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Riemannian Optimization

Problem: Given f (x) :M→ R,
solve

min
x∈M

f (x)

where M is a Riemannian manifold.
M

R
f

What is a Riemannian manifold? manifold + Riemannian metric

Examples of manifolds:

{X ∈ Rn×p | XTX = Ip}
{X ∈ Rm×n | rank(X ) = p}
{X ∈ Rn×n | X = XT ,X � 0}
All p-dimensional linear
subspaces of Rn

Riemannian metric:

Inner product on tangent
spaces

Define angles and lengths
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Applications

Role model extraction [MHB+16]

Geometric mean of symmetric positive definite matrices [YHAG17]

Elastic shape analysis of curves [SKJJ11, HGSA15]

Blind deconvolution [HH17]

Wen Huang Rice University
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Application: Role model extraction

Network Topology

Role Structures

Interaction with nodes
in either the same role
or different roles.

Wen Huang Rice University
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Application: Role model extraction

Direct methods (Optimize a cost function over A directly)

Indirect methods

Similarity matrix of the neighborhood pattern similarity measure
Cluster highly similar nodes together to extract role partition
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Application: Role model extraction

Indirect methods

Similarity matrix of the neighborhood pattern similarity Measure;

Cluster highly similar nodes together to extract role partition;

Find a low-rank approximation of the similarity matrix (Optimization
on fixed-rank manifold);

Use the factor in the low-rank matrix to find roles;

Wen Huang Rice University

Blind deconvolution



6/45

Riemannian Optimization Problem Statement Related Work Manifold Approach Numerical Results Theoretical Results Conclusion

Application: Role model extraction

Indirect methods

Similarity matrix of the neighborhood pattern similarity Measure;

Cluster highly similar nodes together to extract role partition;

Find a low-rank approximation of the similarity matrix (Optimization
on fixed-rank manifold);

Use the factor in the low-rank matrix to find roles;

Wen Huang Rice University

Blind deconvolution



7/45

Riemannian Optimization Problem Statement Related Work Manifold Approach Numerical Results Theoretical Results Conclusion

Application: Symmetric Positive Definite (SPD) Matrices

Symmetric positive definite (SPD) matrices are fundamental objects in
various domains.

Object recognition

Human detection and tracking

Diffusion tensor magnetic resonance imaging
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Application: Symmetric Positive Definite (SPD) Matrices

Symmetric positive definite (SPD) matrices are fundamental objects in
various domains.

Object recognition

Human detection and tracking

Diffusion tensor magnetic resonance imaging

Averaging SPD matrices
(Geometric mean)

Aggregate noisy measurements

Subtask in interpolation
methods

Wen Huang Rice University
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Application: Symmetric Positive Definite (SPD) Matrices

The desired properties of a geometric mean are given in the ALM1 list,
some of which are

if A1, . . . ,Ak commute, then G (A1, . . . ,Ak) = (A1 . . .Ak)
1
k ;

G (Aπ(1), . . . ,Aπ(k)) = G (A1, . . . ,Ak), with π a permutation of
(1, . . . , k);

G (A1, . . . ,Ak) = G
(
A−1

1 , . . .A−1
k

)−1
;

detG (A1, . . . ,Ak) = (detA1 . . . detAk)
1
k ;

where A1, . . . ,Ak are SPD matrices, and G (·, . . . , ·) denotes the
geometric mean of arguments.

1T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004
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Application: Geometric Mean of Symmetric Positive
Definite Matrices

One geometric mean is the Karcher mean of the manifold of SPD
matrices with the affine invariant metric, i.e.,

G (A1, . . . ,Ak) = arg min
X∈Sn

+

1

2k

k∑
i=1

dist2(X ,Ai ),

where dist(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F is the distance under the
Riemannian metric

g(ηX , ξX ) = trace(ηXX
−1ξXX

−1).
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Application: Elastic Shape Analysis of Curves

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Classification
[LKS+12, HGSA15]

Face recognition
[DBS+13]
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Application: Elastic Shape Analysis of Curves

Elastic shape analysis invariants:

Rescaling

Translation

Rotation

Reparametrization

The shape space is a quotient space

Figure: All are the same shape.
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Application: Elastic Shape Analysis of Curves

shape 1 shape 2

q1

q̃2

q2

[q1] [q2]

Optimization problem minq2∈[q2] dist(q1, q2) is defined on a
Riemannian manifold

Computation of a geodesic between two shapes

Computation of Karcher mean of a population of shapes
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ROPTLIB

Riemannian manifold optimization library (ROPTLIB) is used to optimize
a function on a manifold.

Most state-of-the-art methods;

Commonly-encountered manifolds;

Written in C++;

Interfaces with Matlab, Julia and R;

BLAS and LAPACK;

www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

Wen Huang Rice University
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Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their
convolution.
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Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals w ∈ CL and
x ∈ CL from their convolution y = w ∗ x ∈ CL.

We only consider circular convolution:
y1

y2

y3

...
yL

 =


w1 wL wL−1 . . . w2

w2 w1 wL . . . w3

w3 w2 w1 . . . w4

...
...

...
. . .

...
wL wL−1 wL−2 . . . w1




x1

x2

x3

...
xL


Let y = Fy, w = Fw, and x = Fx, where F is the DFT matrix;

y = w � x , where � is the Hadamard product, i.e., yi = wixi .

Equivalent question: Given y , find w and x .

Wen Huang Rice University
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Problem Statement

Problem: Given y ∈ CL, find w , x ∈ CL so that y = w � x .

An ill-posed problem. Infinite solutions exist;

Assumption: w and x are in known subspaces, i.e., w = Bh and
x = Cm, B ∈ CL×K and C ∈ CL×N ;

Reasonable in various applications;

Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem under the assumption

Given y ∈ CL, B ∈ CL×K and C ∈ CL×N , find h ∈ CK and m ∈ CN so
that

y = Bh � Cm = diag(Bhm∗C∗).
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Related work

Ahmed et al. [ARR14]2

Convex problem:

min
X∈CK×N

‖X‖n, s. t. y = diag(BXC∗),

where ‖ · ‖n denotes the nuclear norm, and X = hm∗;

(Theoretical result): the unique minimizer
high probability

============= the true
solution;

The convex problem is expensive to solve;

2A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Wen Huang Rice University

Blind deconvolution

Find h,m, s. t. y = diag(Bhm∗C∗);



17/45

Riemannian Optimization Problem Statement Related Work Manifold Approach Numerical Results Theoretical Results Conclusion

Related work

Ahmed et al. [ARR14]2

Convex problem:

min
X∈CK×N

‖X‖n, s. t. y = diag(BXC∗),

where ‖ · ‖n denotes the nuclear norm, and X = hm∗;

(Theoretical result): the unique minimizer
high probability

============= the true
solution;

The convex problem is expensive to solve;

2A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Wen Huang Rice University

Blind deconvolution

Find h,m, s. t. y = diag(Bhm∗C∗);



17/45

Riemannian Optimization Problem Statement Related Work Manifold Approach Numerical Results Theoretical Results Conclusion

Related work

Ahmed et al. [ARR14]2

Convex problem:

min
X∈CK×N

‖X‖n, s. t. y = diag(BXC∗),

where ‖ · ‖n denotes the nuclear norm, and X = hm∗;

(Theoretical result): the unique minimizer
high probability

============= the true
solution;

The convex problem is expensive to solve;

2A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Wen Huang Rice University

Blind deconvolution

Find h,m, s. t. y = diag(Bhm∗C∗);



18/45

Riemannian Optimization Problem Statement Related Work Manifold Approach Numerical Results Theoretical Results Conclusion

Related work

Li et al. [LLSW16]3

Nonconvex problem4:

min
(h,m)∈CK×CN

‖y − diag(Bhm∗C∗)‖2
2;

(Theoretical result):

A good initialization

(Wirtinger flow method + a good initialization)
high probability

============⇒
the true solution;

Lower successful recovery probability than alternating minimization
algorithm empirically.

3X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016

4The penalty in the cost function is not added for simplicity
Wen Huang Rice University

Blind deconvolution

Find h,m, s. t. y = diag(Bhm∗C∗);
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Manifold Approach

The problem is defined on the set of rank-one matrices (denoted by
CK×N

1 ), neither CK×N nor CK × CN ; Why not work on the manifold
directly?

Optimization on manifolds: A Riemannian steepest descent method;

A representation of CK×N
1 ;

Representation of directions;

A Riemannian metric;

Riemannian gradient;

Wen Huang Rice University
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A Representation of CK×N
1 : CK

∗ × CN
∗ /C∗

Given X ∈ CK×N
1 , there exists (h,m) such that X = hm∗;

(h,m) is not unique;

The equivalent class: [(h,m)] = {(ha,ma−∗) | a 6= 0};

Quotient manifold: CK
∗ × CN

∗ /C∗ = {[(h,m)] | (h,m) ∈ CK
∗ × CN

∗ }

M = CK
∗ × CN

∗

(h,m)

E = CK × CN

M = CK
∗ × CN

∗ /C∗

[(h,m)]

CK
∗ × CN

∗ /C∗ ' CK×N
1

Wen Huang Rice University
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A Representation of CK×N
1 : CK

∗ × CN
∗ /C∗

Cost function5

Riemannian approach:

f : CK
∗ × CN

∗ /C∗ → R : [(h,m)] 7→ ‖y − diag(Bhm∗C∗)‖2
2.

Approach in [LLSW16]:

f : CK × CN → R : (h,m) 7→ ‖y − diag(Bhm∗C∗)‖2
2.

M = CK
∗ × CN

∗

(h,m)

E = CK × CN

M = CK
∗ × CN

∗ /C∗

[(h,m)]

5The penalty in the cost function is not added for simplicity.
Wen Huang Rice University
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Representation of directions on CK
∗ × CN

∗ /C∗

M

x

ξx

η↑x

TxME = CK × CN

M

[x ]

y

z

[y ]

[z ]

η[x ]

x denotes (h,m);

Green line: the tangent space of [x ];

Red line (horizontal space at x): orthogonal to the green line;

Horizontal space at x : a representation of the tangent space of M at [x ];

Wen Huang Rice University
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A Riemannian metric

Riemannian metric:

Inner product on tangent spaces
Define angles and lengths

M

Riemannian metric g1

M

Riemannian metric g2

Figure: Changing metric may influence the difficulty of a problem.

Wen Huang Rice University

Blind deconvolution



24/45

Riemannian Optimization Problem Statement Related Work Manifold Approach Numerical Results Theoretical Results Conclusion

A Riemannian metric

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose
the Riemannian metric.

Let 〈u, v〉2 = Re(trace(u∗v)):

1

2
〈ηh,Hessh f [ξh]〉2 = 〈diag(Bηhm

∗C∗), diag(Bξhm
∗C∗)〉2 ≈ 〈ηhm∗, ξhm∗〉2

1

2
〈ηm,Hessm f [ξm]〉2 = 〈diag(Bhη∗mC

∗),diag(Bhξ∗mC
∗)〉2 ≈ 〈hη∗m, hξ∗m〉2,

where ≈ can be derived from some assumptions (given later);

The Riemannian metric:

g
(
η[x], ξ[x]

)
= 〈ηh, ξhm∗m〉2 + 〈η∗m, ξ∗mh∗h〉2;

Wen Huang Rice University

Blind deconvolution

min[(h,m)] ‖y − diag(Bhm∗C∗)‖2
2
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Riemannian gradient

Riemannian gradient

A tangent vector: grad f([x ]) ∈ T[x]M;

Satisfies: Df ([x ])[η[x]] = g(grad f ([x ]), η[x]), ∀η[x] ∈ T[x]M;

Represented by a vector in a horizontal space;

Riemannian gradient:

(grad f ([(h,m)]))↑(h,m)
= Proj

(
∇hf (h,m)(m∗m)−1,∇mf (h,m)(h∗h)−1

)
;

Wen Huang Rice University
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A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method6

0 Given (h0,m0), step size α > 0, and set k = 0

1 dk = ‖hk‖2‖mk‖2, hk ←
√
dk

hk
‖hk‖2

; mk ←
√
dk

mk

‖mk‖2
;

2 (hk+1,mk+1) = (hk ,mk)− α
(
∇hk

f (hk ,mk )

dk
,
∇mk

f (hk ,mk )

dk

)
;

3 If not converge, goto Step 2.

Wirtinger flow Method in [LLSW16]

0 Given (h0,m0), step size α > 0, and set k = 0

1 (hk+1,mk+1) = (hk ,mk)− α (∇hk f (hk ,mk),∇mk
f (hk ,mk));

2 If not converge, goto Step 2.

6The penalty in the cost function is not added for simplicity
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Penalty/Coherence

Coherence is defined as

µ2
h =

L‖Bh‖2
∞

‖h‖2
2

=
Lmax

(
|b∗1h|2, |b∗2h|2, . . . , |b∗Lh|2

)
‖h‖2

2

;

Coherence at the true solution [(h],m])]

influences the probability of recovery
Small coherence is preferred
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Penalty

Promote low coherence:

ρ

L∑
i=1

G0

(
L|b∗i h|2‖m‖2

2

8d2µ2

)
,

where G0(t) = max(t − 1, 0)2;

Ω: ellipsoid;

Unique minimizer in Ω;

Initial iterate in Ω;

Importance of the penalty;

‖y − diag(Bhm ∗ C∗)‖2
2 ‖y − diag(Bhm ∗ C∗)‖2

2 + penalty
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Penalty

Riemannian approach:

ρ

L∑
i=1

G0

(
L|b∗i h|2‖m‖2

2

8d2µ2

)
[LLSW16]:

ρ

[
G0

(
‖h‖2

2

2d

)
+ G0

(
‖m‖2

2

2d

)
+

L∑
i=1

G0

(
L|b∗i h|2

8dµ2

)]

G0(t) = max(t − 1, 0)2, [b1b2 . . . bL]∗ = B;

Riemannian approach avoids the two terms.
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Initialization

Initialization method [LLSW16]

(d , h̃0, m̃0): SVD of B∗ diag(y)C ;

Project (h̃0, m̃0) to a neighborhood of the true solution;

Initial iterate [(h0,m0)];
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Numerical Results

Synthetic tests

Efficiency

Probability of successful recovery

Image deblurring
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Efficiency

Table: Comparisons of efficiency

L = 400,K = N = 50 L = 600,K = N = 50
Algorithms [LLSW16] [LWB13] R-SD [LLSW16] [LWB13] R-SD
nBh/nCm 351 718 208 162 294 122
nFFT 870 1436 518 401 588 303
RMSE 2.22−8 3.67−8 2.20−8 1.48−8 2.34−8 1.42−8

An average of 100 random runs

nBh/nCm: the numbers of Bh and Cm multiplication operations respectively

nFFT: the number of Fourier transform

RMSE: the relative error
‖hm∗−h]m

∗
] ‖F

‖h]‖2‖m]‖2

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization

preprint arXiv:1312.0525, 2013
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Probability of successful recovery

Success if
‖hm∗−h]m∗] ‖F
‖h]‖2‖m]‖2

≤ 10−2
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[LWB13]
R-SD

Figure: Empirical phase transition curves for 1000 random runs.

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization

preprint arXiv:1312.0525, 2013
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Image deblurring

Original image [WBX+07]: 1024-by-1024 pixels

Motion blurring kernel (Matlab: fspecial(’motion’, 50, 45))
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Image deblurring

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the support of the blurring kernel is
known: B.

L = 1048576,K = 109,
N = 5000, 20000, 80000
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Image deblurring

Initial guess (N=5000) Initial guess (N=20000) Initial guess (N=80000)

Reconstructed image (N=5000) Reconstructed image (N=20000) Reconstructed image (N=80000)

Figure: Initial guess by running power method for 50 iterations and the
reconstructed image for N = 5000, 20000, and 80000.
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Image deblurring

Table: Computational costs for multiple values of N on the image deblurring

N nBh/nCm nFFT relres relerr t
5000 535 1330 4.8−3 5.7−2 170

20000 546 1358 2.1−3 5.3−2 173
80000 452 1124 8.0−4 5.0−2 144

relres: ‖y − diag(Bhm∗C∗)‖2/‖y‖2;

relerr :
∥∥∥yo − ‖y‖

‖yf ‖yf

∥∥∥ /‖yo‖
yf : the vector by reshaping the reconstructed image

yo : the vector by reshaping the original image
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Theoretical Results

Mathematical model:

The entries in C are drawn from Gaussian distribution; and

B satisfies B∗B = IK and ‖bi‖2
2 ≤ φK

L , i = 1, . . . , L for some
constant φ.
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Theoretical Results

Initialization [LLSW16]7

If L ≥ Cγ(µ2 + σ2) max(K ,N) log2(L)/ε, then with high probability, it holds
that

[(h0,m0)] ∈ Ω 1
2
µ ∩ Ω 2

5
ε,

where Ωµ = {[(h,m)] |
√
L‖Bh‖∞‖m‖2 ≤ 4d∗µ},

Ωε = {[(h,m)] | ‖hm∗ − h]m
∗
] ‖F ≤ εd∗}, and (h],m]) is the true solution.

Large enough number of measurements =⇒ the initial point in a small
neighborhood of the true solution.

7X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016
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Theoretical Results

Convergence analysis

Suppose L ≥ Cγ(µ2 + σ2) max(K ,N) log2(L)/ε2 and the initialization
[(h0,m0)] ∈ Ω 1

2
µ ∩ Ω 2

5
ε. Then with high probability, it holds that

‖hkm∗k − h]m
∗
] ‖F ≤

2

3

(
1− α

3000

)k/2

εd∗,

where α is a small enough fixed step size.

i) Large enough number of measurements; ii) the initial point in a small
neighborhood of the true solution =⇒ the Riemannian method converges
linearly to the true solution.
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Theoretical Results

Riemannian Hessian

Suppose L ≥ Cγ max(K , µ2
hN) log2(L). Then with high probability, it holds that

9d2
∗

5
≤ λi ≤

22d2
∗

5

for all i , where λi are eigenvalues of the Riemannian Hessian Hess f at the true
solution.

The Riemannian Hessian f ◦ R is well-conditioned near the true solution.
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Conclusion

Blind deconvolution by optimizing over a quotient manifold

A Riemannian steepest descent method

Simple implementation

Recovery guarantee

Superior numerical performance
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Thank you

Thank you!
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