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Problem Statement and Framework

Riemannian Optimization

Problem: Given f (x) :M→ R,
solve

min
x∈M

f (x)

where M is a Riemannian manifold.
M

R
f

What is a Riemannian manifold? manifold + Riemannian metric

Examples of manifolds:

{X ∈ Rn×p | XTX = Ip}
{X ∈ Rm×n | rank(X ) = p}
{X ∈ Rn×n | X = XT ,X � 0}
All p-dimensional linear
subspaces of Rn

Riemannian metric:

Inner product on tangent
spaces

Define angles and lengths
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Problem Statement and Framework

Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:
Steepest descent: xk+1 = xk − αk∇f (xk)

Newton’s method: xk+1 = xk −
[
∇2f (xk)

]−1∇f (xk)
Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide

Riemannian concepts describing
directions and movement on the
manifold

Riemannian analogues for gradient
and Hessian

xk xk + dk

Wen Huang, Paul Hand Rice University
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Problem Statement and Framework

Retractions

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk (αkηk)

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx(tη)

TxM
x

η

Rx(η)

M
Wen Huang, Paul Hand Rice University
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Problem Statement and Framework

Categories of Riemannian optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and Rx(tη) to define line

Steepest decent

Newton

Local model-based: series of flat space problems

Riemannian trust region Newton (RTR)

Riemannian adaptive cubic overestimation (RACO)

Wen Huang, Paul Hand Rice University

Blind Deconvolution
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Problem Statement and Framework

Categories of Riemannian optimization methods

Retraction and transport-based: information from multiple tangent spaces

Nonlinear conjugate gradient: multiple tangent vectors

Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function (M, g):

formulas for combining information from multiple tangent spaces.

Wen Huang, Paul Hand Rice University

Blind Deconvolution
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Problem Statement and Framework

Vector Transports

Vector Transport

Vector transport: Transport a tangent
vector from one tangent space to
another

Tηx ξx , denotes transport of ξx to
tangent space of Rx(ηx). R is a
retraction associated with T

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure: Vector transport.
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Problem Statement and Framework

Retraction/Transport-based Riemannian Optimization

Given a retraction and a vector transport, we can generalize many
Euclidean methods to the Riemannian setting. Do the Riemannian
versions of the methods work well?

No

Lose many theoretical results and important properties;

Impose restrictions on retraction/vector transport;

Wen Huang, Paul Hand Rice University
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Problem Statement and Framework

Retraction/Transport-based Riemannian Optimization

Elements required for optimizing a cost function (M, g):

an representation for points x on M, for tangent spaces TxM;

choice of an inner products gx(·, ·) on TxM;

choice of a retraction Rx : TxM → M;

formulas for f (x), grad f (x) and Hess f (x) (or its action);

Wen Huang, Paul Hand Rice University
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Problem Statement and Methods

Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their
convolution.
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Problem Statement and Methods

Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals w ∈ CL and
x ∈ CL from their convolution y = w ∗ x ∈ CL.

We only consider circular convolution:
y1

y2

y3

...
yL

 =


w1 wL wL−1 . . . w2

w2 w1 wL . . . w3

w3 w2 w1 . . . w4

...
...

...
. . .

...
wL wL−1 wL−2 . . . w1




x1

x2

x3

...
xL


Let y = Fy, w = Fw, and x = Fx, where F is the DFT matrix;

y = w � x , where � is the Hadamard product, i.e., yi = wixi .

Equivalent question: Given y , find w and x .

Wen Huang, Paul Hand Rice University
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Problem Statement

Problem: Given y ∈ CL, find w , x ∈ CL so that y = w � x .

An ill-posed problem. Infinite solutions exist;

Assumption: w and x are in known subspaces, i.e., w = Bh and
x = Cm, B ∈ CL×K and C ∈ CL×N ;

Reasonable in various applications;

Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem under the assumption

Given y ∈ CL, B ∈ CL×K and C ∈ CL×N , find h ∈ CK and m ∈ CN so
that

y = Bh � Cm = diag(Bhm∗C∗).

Wen Huang, Paul Hand Rice University

Blind Deconvolution
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Problem Statement and Methods

Related work

Ahmed et al. [ARR14]1

Convex problem:

min
X∈CK×N

‖X‖n, s. t. y = diag(BXC∗),

where ‖ · ‖n denotes the nuclear norm, and X = hm∗;

(Theoretical result): the unique minimizer
high probability

============= the true
solution;

The convex problem is expensive to solve;

1A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Wen Huang, Paul Hand Rice University

Blind Deconvolution

Find h,m, s. t. y = diag(Bhm∗C∗);
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Related work

Li et al. [LLSW16]2

Nonconvex problem3:

min
(h,m)∈CK×CN

‖y − diag(Bhm∗C∗)‖2
2;

(Theoretical result):

A good initialization

(Wirtinger flow method + a good initialization)
high probability

============⇒
the true solution;

Lower successful recovery probability than alternating minimization
algorithm empirically.

2X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016

3The penalty in the cost function is not added for simplicity
Wen Huang, Paul Hand Rice University

Blind Deconvolution

Find h,m, s. t. y = diag(Bhm∗C∗);
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Manifold Approach

The problem is defined on the set of rank-one matrices (denoted by
CK×N

1 ), neither CK×N nor CK × CN ; Why not work on the manifold
directly?

A representative Riemannian method: Riemannian steepest descent
method (RSD)

A good initialization

(RSD + the good initialization)
high probability

============⇒ the true solution;

The Riemannian Hessian at the true solution is well-conditioned;

Wen Huang, Paul Hand Rice University

Blind Deconvolution

Find h,m, s. t. y = diag(Bhm∗C∗);
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Problem Statement and Methods

Manifold Approach

The problem is defined on the set of rank-one matrices (denoted by
CK×N

1 ), neither CK×N nor CK × CN ; Why not work on the manifold
directly?

Optimization on manifolds: A Riemannian steepest descent method;

Representation of CK×N
1 ;

Representation of directions (tangent vectors);

Riemannian metric;

Riemannian gradient;

Wen Huang, Paul Hand Rice University

Blind Deconvolution

Find h,m, s. t. y = diag(Bhm∗C∗);
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Problem Statement and Methods

A Representation of CK×N
1 : CK

∗ × CN
∗ /C∗

Given X ∈ CK×N
1 , there exists (h,m), h 6= 0 and m 6= 0 such that

X = hm∗;

(h,m) is not unique;

The equivalent class: [(h,m)] = {(ha,ma−∗) | a 6= 0};
Quotient manifold: CK

∗ × CN
∗ /C∗ = {[(h,m)] | (h,m) ∈ CK

∗ × CN
∗ }

M = CK
∗ × CN

∗

(h,m)

E = CK × CN

M = CK
∗ × CN

∗ /C∗

[(h,m)]

CK
∗ × CN

∗ /C∗ ' CK×N
1

Wen Huang, Paul Hand Rice University
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Problem Statement and Methods

A Representation of CK×N
1 : CK

∗ × CN
∗ /C∗

Cost function4

Riemannian approach:

f : CK
∗ × CN

∗ /C∗ → R : [(h,m)] 7→ ‖y − diag(Bhm∗C∗)‖2
2.

Approach in [LLSW16]:

f : CK × CN → R : (h,m) 7→ ‖y − diag(Bhm∗C∗)‖2
2.

M = CK
∗ × CN

∗

(h,m)

E = CK × CN

M = CK
∗ × CN

∗ /C∗

[(h,m)]

4The penalty in the cost function is not added for simplicity.
Wen Huang, Paul Hand Rice University

Blind Deconvolution
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Problem Statement and Methods

Representation of directions on CK
∗ × CN

∗ /C∗

M

x

ξx

η↑x

TxME = CK × CN

M

[x ]

y

z

[y ]

[z ]

η[x ]

x denotes (h,m);

Green line: the tangent space of [x ];

Red line (horizontal space at x): orthogonal to the green line;

Horizontal space at x : a representation of the tangent space of M at [x ];

Wen Huang, Paul Hand Rice University

Blind Deconvolution
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Problem Statement and Methods

Retraction

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk (αkηk)

Retraction: R : TM→M

R(0[x]) = [x ]

dR(tη[x])

dt |t=0 = η[x];

Retraction on CK
∗ ×CN

∗ /C∗:

R[(h,m)](η[(h,m)]) = [(h + ηh,m + ηm)] .

M

x
η

TxM

Rx(η)R̃x(η)

Two retractions:R and R̃

Wen Huang, Paul Hand Rice University

Blind Deconvolution
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Problem Statement and Methods

A Riemannian metric

Riemannian metric:
Inner product on tangent spaces
Define angles and lengths

M

Riemannian metric g1

M

Riemannian metric g2

Figure: Changing metric may influence the difficulty of a problem.

Wen Huang, Paul Hand Rice University

Blind Deconvolution



23/41

Riemannian Optimization Blind deconvolution Summary

Problem Statement and Methods

A Riemannian metric

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose
the Riemannian metric.

Let 〈u, v〉2 = Re(trace(u∗v)):

1

2
〈ηh,Hessh f [ξh]〉2 = 〈diag(Bηhm

∗C∗), diag(Bξhm
∗C∗)〉2 ≈ 〈ηhm∗, ξhm∗〉2

1

2
〈ηm,Hessm f [ξm]〉2 = 〈diag(Bhη∗mC

∗), diag(Bhξ∗mC
∗)〉2 ≈ 〈hη∗m, hξ∗m〉2,

where ≈ can be derived from some assumptions;

The Riemannian metric:

g
(
η[x], ξ[x]

)
= 〈ηh, ξhm∗m〉2 + 〈η∗m, ξ∗mh∗h〉2;

Wen Huang, Paul Hand Rice University

Blind Deconvolution

min[(h,m)] ‖y − diag(Bhm∗C∗)‖2
2



23/41

Riemannian Optimization Blind deconvolution Summary

Problem Statement and Methods

A Riemannian metric

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose
the Riemannian metric.

Let 〈u, v〉2 = Re(trace(u∗v)):

1

2
〈ηh,Hessh f [ξh]〉2 = 〈diag(Bηhm

∗C∗), diag(Bξhm
∗C∗)〉2 ≈ 〈ηhm∗, ξhm∗〉2

1

2
〈ηm,Hessm f [ξm]〉2 = 〈diag(Bhη∗mC

∗), diag(Bhξ∗mC
∗)〉2 ≈ 〈hη∗m, hξ∗m〉2,

where ≈ can be derived from some assumptions;

The Riemannian metric:

g
(
η[x], ξ[x]

)
= 〈ηh, ξhm∗m〉2 + 〈η∗m, ξ∗mh∗h〉2;

Wen Huang, Paul Hand Rice University

Blind Deconvolution

min[(h,m)] ‖y − diag(Bhm∗C∗)‖2
2



23/41

Riemannian Optimization Blind deconvolution Summary

Problem Statement and Methods

A Riemannian metric

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose
the Riemannian metric.

Let 〈u, v〉2 = Re(trace(u∗v)):

1

2
〈ηh,Hessh f [ξh]〉2 = 〈diag(Bηhm

∗C∗), diag(Bξhm
∗C∗)〉2 ≈ 〈ηhm∗, ξhm∗〉2

1

2
〈ηm,Hessm f [ξm]〉2 = 〈diag(Bhη∗mC

∗), diag(Bhξ∗mC
∗)〉2 ≈ 〈hη∗m, hξ∗m〉2,

where ≈ can be derived from some assumptions;

The Riemannian metric:

g
(
η[x], ξ[x]

)
= 〈ηh, ξhm∗m〉2 + 〈η∗m, ξ∗mh∗h〉2;

Wen Huang, Paul Hand Rice University

Blind Deconvolution

min[(h,m)] ‖y − diag(Bhm∗C∗)‖2
2



24/41

Riemannian Optimization Blind deconvolution Summary

Problem Statement and Methods

Riemannian gradient

Riemannian gradient

A tangent vector: grad f([x ]) ∈ T[x]M;

Satisfies: Df ([x ])[η[x]] = g(grad f ([x ]), η[x]), ∀η[x] ∈ T[x]M;

Represented by a vector in a horizontal space;

Riemannian gradient:

(grad f ([(h,m)]))↑(h,m)
= Proj

(
∇hf (h,m)(m∗m)−1,∇mf (h,m)(h∗h)−1

)
;

Wen Huang, Paul Hand Rice University

Blind Deconvolution
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Problem Statement and Methods

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method5

0 Given (h0,m0), step size α > 0, and set k = 0

1 dk = ‖hk‖2‖mk‖2, hk ←
√
dk

hk
‖hk‖2

; mk ←
√
dk

mk

‖mk‖2
;

2 (hk+1,mk+1) = (hk ,mk)− α
(
∇hk

f (hk ,mk )

dk
,
∇mk

f (hk ,mk )

dk

)
;

3 If not converge, goto Step 2.

Wirtinger flow Method in [LLSW16]

0 Given (h0,m0), step size α > 0, and set k = 0

1 (hk+1,mk+1) = (hk ,mk)− α (∇hk f (hk ,mk),∇mk
f (hk ,mk));

2 If not converge, goto Step 2.

5The penalty in the cost function is not added for simplicity
Wen Huang, Paul Hand Rice University

Blind Deconvolution
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f (hk ,mk));

2 If not converge, goto Step 2.

5The penalty in the cost function is not added for simplicity
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Problem Statement and Methods

A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method5
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Problem Statement and Methods

Penalty

Penalty term for (i) Riemannian method, (ii) Wirtinger flow [LLSW16]

(i): ρ
L∑

i=1

G0

(
L|b∗i h|2‖m‖2

2

8d2µ2

)

(ii): ρ

[
G0

(
‖h‖2

2

2d

)
+ G0

(
‖m‖2

2

2d

)
+

L∑
i=1

G0

(
L|b∗i h|2

8dµ2

)]
,

where G0(t) = max(t − 1, 0)2, [b1b2 . . . bL]∗ = B.

The first two terms in (ii) penalize large values of ‖h‖2 and ‖m‖2;

The other terms promote a small coherence;
The one in (i) is defined in the quotient space whereas the one in
(ii) is not.
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Problem Statement and Methods

Penalty/Coherence

Coherence is defined as

µ2
h =

L‖Bh‖2
∞

‖h‖2
2

=
Lmax

(
|b∗1h|2, |b∗2h|2, . . . , |b∗Lh|2

)
‖h‖2

2

;

Coherence at the true solution [(h],m])]

influences the probability of recovery

Small coherence is preferred
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Problem Statement and Methods

Penalty

Promote low coherence:

ρ

L∑
i=1

G0

(
L|b∗i h|2‖m‖2

2

8d2µ2

)
,

where G0(t) = max(t − 1, 0)2;

‖y − diag(Bhm ∗ C∗)‖2
2 ‖y − diag(Bhm ∗ C∗)‖2

2 + penalty

Initial point
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Problem Statement and Methods

Initialization

Initialization method [LLSW16]

(d , h̃0, m̃0): SVD of B∗ diag(y)C ;

h0 = argminz ‖z −
√
dh̃0‖2

2, subject to
√
L‖Bz‖∞ ≤ 2

√
dµ;

m0 =
√
dm̃0;

Initial iterate [(h0,m0)];
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Numerical Results

Numerical Results

Synthetic tests

Efficiency

Probability of successful recovery

Image deblurring

Kernels with known supports

Motion kernel with inexact supports
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Numerical Results

Efficiency

Table: Comparisons of efficiency

L = 400,K = N = 50 L = 600,K = N = 50
Algorithms [LLSW16] [LWB13] R-SD [LLSW16] [LWB13] R-SD
nBh/nCm 351 718 208 162 294 122
nFFT 870 1436 518 401 588 303
RMSE 2.22−8 3.67−8 2.20−8 1.48−8 2.34−8 1.42−8

An average of 100 random runs

nBh/nCm: the numbers of Bh and Cm multiplication operations respectively

nFFT: the number of Fourier transform

RMSE: the relative error
‖hm∗−h]m

∗
] ‖F

‖h]‖2‖m]‖2

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization

preprint arXiv:1312.0525, 2013
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Numerical Results

Probability of successful recovery

Success if
‖hm∗−h]m∗] ‖F
‖h]‖2‖m]‖2

≤ 10−2
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Figure: Empirical phase transition curves for 1000 random runs.

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization

preprint arXiv:1312.0525, 2013
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Numerical Results

Image deblurring

Image [WBX+07]: 1024-by-1024 pixels
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Numerical Results

Image deblurring with various kernels

Figure: Left: Motion kernel by Matlab function “fspecial(’motion’, 50, 45)”;
Middle: Kernel like function “sin”; Right: Gaussian kernel with covariance
[1, 0.8; 0.8, 1];
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Numerical Results

Image deblurring with various kernels

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis vectors: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the supports of the blurring kernels
are known: B.

L = 1048576, N = 20000, Kmotion = 109,
Ksin = 153, KGaussian = 181;

Wen Huang, Paul Hand Rice University
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Numerical Results
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Numerical Results

Image deblurring with various kernels

Figure: The number of iterations is 80; Computational times are about 48s;

Relative errors
∥∥∥ŷ − ‖y‖

‖yf ‖
yf
∥∥∥ /‖ŷ‖ are 0.038, 0.040, and 0.089 from left to right.
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Numerical Results

Image deblurring with unknown supports

Figure: Top: reconstructed image using the exact support; Bottom: estimated
supports with the numbers of nonzero entries: K1 = 183, K2 = 265, K3 = 351,
and K4 = 441;
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Numerical Results

Image deblurring with inexact supports

Figure: Relative errors
∥∥∥ŷ − ‖y‖

‖yf ‖
yf
∥∥∥ /‖ŷ‖ are 0.044, 0.048, 0.052, and 0.067

from left to right.
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Summary

Introduce rectraction and transport-based Riemannian optimization

RSD has efficient implementation for solving blind deconvolution
problem

RSD method has recovery guarantee

RSD is faster and has higher probability of successful recovery
compared to the alternating minimization method and the approach
in [LLSW16]

RSD method works well for the tested imaging debluring problems
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Thank you

Thank you!
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