nonsmooth problems; see [26]. We know that the search direction for a smooth opti-
mization problem often has the form pk = −Pk grad f(xk), where Pk is a symmetric
and nonsingular linear map. Therefore, it is not far from expectation to use elements
of the subdifferential of f at xk in Definition 2.10 and produce a subgradient-oriented
descent sequence in nonsmooth problems.

Definition 2.10 (subgradient-oriented descent sequence). A sequence {pk} of
descent directions is called subgradient-oriented if there exist a sequence of subgradients
{gk} and a sequence of symmetric linear maps {Pk:TxkM→TxkM} satisfying

0 < λ ≤ λmin(Pk) ≤ λmax(Pk) ≤ Λ <∞

for 0<λ<Λ<∞ and all k ∈ N such that pk = −Pkgk, where λmin(Pk) and λmax(Pk)
denote respectively the smallest and largest eigenvalues of Pk.

In the next definition, we present an approximation of the subdifferential which
can be computed approximately. As we aim at transporting subgradients from tangent
spaces at nearby points of x ∈M to the tangent space at x, it is important to define
a notion of injectivity radius for Rx. Let

ι(x) := sup{ε > 0| Rx : B(0x, ε)→ BR(x, ε) is injective}.

Then the injectivity radius of M with respect to the retraction R is defined as

ι(M) := inf
x∈M

ι(x).

When using the exponential map as a retraction, this definition coincides with the
usual one.

Definition 2.11 (ε-subdifferential). Let f : M → R be a locally Lipschitz func-
tion on a Riemannian manifold M and 0 < 2ε < ι(x).1 We define the ε-subdifferential
of f at x denoted by ∂εf(x) as follows;

∂εf(x) = clconv{β−1
η Tx←y(∂f(y)) : y ∈ clBR(x, ε) and η = R−1

x (y)}.

Every element of the ε-subdifferential is called an ε-subgradient.

Definition 2.12 (ε-subgradient-oriented descent sequence). A sequence {pk}
of descent directions is called ε-subgradient-oriented if there exist a sequence of
ε-subgradients {gk} and a sequence of symmetric linear maps {Pk : TxkM → TxkM}
satisfying

0 < λ ≤ λmin(Pk) ≤ λmax(Pk) ≤ Λ <∞
for 0 < λ < Λ < ∞ and all k ∈ N such that pk = −Pkgk, where λmin(Pk) and
λmax(Pk) denote respectively the smallest and largest eigenvalues of Pk.

From now, we assume that a basis of TxM for all x ∈ M is given and we denote
every linear map using its matrix representation with respect to the given basis.
In the following, we use a positive definite matrix P in order to define a P-norm
equivalent to the usual norm induced by the inner product on our tangent space.
Indeed ‖ξ‖P = 〈Pξ, ξ〉1/2 and

1Note y ∈ clBR(x, ε). The coefficient 2 guarantees inverse vector transports are well defined on
the boundary of BR(x, ε).
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λmin(P )‖.‖2 ≤ ‖.‖2P ≤ λmax(P )‖.‖2.(2.6)

Theorem 2.13. Assume that f : M → R is a locally Lipschitz function on a
Riemannian manifold M , Rx : TxM → M is a retraction, 0 /∈ ∂εf(x), and 0 < 2ε <
ι(x). Define

g := argminξ∈∂εf(x)‖ξ‖P ,
where P is a positive definite matrix. Assume that p = −Pg. Then f◦ε (x; p) = −‖g‖2P
and p is a descent direction, where f◦ε (x; p) = supξ∈∂εf(x)〈ξ,−Pg〉.

Proof. We first prove that f◦ε (x; p) = −‖g‖2P . It is clear that

f◦ε (x; p) = sup
ξ∈∂εf(x)

〈ξ,−Pg〉 ≥ 〈g,−Pg〉 = −‖g‖2P .

Now we claim that ‖g‖2P ≤ 〈ξ, Pg〉 for every ξ ∈ ∂εf(x), which implies supξ∈∂εf(x)

s〈ξ,−Pg〉 ≤ −‖g‖2P . The proof of the claim is as follows: assume on the contrary; there
exists ξ ∈ ∂εf(x) such that 〈ξ, Pg〉 < ‖g‖2P , and consider w := g + t(ξ − g) ∈ ∂εf(x),
then

‖g‖2P − ‖w‖2P = −t(2〈ξ − g, Pg〉+ t〈ξ − g, P (ξ − g)〉).
Note that

2〈ξ − g, Pg〉+ t〈ξ − g, P (ξ − g)〉 = 2(〈ξ, Pg〉 − ‖g‖2P ) + t‖ξ − g‖2P ;

therefore, if

0 < t ≤ min

{
1,
−2(〈ξ, Pg〉 − ‖g‖2P )

‖ξ − g‖2P

}
,

then we have ‖g‖2P > ‖w‖2P , which is a contradiction with the definition of g and the
first part of the theorem is proved. Now we prove that p is a descent direction. Let
α := ε

‖p‖ ; then for every t ∈ (0, α), by Lebourg’s mean value theorem [11, Theorem

3.3], there exist 0 < t0 < 1 and ξ ∈ ∂f(Rx(t0tp)) such that

f(Rx(tp))− f(x) = 〈ξ,DRx(t0tp)(tp)〉.
Using the locking condition and the isometric property of the vector transport, we
have that

f(Rx(tp))− f(x) = 〈ξ,DRx(tt0p)(tp)〉

=
t

βtt0p
〈Tx←Rx(tt0p)(ξ), p〉.

Since ‖tt0p‖ ≤ ε, it follows that 1
βtt0p
Tx←Rx(tt0p)(ξ) ∈ ∂εf(x). Therefore, f(Rx(tp))−

f(x) ≤ tf◦ε (x; p).

2.3. A descent direction algorithm. For general nonsmooth optimization
problems it may be difficult to give an explicit description of the full ε-subdifferential
set. Therefore, we need an iterative procedure to approximate the ε-subdifferential
at a point x. In this subsection, we assume that 0 < 2ε < ι(x). We start with a
subgradient of an arbitrary point nearby x and move the subgradient to the tangent
space in x, and in every subsequent iteration, the subgradient of a new point nearby
x is computed and moved to the tangent space in x to be added to the working set to
improve the approximation of ∂εf(x). Indeed, we do not want to provide a description
of the entire ε-subdifferential set at each iteration; what we do is to approximate
∂εf(x) by the convex hull of its elements. In this way, let P be a positive definite
matrix and Wk := {v1, . . . , vk} ⊆ ∂εf(x); then we define
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606 S. HOSSEINI, W. HUANG, AND R. YOUSEFPOUR

gk := argmin
v∈convWk

‖v‖P .

Now we set a parameter c ∈ (0, 1) and verify the following inequality:

f

(
Rx

(
εpk
‖pk‖

))
− f(x) ≤ −cε‖gk‖

2
P

‖pk‖
,(2.7)

where pk = −Pgk. If (2.7) holds, then we can say convWk is an acceptable ap-
proximation for ∂εf(x). Otherwise, using the next lemma we add a new element of
∂εf(x)\convWk to Wk.

Lemma 2.14. Let Wk={v1,...,vk}⊂∂εf(x), 0 /∈ convWk, and

gk = argmin{‖v‖P : v ∈ convWk}.

If we have

f

(
Rx

(
εpk
‖pk‖

))
− f(x) >

−cε‖gk‖2P
‖pk‖

,

where c ∈ (0, 1) and pk = −Pgk, then there exist θ0 ∈ (0, ε
‖pk‖ ] and v̄k+1 ∈ ∂f(Rx(θ0pk))

such that
〈β−1
θ0p
Tx←Rx(θ0p)(v̄k+1), pk〉≥ − c‖gk‖2P ,

and vk+1 :=β−1
θ0p
Tx←Rx(θ0p)(v̄k+1) /∈ convWk.

Proof. We prove this lemma using Lemma 3.1 and Proposition 3.1 in [23]. Define

h(t) := f(Rx(tpk))− f(x) + ct‖gk‖2P , t ∈ R,(2.8)

and the locally Lipschitz function f̂x : B(0x, ε) ⊂ TxM → R by f̂x(g) = f(Rx(g));

then h(t) = f̂x(tpk)− f̂x(0) + ct‖gk‖2P . Assume that h( ε
‖pk‖ ) > 0; then by Proposition

3.1 of [23], there exists θ0 ∈ [0, ε
‖pk‖ ] such that h is increasing in a neighborhood of

θ0. Therefore, by Lemma 3.1 of [23] for every ξ ∈ ∂h(θ0), one has ξ ≥ 0. By [11,
Proposition 3.1]

∂h(θ0) ⊆ 〈∂f(Rx(θ0pk)), DRx(θ0pk)(pk)〉+ c‖gk‖2P .

If v̄k+1 ∈ ∂f(Rx(θ0pk)) such that

〈v̄k+1, DRx(θ0pk)(pk)〉+ c‖gk‖2P ∈ ∂h(θ0),

then by the locking condition

〈β−1
θ0p
Tx←Rx(θ0p)(v̄k+1), pk〉+ c‖gk‖2P ≥ 0.

This implies that
vk+1 :=β−1

θ0p
Tx←Rx(θ0p)(v̄k+1) /∈ convWk,

which proves our claim.

Now we present Algorithm 3 to find a vector vk+1 ∈ ∂εf(x) which can be added to
the setWk in order to improve the approximation of ∂εf(x). This algorithm terminates
after finitely many iterations; see [9].

Then we give Algorithm 4 for finding a descent direction. Moreover, Theorem
2.15 proves that Algorithm 4 terminates after finitely many iterations.
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Algorithm 3. An h-increasing point algorithm; (v, t) = Increasing(x, p, g, a, b, P, c).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a
retraction R from TM to M , and a vector transport T .

2: Input x ∈ M, g, p ∈ TxM,a, b ∈ R with a < b, c,$ ∈ (0, 1) and P a positive
definite matrix such that p = −Pg.

3: Let t← b
‖p‖ , b←

b
‖p‖ and a← a

‖p‖ .
4: repeat
5: select v ∈ ∂f(Rx(tp)) such that 〈v, 1

βtp
Tx→Rx(tp)(p)〉 + c‖g‖2P ∈ ∂h(t), where

h is defined in (2.8),
6: if 〈v, 1

βtp
Tx→Rx(tp)(p)〉+ c‖g‖2P < 0 then

7: t = a+b
2

8: if h(b) > h(t) then
9: a = t

10: else
11: b = t
12: end if
13: If b− a < $, then stop.2

14: end if
15: until 〈v, 1

βtp
Tx→Rx(tp)(p)〉+ c‖g‖2P ≥ 0

Algorithm 4. A descent direction algorithm; (gk, pk) = Descent(x, δ, c, ε, P ).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R,
a retraction R from TM to M , the injectivity radius ι(M) > 0, and a vector
transport T .

2: Input x ∈M, δ > 0, c ∈ (0, 1), 0 < ε < ι(M) and a positive definite matrix P .
3: Select arbitrary v ∈ ∂εf(x).
4: Set W1 = {v} and let k = 1.
5: Step 1: (Compute a descent direction)
6: Solve the following minimization problem and let gk be its solution:

min
v∈convWk

‖v‖P .

7: if ‖gk‖2 ≤ δ then Stop.
8: else let pk = −Pgk.
9: end if

10: Step 2: (Stopping condition)

11: if f

(
Rx

(
εpk
‖pk‖

))
− f(x) ≤ −cε‖gk‖

2
P

‖pk‖
, then Stop.

12: end if
13: Step 3: (v, t) = Increasing(x, pk, gk, 0, ε, P, c).
14: Set vk+1 = β−1

tpk
Tx←Rx(tpk)(v), Wk+1 = Wk ∪ {vk+1} and k = k+ 1. Go to step 1.

Theorem 2.15. For the point x1 ∈M , let the level set N = {x : f(x) ≤ f(x1)}
be bounded; then for each x ∈ N, Algorithm 4 terminates after finitely many iterations.

2This step is not necessary theoretically. However, it is used numerically for robustness of the
algorithm.
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Proof. We claim that either after a finite number of iterations the stopping con-
dition is satisfied or for some m,

‖gm‖2 ≤ δ,
and the algorithm terminates. If the stopping condition is not satisfied and ‖gk‖2 > δ,
then by Lemma 2.14 we find vk+1 /∈ convWk such that

〈vk+1,−pk〉 ≤ c‖gk‖2P .
Note that DRx on clB(0x, ε) is bounded by some m1 ≥ 0; therefore βη

−1 ≤ m1 for
every η ∈ clB(0x, ε). Hence by the isometry property of the vector transport and by
the Lipschitzness of f of the constant L, Theorem 2.9 of [11] implies that for every
ξ ∈ ∂εf(x), ‖ξ‖ ≤ m1L. Now, by definition, gk+1 ∈ conv({vk+1} ∪ Wk) has the
minimum norm; therefore for all t ∈ (0, 1),

‖gk+1‖2P ≤ ‖tvk+1 + (1− t)gk‖2P
≤ ‖gk‖2P + 2t〈Pgk, (vk+1 − gk)〉+ t2‖vk+1 − gk‖2P
≤ ‖gk‖2P − 2t(1− c)‖gk‖2P + 4t2L2m2

1λmax(P )

≤ (1− [(1− c)(2Lm1)−1δ1/2λmin(P )1/2λmax(P )−1/2]2)‖gk‖2P ,

(2.9)

where the last inequality is obtained by assuming

t = (1− c)(2Lm1)−2λmax(P )−1‖gk‖2P ∈ (0, 1),

δ1/2 ∈ (0, Lm1), and λ−1
min(P )‖gk‖2P ≥ ‖gk‖2 > δ. Now considering

r = 1− [(1− c)(2Lm1)−1δ1/2λmin(P )1/2λmax(P )−1/2]2 ∈ (0, 1),

it follows that
‖gk+1‖2P ≤ r‖gk‖2P ≤ · · · ≤ rk(Lm1)2λmax(P ).

Therefore, after a finite number of iterations ‖gk+1‖2P ≤ δλmin(P ). Using the relation
between norms (2.6), we conclude that ‖gk+1‖2 ≤ δ.

2.4. Step length selection algorithms. A crucial observation is that verifying
the Wolfe conditions presented in Definition 2.7 can be impractical in the case that no
explicit expression for the subdifferential ∂f(x) is available. Using an approximation
of the Clarke subdifferential, we overcome this problem. In the last subsection, we
approximated f◦(x; pk) by −‖gk‖2P , where pk := −Pgk, gk = argmin{‖v‖P : v ∈
convWk}, and convWk is an approximation of ∂εf(x). Therefore, in our line search
algorithm we use the approximation of f◦(x; p) to find a suitable step length.

The task of a line search algorithm is to find a step size which decreases the
objective function along the paths. The Wolfe conditions are used in the line search
to enforce a sufficient decrease in the objective function and to exclude unnecessarily
small step sizes. Algorithm 5 is a one-dimensional search procedure for the function
φ(α) = f(Rx(αp)) to find a step length satisfying the Armijo and curvature conditions.
The procedure is a generalization of the algorithm for the well-known Wolfe conditions
for smooth functions; see [25, pp. 59–60]. The algorithm has two stages. The first
stage begins with a trial estimate α1 and keeps increasing it until it finds either
an acceptable step length or an interval that contains the desired step length. The
parameter αmax is a user-supplied bound on the maximum step length allowed. The
last step of Algorithm 5 performs extrapolation to find the next trial value αi+1. To
implement this step we can simply set αi+1 to some constant multiple of αi. In the
case that Algorithm 5 finds an interval [αi−1, αi] that contains the desired step length,
the second stage is invoked by Algorithm 6, called Zoom, which successively decreases
the size of the interval.
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Algorithm 5. A line search algorithm; α = Line(x, p, g, P, c1, c2).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R,
a retraction R from TM to M , the injectivity radius ι(M) > 0, and a vector
transport T .

2: Input x ∈ M , a descent direction p in TxM with p = −Pg, where g ∈ ∂εf(x)
and P is a positive definite matrix and c1 ∈ (0, 1), c2 ∈ (c1, 1).

3: Set α0 = 0, αmax < ι(M), α1 = 1 and i = 1.
4: Repeat
5: Evaluate A(αi) := f(Rx(αip))− f(x) + c1αi‖g‖2P
6: if A(αi) > 0 then
7: α must be obtained by Zoom(x, p, g, P, αi−1, αi, c1, c2)
8: Stop
9: end if

10: Compute ξ ∈ ∂f(Rx(αip)) such that 〈ξ, 1
βαip
Tx→Rx(αip)(p)〉 + c2‖g‖2P ∈ ∂W (αi),

where W is defined in (2.3).
11: if 〈ξ, 1

βαip
Tx→Rx(αip)(p)〉+ c2‖g‖2P ≥ 0 then α = αi

12: Stop
13: else
14: Choose αi+1 ∈ (αi, αmax)
15: end if
16: i = i+ 1.
17: End(Repeat)

Algorithm 6. α = Zoom(x, p, g, P, a, b, c1, c2).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a
retraction R from TM to M , and a vector transport T .

2: Input x ∈M , a descent direction p in TxM with p = −Pg, where g ∈ ∂εf(x) and
P is a positive definite matrix and c1 ∈ (0, 1), c2 ∈ (c1, 1), a, b ∈ R with a < b.

3: i = 1, a1 = a, b1 = b.
4: Repeat
5: αi = ai+bi

2
6: Evaluate A(αi) := f(Rx(αip))− f(x) + c1αi‖g‖2P ,
7: if A(αi) > 0 then
8: bi+1 = αi, ai+1 = ai.
9: else

10: Compute ξ ∈ ∂f(Rx(αip)) such that 〈ξ, 1
βαip
Tx→Rx(αip)(p)〉 + c2‖g‖2P ∈

∂W (αi), where W is defined in (2.3).
11: if 〈ξ, 1

βαip
Tx→Rx(αip)(p)〉+ c2‖g‖2P ≥ 0 then α = αi

12: Stop.
13: else ai+1 = αi, bi+1 = bi.
14: end if
15: end if
16: i = i+ 1.
17: End(Repeat)D

ow
nl

oa
de

d 
03

/0
8/

18
 to

 1
28

.4
2.

22
7.

20
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

610 S. HOSSEINI, W. HUANG, AND R. YOUSEFPOUR

Remark 2.16. By using Lemma 3.1 of [23], if there exists ξ ∈ ∂f(Rx(αip)) such
that 〈ξ,DRx(αip)(p)〉+ c2‖g‖2P ∈ ∂W (αi) and 〈ξ,DRx(αip)(p)〉+ c2‖g‖2P < 0, where
W is defined in (2.3), then W is decreasing on a neighborhood of αi, which means
that for every η ∈ ∂W (αi), η ≤ 0.

Proposition 2.17. Assume that f : M → R is a locally Lipschitz function and p
is the descent direction obtained by Algorithm 4. Then either Algorithm 6 terminates
after finitely many iterations or it generates a sequence of intervals [ai, bi], such that
each one contains some subintervals satisfying the Wolfe conditions and ai and bi
converge to a step length a > 0. Moreover, there exist ξ1, ξ2, ξ3 ∈ ∂f(Rx(ap)) such
that 〈

ξ1,
1

βap
Tx→Rx(ap)(p)

〉
≤ −c2‖g‖2P ,

〈
ξ2,

1

βap
Tx→Rx(ap)(p)

〉
≥ −c2‖g‖2P ,〈

ξ3,
1

βap
Tx→Rx(ap)(p)

〉
≥ −c1‖g‖2P .

Proof. Suppose that the algorithm does not terminate after finitely many iter-
ations. Since {ai} and {bi} are monotone sequences, they converge to some a and
b. As we have bi − ai := b1−a1

2i−1 , thus bi − ai converges to zero. Therefore, a = b.
We claim that ai > 0 after finitely many iterations. Since p is a descent direction,
then there exists α > 0 such that A(s) ≤ 0 for all s ∈ (0, α), where A(s) is defined
in Algorithm 5. Note that there exists m > 0 such that for every i ≥ m, b1

2i ≤ α.
If am+1 = 0, then we must have A(αi) > 0 for all i = 1, . . . ,m. Hence, we have

bm+1 = αm, am = am+1 = 0, and αm+1 = bm+1

2 = b1
2m . Therefore, αm+1 ≤ α. This

implies that A(αm+1) ≤ 0, then am+2 = αm+1. Let S be the set of all indices with
ai+1 = αi. Therefore, there exists ξi ∈ ∂f(Rx(αip)) such that〈

ξi,
1

βαip
Tx→Rx(αip)(p)

〉
+ c2‖g‖2P < 0

for all i ∈ S. Since ξi ∈ ∂f(Rx(αip)) and f is locally Lipschitz on a neighborhood
of x, then by [11, Theorem 2.9] the sequence {ξi} contains a convergent subsequence
and without loss of generality, we can assume this sequence is convergent to some
ξ1 ∈ ∂f(Rx(ap)). Therefore,〈

ξ1,
1

βap
Tx→Rx(ap)(p)

〉
+ c2‖g‖2P ≤ 0.

Since ai < bi, A(ai) ≤ 0, and A(ai) < A(bi), A(.) contains a step length ri such that
A(.) is increasing on its neighborhood and A(ri) ≤ 0. Since c1 < c2, W (.) is also
increasing in a neighborhood of ri. Therefore, the Wolfe conditions are satisfied at ri.
Assume that 〈κi, 1

βrip
Tx→Rx(rip)(p)〉 + c2‖g‖2P ∈ ∂W (ri) for some κi ∈ ∂f(Rx(rip)),

then 〈κi, 1
βrip
Tx→Rx(rip)(p)〉 + c2‖g‖2P ≥ 0. Therefore, without loss of generality, we

can suppose that κi is convergent to some ξ2 ∈ ∂f(Rx(ap)). This implies that
〈ξ2, 1

βap
Tx→Rx(ap)(p)〉 + c2‖g‖2P ≥ 0. Note that A(.) is increasing on a neighborhood

of ri; therefore for all ηi ∈ ∂f(Rx(rip)) with〈
ηi,

1

βrip
Tx→Rx(rip)(p)

〉
+ c1‖g‖2P ∈ ∂A(ri),

we have 〈ηi, 1
βrip
Tx→Rx(rip)(p)〉+ c1‖g‖2P ≥ 0. As before, we can say ηi is convergent

to some ξ3 in ∂f(Rx(ap)) and 〈ξ3, 1
βap
Tx→Rx(ap)(p)〉+ c1‖g‖2P ≥ 0.
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In the next proposition, we prove that if Algorithm 6 does not terminate after
finitely many iterations and converges to a, then the Wolfe conditions are satisfied
at a.

Proposition 2.18. Assume that f : M → R is a locally Lipschitz function and
p := −Pg is a descent direction obtained from Algorithm 4. If Algorithm 6 does
not terminate after finitely many iterations and converges to a, then there exists ξ ∈
∂f(Rx(ap)) such that 〈

ξ,
1

βap
Tx→Rx(ap)(p)

〉
= −c2‖g‖2P .

Proof. By Proposition 2.17, there exist ξ1, ξ2 ∈ ∂f(Rx(ap)) such that〈
ξ1,

1

βap
Tx→Rx(ap)(p)

〉
≤ −c2‖g‖2P ,

〈
ξ2,

1

βap
Tx→Rx(ap)(p)

〉
≥ −c2‖g‖2P ,

and〈
ξ1,

1

βap
Tx→Rx(ap)(p)

〉
+ c2‖g‖2P ,

〈
ξ2,

1

βap
Tx→Rx(ap)(p)

〉
+ c2‖g‖2P ∈ ∂W (a),

where W is defined in (2.3). Since ∂W (a) is convex, 0 ∈ ∂W (a), which means there
exists ξ ∈ ∂f(Rx(ap)) such that〈

ξ,
1

βap
Tx→Rx(ap)(p)

〉
+ c2‖g‖2P = 0.

In the finite precision arithmetic, if the length of the interval [ai, bi] is too small,
then two function values f(Rx(aip)) and f(Rx(bip)) are close to each other. Therefore,
in practice, Algorithm 6 must be terminated after finitely many iterations; see [25].
If Algorithm 6 does not find a step length satisfying the Wolfe conditions, then we
select a step length satisfying the Armijo condition.

2.5. Minimization algorithms. Finally, Algorithm 7 is the minimization al-
gorithm for locally Lipschitz objective functions on Riemannian manifolds.

Theorem 2.19. If f : M → R is a locally Lipschitz function on a complete
Riemannian manifold M , and

N = {x : f(x) ≤ f(x1)}

is bounded and the sequence of symmetric matrices {P sk} satisfies the condition

0 < λ ≤ λmin(P sk ) ≤ λmax(P sk ) ≤ Λ <∞,(2.10)

for 0 < λ < Λ < ∞ and all k, s, then either Algorithm 7 terminates after a finite
number of iterations with ‖gsk‖ = 0 or every accumulation point of the sequence {xk}
belongs to the set

X = {x ∈M : 0 ∈ ∂f(x)}.

Proof. If the algorithm terminates after a finite number of iterations, then xsk
is an ε-stationary point of f . Suppose that the algorithm does not terminate after
finitely many iterations. Assuming that psk is a descent direction, since α ≥ εk

‖pk‖ , we

have
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Algorithm 7. A minimization algorithm; xk = Min(f, x1, θε, θδ, ε1, δ1, c1, c2).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R, a
retraction R from TM to M , and the injectivity radius ι(M) > 0.

2: Input: A starting point x1 ∈M , c1 ∈ (0, 1), c2 ∈ (c1, 1), θε, θδ ∈ (0, 1), δ1 > 0,
ε1 ∈ (0, ι(M)), k = 1, and P1 = I.

3: Step 1 (Set new parameters) s = 1 and xsk = xk, P sk = Pk.
4: Step 2. (Descent direction) (gsk, p

s
k) = Descent(xsk, δk, c1, εk, P

s
k )

5: if ‖gsk‖ = 0, then Stop.
6: end if
7: if ‖gsk‖2 ≤ δk then set εk+1 = εkθε, δk+1 = δkθδ, xk+1 = xsk, Pk+1 = P sk ,
k = k + 1. Go to step 1.

8: else
α = Line(xsk, p

s
k, g

s
k, P

s
k , c1, c2)

and construct the next iterate xs+1
k = Rxsk(αpsk) and update P s+1

k . Set s = s+ 1
and go to step 2.

9: end if

f(xs+1
k )− f(xsk) ≤ −

c1εk‖gsk‖2P sk
‖pk‖

< 0,

for s = 1, 2, . . . , and therefore, f(xs+1
k ) < f(xsk) for s = 1, 2, . . . . Since f is Lipschitz

and N is bounded, it follows that f has a minimum in N . Therefore, f(xsk) is a
bounded decreasing sequence in R and so is convergent. Thus f(xsk) − f(xs+1

k ) is
convergent to zero and there exists sk such that

f(xsk)− f(xs+1
k ) ≤ c1εkδkλ

‖pk‖

for all s ≥ sk. Thus

λ‖gsk‖2 ≤ ‖gsk‖2P sk ≤
(
f(xsk)− f(xs+1

k )

c1εk

)
‖pk‖ ≤ δkλ, s ≥ sk.(2.11)

Hence after finitely many iterations, there exists sk such that

xk+1 = xskk .

Since M is a complete Riemannian manifold and {xk} ⊂ N is bounded, there exists
a subsequence {xki} converging to a point x∗ ∈ M . Since convW

ski
ki

is a subset of

∂εki f(x
ski
ki

), then

‖g̃skiki
‖2
P
si
ki

:= min

{
‖v‖2

P
si
ki

: v ∈ ∂εki f
(
x
ski
ki

)}
≤ min

{
‖v‖2

P
si
ki

: v ∈W ski
ki

}
≤ Λδki .

Hence limki→∞ ‖gki‖ = 0. Note that gki ∈ ∂εki f(x
ski
ki

), hence 0 ∈ ∂f(x∗).

3. Nonsmooth BFGS algorithms on Riemannian manifolds. In this sec-
tion we discuss the nonsmooth BFGS methods on Riemannian manifolds. Let f be
a smooth function defined on Rn and Pk be a positive definite matrix which is the
approximation of the Hessian of f . We know that pk = −P−1

k grad f(xk) is a descent
direction. The approximation of the Hessian can be updated by the BFGS method,
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when the computed step length satisfies the Wolfe conditions. Indeed we assume that
sk = xk+1 − xk, yk = grad f(xk+1) − grad f(xk) and αk satisfies the Wolfe condi-
tions; then we have the so-called secant inequality 〈yk, sk〉2 > 0. Therefore, Pk can
be updated by the BFGS method as follows:

Pk+1 := Pk +
yky

T
k

〈sk, yk〉2
− Pksks

T
k Pk

〈sk, Pksk〉2
.

The structure of the smooth BFGS algorithm on Riemannian manifolds is given
in several papers; see [8, 28, 29]. Note that the classical update formulas for the
approximation of the Hessian have no meaning on Riemannian manifolds. First,

sk := Txk→Rxk (αkpk)(αkpk),

yk :=
1

βαkpk
grad f(xk+1)− Txk→Rxk (αkpk)(grad f(xk))

are vectors in the tangent space Txk+1
M . The inner product on tangent spaces is then

given by the chosen Riemannian metric. Furthermore, the dyadic product of a vector
with the transpose of another vector, which results in a matrix in the Euclidean space,
is not a naturally defined operation on a Riemannian manifold. Moreover, while in
Euclidean spaces the Hessian can be expressed as a symmetric matrix, on Riemannian
manifolds it can be defined as a symmetric and bilinear form. However, one can define
a linear function Pk : TxkM → TxkM by

D2f(xk)(η, ξ) := 〈η, Pkξ〉, η, ξ ∈ TxkM.

Therefore, the approximation of the Hessian can be updated by the BFGS method as
follows:

Pk+1 := P̃k +
yky

[
k

y[ksk
− P̃ksk(P̃ksk)[

(P̃ksk)[sk
,(3.1)

where P̃k := Txk→Rxk (αkpk) ◦ Pk ◦ Txk←Rxk (αkpk).
Now we assume that f : M → R is a locally Lipschitz function and

g := argmin
v∈convWk

‖v‖P−1 ,(3.2)

p = −P−1g, where P is a positive definite matrix and convWk is an approxima-
tion of ∂εf(x). The P−1-norm in (3.2) approximates the Newton direction when f is
smooth. Specifically, if f is twice differentiable at xk, convWk = {gradf(xk)} and P is
Hessf(xk), then the search direction p is the Newton direction−Hessf(xk)−1 grad f(xk).
Let α be returned by Algorithm 5 and ξ ∈ ∂f(Rx(αp)) be such that 〈ξ, 1

βαp
Tx→Rx(αp)

(p)〉+ c2‖g‖2P−1 ≥ 0. Then for all v ∈ convWk,〈
ξ − βαpTx→Rx(αp)(v),

1

βαp
Tx→Rx(αp)(p)

〉
> 0.

This shows that if we update the approximation of the Hessian matrix by (3.1) in
which sk := Txk→Rxk (αkpk)(αkpk) and yk := 1

βαkpk
ξk − Txk→Rxk (αkpk)(gk) are vectors

provided that 〈
ξk,

1

βαkpk
Txk→Rxk (αkpk)(pk)

〉
+ c2‖gk‖2P−1

k

≥ 0,

then the Hessian approximation Pk+1 is symmetric positive definite.
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Algorithm 8. A nonsmooth BFGS algorithm on a Riemannian manifold; xk =
subRBFGS(f, x1, θε, θδ, ε1, δ1, c1, c2).

1: Require: A Riemannian manifold M , a locally Lipschitz function f : M → R,
a retraction R from TM to M , the injectivity radius ι(M) > 0, and a vector
transport T .

2: Input: A starting point x1 ∈M , c1 ∈ (0, 1), c2 ∈ (c1, 1), θε, θδ ∈ (0, 1), δ1 > 0,

ε1 ∈ (0, ι(M)), k = 1, P1 = I, a bound 1/Λ > 0 on
y[ksk

y[kyk
and λ on

s[kyk

s[ksk
.

3: Step 1 (Set new parameters) s = 1, xsk = xk and P sk = Pk.
4: Step 2. (Descent direction) (gsk, p

s
k) = Descent(xsk, δk, c1, εk, P

s
k
−1).

5: if ‖gsk‖ = 0 then Stop.
6: end if
7: if ‖gsk‖2 ≤ δk, then set εk+1 = εkθε, δk+1 = δkθδ, xk+1 = xsk, Pk+1 = P sk ,
k = k + 1. Go to step 1.

8: else
α = Line(xsk, p

s
k, g

s
k, P

s
k
−1, c1, c2)

and construct the next iterate xs+1
k = Rxsk(αpsk) and define sk :=

Txsk→Rxsk (αpsk)(αp
s
k), yk := 1

βαps
k

ξk − Txsk→Rxsk (αpsk)(g
s
k), sk := sk + max(0, 1

Λ −
s[kyk
y[kyk

)yk.

9: if
s[kyk

s[ksk
≥ λ then, Update

P s+1
k := P̃ sk +

yky
[
k

y[ksk
− P̃ sk sk(P̃ sk sk)[

(P̃ sk sk)[sk
.

10: else P s+1
k := I.

11: end if
Set s = s+ 1 and go to step 2.

12: end if

It is worthwhile to mention that to have the global convergence of the minimiza-
tion algorithm, Algorithm 7, the sequence of symmetric matrices {P sk} must satisfy
the condition

0 < λ ≤ λmin(P sk ) ≤ λmax(P sk ) ≤ Λ <∞(3.3)

for 0 < λ < Λ < ∞ and all k, s. From a theoretical point of view it is difficult to
guarantee (3.3); see [25, p. 212]. But we can translate the bounds on the spectrum
of P sk into conditions that only involve sk and yk as follows:

s[kyk

s[ksk
≥ λ, y[kyk

y[ksk
≤ Λ.

This technique is used in [25, Theorem 8.5]; see also Algorithm 1 in [34]. It is worth-
while to mention that, in practice, Algorithm 6 must be terminated after finitely many
iterations. But we need to assume that even if Algorithm 6 does not find a step length
satisfying the Wolfe conditions, then we can select a step length satisfying the Armijo
condition and update P s+1

k in Algorithm 8 by the identity matrix.
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4. Experiments. In this section, we use the oriented bounding box problem [5]
and the sparse vector problem [27] as applications to demonstrate the performance of
Algorithm 8.

4.1. Problem statements and manifolds. The oriented bounding box prob-
lem [5] aims to find a minimum volume box containing K given points in d dimensional
space. Suppose points are given by a matrix E ∈ Rd×K , where each column represents
the coordinate of a point. A cost function of volume is given by

f : Od → R : O 7→ V (OE) =

d∏
i=1

(ei,max − ei,min),

where Od denotes the d-by-d orthogonal group, and ei,max and ei,min denote max and
min entries, respectively, of the ith row of OE. If there exists more than one entry at
any row reaching maximum or minimum values for a given O, then the cost function f
is not differentiable at O. Such nondifferentiable points usually appear at minimizers;
see [5]. If f is differentiable, its Riemannian gradient with respect to the Riemannian
metric 〈ηO, ξO〉 = trace(ηTOξO) is

grad f(O) = PO(TET ),

where T ∈ Rd×K , ηO, ξO ∈ TOOd, and

Tij =


w

ei,max−ei,min
, j is the column of the largest entry in the ith row;

− w
ei,max−ei,min

, j is the column of the smallest entry in the ith row;

0 otherwise,

for i = 1, . . . , d, w = f(O), and PO(M) = M −O(OTM +MTO)/2.
The sparse vector problem [27] finds the sparsest vector in an n-dimensional linear

subspace W of Rm. Specifically, let Q ∈ Rm×n denote a matrix whose columns span
the space W . The sparsest vector problem minimizes

f̃ : Sn−1 → R : x 7→ ‖Qx‖1,

where Sn−1 denotes the unit sphere in Rn. The function f̃ is nondifferentiable at x if
and only if Qx has at least one zero entry. The Riemannian gradient at differentiable
points with respect to the Riemannian metric 〈ηx, ξx〉 = ηTx ξx is

grad f̃(x) = (In − xxT )QT sign(Qx),

where sign denotes the elementwise sign function and ηx, ξx ∈ TxSn−1.
For both orthogonal group Od and the unit sphere Sn−1, the qf retraction is used:

RX(ηX) = qf(X + ηX),

where qf(M) denotes the Q factor of the QR decomposition with nonnegative ele-
ments on the diagonal of R. The vector transport by parallelization [18] is isometric
and essentially identity. We modify it by the approach in [17, section 4.2] and use
the resulting vector transport satisfying the locking condition. To the best of our
knowledge, it is unknown how large the injectivity radius for this retraction is. But in
practice, the vector transport can be represented by a matrix. Therefore, we always
use the inverse of the matrix as the inverse of the vector transport.
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4.2. Compared methods and parameter setting. Algorithm 8 is compared
with RGS (see [16, section 7.2] or [14, Algorithm 1]) and the modified Riemannian
BFGS method (see [16, section 7.3]), which is a Riemannian generalization of [21].

The main difference between the RGS method, the modified Riemannian BFGS
method, and Algorithm 7 is the search direction. Specifically, the search direction ηk
in RGS at xk is computed as follows: (i) randomly generate ` points in a small enough
neighborhood of xk; (ii) transport the gradients at those ` points to the tangent space
at xk; (iii) compute the shortest tangent vector in the convex hull of the resulting
tangent vectors and the gradient at xk; and (iv) set ηk to be the shortest vector. Note
that the number of points, `, is required to be larger than the dimension of the domain.
The modified Riemannian BFGS method makes an assumption that the cost function
is differentiable at all the iterates. It follows that the search direction is the same as
the Riemannian BFGS method for smooth cost functions [17]. However, the stopping
criterion is required to be modified for nonsmooth cost functions. Specifically, let Gk
be defined as follows (jk denotes the number of elements in Gk):

• jk = 1, Gk = {gk} if ‖R−1
xk−1

(xk)‖ > ε (if the xk and xk−1 are not close, then
reset the set Gk to be a singleton),

• jk = jk−1 + 1, Gk = {g(k)
k−jk+1, . . . , g

(k)
k−1, g

(k)
k } if ‖R−1

xk−1
(xk)‖ ≤ ε and jk < J

(if xk and xk−1 are close and the number of elements in Gk is less than J ,

then add g
(k)
k to Gk),

• jk = J , Gk = {g(k)
k−J+1, . . . , g

(k)
k−1, g

(k)
k } if ‖R−1

xk−1
(xk)‖ ≤ ε (if xk and xk−1 are

close and the number of elements in Gk is equal to J , then add g
(k)
k to Gk

and discard g
(k)
k−J),

where g
(j)
i = Txi→xj (gi), ε > 0, and positive integer J are given parameters. The J

also needs to be larger than the dimension of the domain. The modified Riemannian
BFGS method stops if the shortest length vector in the convex hull of Gk is less
than δk.

The tested algorithms stop if one of the following conditions is satisfied:
• the number of iterations reaches 5000;
• the step size is less than the machine epsilon 2.22 ∗ 10−16;
• εk ≤ 10−6 and δk ≤ 10−12.

We say that an algorithm successfully terminates if it is stopped by satisfying the
last condition. Note that an unsuccessfully terminated algorithm does not imply that
the last iterate must be not close to a stationary point. It may also imply that the
stopping criterion is not robust.

The following parameters are used for Algorithm 8: ε1 = 10−4, δ1 = 10−8,
θε = 10−2, θδ = 10−4, λ = 10−4, Λ = 104, c1 = 10−4 and c2 = 0.999. The ε and J
in the modified Riemannian BFGS method are set to be 10−6 and 2dim, respectively,
where dim denotes the dimension of the domain, i.e., dim = d(d − 1)/2 for Od and
dim = n−1 for Sn−1. Multiple values of the parameter ` in RGS are tested. The initial
iterate is given by orthonormalizing a matrix (if the domain is Od) or a vector (if the
domain is Sn−1) whose entries are drawn from the standard normal distribution. The
entries in E are drawn from the uniform distribution from [0, 1] and the entries of Q
are drawn from the standard normal distribution.

The code is written in C++ and is available at http://www.math.fsu.edu/∼whuang2/
papers/LSALLFRM.htm. All experiments are performed on a 64 bit Windows plat-
form with 3.6 GHz CPU (Intel Core i7-4790).D
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Fig. 1. The percentage of successful runs for each algorithm versus various sizes of problems.
RGS1, RGS2, and RGS3 denote RGS method with ` = dim + 1, 2dim, 3dim, respectively, where
dim = d(d− 1)/2 for the left and dim = n− 1 for the right.
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Fig. 2. Top: an average of successful runs of the number of function evaluations versus sizes of
problems. Bottom: an average of successful runs of the computational time (seconds) versus sizes of
problems. RGS1, RGS2, and RGS3 denote RGS method with ` = dim + 1, 2dim, 3dim, respectively,
where dim = d(d− 1)/2 for the left and dim = n− 1 for the right.

4.3. Numerical results. The three algorithms are tested with K = 1000, d =
3, 4, . . . 10 for the bounding box problem and n = 4, 8, 12, . . . , 28,m = 10n for the
sparse vector problem. For each setting of parameters, 50 random runs with the same
50 seeds are used. Figure 1 reports the percentage of successful runs of each algorithm.
The success rate of RGS largely depends on the parameter `. Specifically, the larger
` is, the higher the success rate is. Algorithm 8 always successfully terminates in
both applications, which implies that Algorithm 8 is more robust than all the other
methods.

The average number of function evaluations of successful runs and the average
computational time of the successful runs are reported in Figure 2. Among the
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successful tests, the RGS method is slow due to its cost in solving the quadratic
programming problem and large number of gradient evaluations in each iteration.
Algorithm 8 needs either the smallest or the second smallest number of function eval-
uations. In the bounding box problem and the sparsest vector problem, the larger
the dimension of the domain is, the cheaper the function and gradient evaluations are
when compared to solving the quadratic programming problem. Therefore, as shown
in Figure 2, even when the number of function evaluations in Algorithm 8 is more
than the modified Riemannian BFGS method, the computational time of Algorithm 8
can be smaller.

In conclusion, the experiments suggest that the proposed method, Algorithm 8,
is more robust and faster than RGS and the modified Riemannian BFGS method in
the sense of success rate and computational time.

Acknowledgment. We thank Pierre-Antoine Absil at Université catholique de
Louvain for his helpful comments.
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