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Problem Statement

Optimization on Manifolds with Structure:

Xr'reuj\rll F(x) = f(x) + h(x),

@ M is a finite-dimensional Riemannian manifold;

@ f is smooth and may be nonconvex; and

@ h(x) is continuous and convex but may be nonsmooth;
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Problem Statement

Optimization on Manifolds with Structure:

Xr'reuj\rll F(x) = f(x) + h(x),

@ M is a finite-dimensional Riemannian manifold;
@ f is smooth and may be nonconvex; and

@ h(x) is continuous and convex but may be nonsmooth;

Applications: sparse PCA [ZHTO06], compressed model [OLCO13],
sparse partial least squares regression [CSGT18], sparse inverse
covariance estimation [BESS19], sparse blind deconvolution [ZLK*17],
and clustering [HWGVD22].
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@ Euclidean proximal gradient method and its variants;

Riemannian proximal gradient method and its variants;
@ A Riemannian proximal Newton method;

@ Numerical experiments;

Speaker: Wutao Si A Riemannian Proximal Newton Method



Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M = R"

Xnéilgn F(x) = f(x) + h(x),
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M = R"

Xrg]i]@ F(x) = f(x) + h(x),

@ Proximal Gradient
@ Proximal inexact Newton

@ Proximal quasi-Newton
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M = R"

Xrg]i]@ F(x) = f(x) + h(x),

Given xp',

{ di = arg min, (VF(xc), p) + 5Pl + h(x« + p)

@ Proximal Gradient X4l = Xk + d.

@ Proximal inexact Newton

@ Proximal quasi-Newton

1. The update rule: x1 = arg miny f(xk) + (VF(xc), x — xc) + 5 |Ix — xi||2 4 h(x).
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M = R"

Xrg]i]@ F(x) = f(x) + h(x),

Given xp,

{ di = arg min, (VF(xc), p) + 5Pl + h(x« + p)

@ Proximal Gradient X4l = Xk + d.

@ Proximal inexact Newton e h = 0: reduce to steepest descent method:;

@ Proximal quasi-Newton @ Any limit point is a critical point;

@ For convex f and h, O (}) convergence rate ,
(0] (k—lz) for its accelerated version;

Linear convergence rate for strongly convex f
and convex h;

@ Local convergence rate by KL property;
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M = R"

Xrg]i]@ F(x) = f(x) + h(x),

Given xp;

. , di = argmin, (Vf(x), p) + 3 (p, Hkp) + h(xk + p)
@ Proximal Gradient Xk41 = Xk + txdk, for a step size tx
@ Proximal inexact Newton

@ Proximal quasi-Newton
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M = R"

Xnéilgn F(x) = f(x) + h(x),

Given xp;

di = argmin, (Vf(xc), p) + 3 (p, Hep) + h(x« + p)
@ Proximal Gradient

Xk+1 = Xk + trdk, for a step size t
@ Proximal inexact Newton e H is Hessian or a positive definite

) . approximation to Hessian [LSS14, MYZZ23];

@ Proximal quasi-Newton . .

@ it is one for sufficiently large k;

@ Quadratic/Superlinear convergence rate for
strongly convex f and convex h;

[LSS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal Newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[MYZZ23] Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally
convergent proximal Newton-type method in nonsmooth convex optimization. Mathematical
Programming, 198(1):899-936, 2023.
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M = R"

Xrg]i]@ F(x) = f(x) + h(x),

Given xo, Ho;

. . di = argmin,,(VF(xk), p) + 3 (P, Hkp) + h(x« + p)
@ Proximal Gradient Xkl = Xk + tidk, for a step size ty

) . Update Hi by a quasi-Newton formula (e.g. BFGS)
@ Proximal inexact Newton

@ Proximal quasi-Newton
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Euclidean Proximal Gradient Method and its variants

Optimization with Structure: M = R"

Xnéilgn F(x) = f(x) + h(x),

Given xo, Ho;
. . dx = argmin, (Vf(xx), p) + 2(p, Hkp) + h(x« + p)
@ Proximal Gradient Xkl = Xk + tidk, for a step size ty

) . Update Hi by a quasi-Newton formula (e.g. BFGS)
@ Proximal inexact Newton

] . @ Dennis-Moré condition = superlinear
@ Proximal quasi-Newton convergence rate for strongly convex f and
convex h [LSS14];

[LSS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal Newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.
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@ Euclidean proximal gradient method and its variants;
@ Riemannian proximal gradient method and its variants;
@ A Riemannian proximal Newton method;

@ Numerical experiments;
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Riemannian proximal gradient method and its variants

Optimization with Structure:

Xrglﬂrll F(x) = f(x) + h(x),
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Riemannian proximal gradient method and its variants

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

@ Proximal Gradient 1
@ Proximal Gradient 2

@ Inexact version
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Riemannian proximal gradient method and its variants

Optimization with Structure:

min F(x) = £(x) + h(x),

. ) [CMSZ20]: Given xq,
@ Proximal Gradient 1 ) L
Mk = argminper, a (VF(xk),m) + 3 lInllF + A0k + )

@ Proximal Gradient 2 { Xi41 = Ry, (km) with an appropriate step size ay;

@ Inexact version
.M

R,
A

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

Xrglﬂrll F(x) = f(x) + h(x),

. ) [CMSZ20]: Given xq,
@ Proximal Gradient 1 ) L
Mk = argminper, a (VF(xk),m) + 3 lInllF + A0k + )

@ Proximal Gradient 2 { Xi41 = Ry, (km) with an appropriate step size ay;

@ |nexact version @ Direction in the tangent space;
@ Ambient space must be linear;
@ Solved by a semismooth Newton method;

[

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

Xrglﬂrll F(x) = f(x) + h(x),

. ) [CMSZ20]: Given xq,
@ Proximal Gradient 1 ) L
Mk = argminper, a (VF(xk),m) + 3 lInllF + A0k + )

@ Proximal Gradient 2 { Xi41 = Ry, (km) with an appropriate step size ay;

@ |nexact version @ Direction in the tangent space;
M @ Ambient space must be linear;
A\ @ Solved by a semismooth Newton method;
’ @ Any limit point is a critical point;
@ No local convergence rate results;

[CMSZ20] S. Chen, S. Ma, A. Man-Cho So, and T. Zhang. Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

Xrgl/\rll F(x) = f(x) + h(x),

[HW22]: Given xo,

Let £y () = (gradf(xc),m)x + 5lnl%, + A(Ry (1));
@ Proximal Gradient 2 7k is a stationary point of £, and £y, (0) > £k(n«);
Xk+1 = R (k);

@ Proximal Gradient 1

@ Inexact version

[HW22b] W. Huang and K. Wei. Riemannian proximal gradient methods. Mathematical
Programming, 194(1-2):371-413,2022.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

Xrglﬂrll F(x) = f(x) + h(x),

[HW22]: Given xo,

Let £y () = (gradf(xc),m)x + 5lnl%, + A(Ry (1));
@ Proximal Gradient 2 7k is a stationary point of £, and £y, (0) > £k(n«);
Xk+1 = R (k);

@ Proximal Gradient 1

@ Inexact version
Direction in the tangent space;

Well-defined for general manifold;

Subproblem is difficult in general (simple for sphere);

°
°

°

@ Any limit point is a critical point;

@ O (3) rate for retraction convex f and h;
°

Local convergence rate by Riemannian KL property;

[HW22b] W. Huang and K. Wei. Riemannian proximal gradient methods. Mathematical
Programming, 194(1-2):371-413,2022.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

Xrglﬂrll F(x) = f(x) + h(x),

[HW23]: Given x,

@ Proximal Gradient 1 Lia
Let £y, () = (gradf (x«), n)x, + 5 1nllx, + h(Rx.(1));

@ Proximal Gradient 2 Ak approximately solves minneTxk MLy (1) in the sense
its distance to a stationary point n; can be control, and
@ Inexact version £, (0) > Lx(M);

Xi41 = R ();

[HW23] W. Huang and K. Wei. An inexact Riemannian proximal gradient method. Computational
Optimization and Applications, 2023:1-32.
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Riemannian proximal gradient method and its variants

Optimization with Structure:

Xrglﬂrll F(x) = f(x) + h(x),

[HW23]: Given x,
Let £y, (17) = (gradf (xi), m)x, + £lInl% + h(Rq (n));

@ Proximal Gradient 1

@ Proximal Gradient 2 Ak approximately solves minneTxk MLy (1) in the sense
its distance to a stationary point n; can be control, and
@ Inexact version £, (0) > Lx(M);

Xi41 = R ();

@ the search direction 7 in [CMSZ20] can be viewed as
an inexact solution;

@ Well-defined for general manifold;

@ Local convergence rate by Riemannian KL property;

[HW23] W. Huang and K. Wei. An inexact Riemannian proximal gradient method. Computational
Optimization and Applications, 2023:1-32.
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e Euclidean proximal gradient method and its variants;
@ Riemannian proximal gradient method and its variants;
@ A Riemannian proximal Newton method;

@ Numerical experiments;
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e Euclidean proximal gradient method and its variants;
@ Riemannian proximal gradient method and its variants;
@ A Riemannian proximal Newton method;

@ Numerical experiments;

Note that we focus on:
@ M is an Riemannian embedded submanifold of a Euclidean space;

° h(x) = plx[|x;
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ b= iy ()1 + 4.9 C)p) s+
X1 = Xk + di

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ Nk = argminger, g (grad f(xi), n) + %(n, Hess f(xk)[n]) + h(xx +n)
X1 = R, (1)
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ b= iy ()1 + 4.9 C)p) s+
X1 = Xk + di

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ Nk = argminger, g (grad f(xi), n) + %(n, Hess f(xk)[n]) + h(xx +n)
X1 = R, (1)

Does it converge superlinearly locally?
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ b= iy ()1 + 4.9 C)p) s+
X1 = Xk + di

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ Nk = argminger, g (grad f(xi), n) + %(n, Hess f(xk)[n]) + h(xx +n)
X1 = R, (1)

Does it converge superlinearly locally?

Not necessarily!
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A Riemannian proximal Newton method

A native generalization

Consider the Sparse PCA over sphere:

min —xT AT Ax + pl|x]|1,
xesn—1
where f(x) = —xTATAx, h(x) = pl|x||1.
,‘='1.5

1070

the norm of search direction

107®

iter number

Figure: Comparisons of native generalization (RPN-N) and the proximal
gradient method (ManPG) in [CMSZ20].
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ dy = argmin, (VF(xk), p) + 5(p, V2f(xi)p) + h(xi + p)
Xk+1 = Xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ ke = arg minger,,  (grad F(xi),n) + (1, Hess F(xi)n) + h(xi + 1)
Xk+1 = Ry (M)

e For R, (1), xk +n in his only a first order approximation;
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A Riemannian proximal Newton method

A native generalization

Euclidean version:

{ dy = argmin, (VF(xk), p) + 5(p, V2f(xi)p) + h(xi + p)
Xk+1 = Xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:

{ Mk = argminger, a (grad f(xi),n) + 5 (n, Hess f(xi)n) + h(xi +n)
X1 = Ry (k)
{ Mk = argminger, a (grad f(xi),n) + 3 (n, Hess f(x)n) + h(xi +n + 3M(n, 1))
X1 = Ry (k)
e For R, (1), xx +n in his only a first order approximation;

o If an second order approximation is used, then the subproblem is
difficult to solve;
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A Riemannian proximal Newton method

Motivation

For the smooth case, where h(x) = 0.

Riemannian Newton method

Given xg € M,
@ Solve Hess f(xx)[ux] = — grad f(xk) for ux € Ty, M;
Q X1 = Ry (uk).
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A Riemannian proximal Newton method

Motivation

For the smooth case, where h(x) = 0.

Riemannian Newton method

Given xg € M,
@ Solve Hess f(xx)[ux] = — grad f(xk) for ux € Ty, M;
Q X1 = Ry (uk).

o Let v(xx) = —grad f(xk), then the search direction uy can be
written in terms of v(xg), i.e., Projr, m(Dv(x)[uk]) = —v(xx).
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A Riemannian proximal Newton method

Motivation

For the smooth case, where h(x) = 0.

Riemannian Newton method

Given xg € M,
@ Solve Hess f(xx)[ux] = — grad f(xk) for ux € Ty, M;
Q X1 = Ry (uk).

o Let v(xx) = —grad f(xk), then the search direction uy can be
written in terms of v(xg), i.e., Projr, m(Dv(x)[uk]) = —v(xx).

Riemannian Newton method

Given xp € M,
Q Let v(xx) = —grad f(xk);
@ Solve ProjTXkM(Dv(xk)[uk]) = —v(xk) for ux € Ty, M;

Q Xk+1 = RXk(uk)'
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

© Compute
v(xc) = argmin,ep g (%) + (VF(xi), v) +
@ Find u(xx) € Ty, M by solving
JOa)[u(xi)] = —v(x),
where J(x¢) = — [In =Ny + tA (V3 (xk) — Lx,)], A
defined later ;

Q xit1 = R (u(xx));

=IVIIE + h(x + v);

x and L, are
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

@ Compute
v(xc) = argmin e, a Fx) +(VF(xi), v) + 5 [IVIE + h(x + v);
@ Find u(xx) € Tx, M by solving
J0a)[u(xi)] = —v(xk),
where J(x) = — [In =Ny, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later ;
Q xi+1 = Ry (u(x«));

v

@ Step 1: compute a Riemannian proximal gradient direction (ManPG)
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

@ Compute
v(xc) = argmin e, a Fx) +(VF(xi), v) + 5 [IVIE + h(x + v);
@ Find u(xx) € Tx, M by solving
JOa)[u(xi)] = —v(xk),
where J(x) = — [In =Ny, + tA (V2F(xk) — Lx,)], Ax, and Ly, are
defined later ;
Q xi+1 = Ry (u(x«));

v

Step 1: compute a Riemannian proximal gradient direction (ManPG)

© 0

Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

@ Compute
v(xc) = argmin,eq, g F(xi) + (Vi) v) + 2 |VIE + (e + v);
@ Find u(xx) € Ty, M by solving
J (i) [u(xi)] = —v(x),
where J(x) = — [In =Ny, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later ;

Xkt1 = Ry (u(xx));

v

Step 1: compute a Riemannian proximal gradient direction (ManPG)

Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);

© 0606 Oo

Step 3: Update iterate by a retraction;
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A Riemannian proximal Newton method
The proposed approach

A Riemannian proximal Newton method (RPN)

@ Compute
v(xc) = argmin,eq, g F(xi) + (Vi) v) + 2 |VIE + (e + v);
@ Find u(xx) € Ty, M by solving
J(xi)[u(xi)] = —v(x),
where J(x) = — [In =Ny, + tA (V2F(xk) — Ly,)], Ax, and Ly, are
defined later ;
Q ki1 = Ry (u(xk)); )

Next, we will show:
@ G-semismoothness of v(xk) and its generalized Jacobi;

@ Superlinear convergence rate;
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A Riemannian proximal Newton method

G-semismoothness of v(x)

Definition (G-Semismoothness [Gow04])

Let F: D — R™ where D C R"” be an open set, £ : D = R™*" be a
nonempty set-valued mapping. We say that F is G-semismooth at x € D
with respect to K if for any J € K(x + d),

F(x +d) — F(x) — Jd = o(||d|)) as d — 0.

If Fis G-semismooth at any x € D with respect to K, then F is called a
G-semismooth function with respect to /.

The standard definition of semismoothness additional requires:
@ /C is compact valued, upper semicontinuous set-valued mapping;
@ F is a locally Lipschitz continuous function;

@ F is directionally differentiable at x;

[Gow04] M.S. Gowda. Inverse and implicit function theorems for H-differentiable and semismooth
functions. Optimization Methods and Software, 19(5):443-461, 2004.
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A Riemannian proximal Newton method

G-semismoothness of v(x)

v(x) (Here dropping the subscript for simplicity)

1
v(x) = argmin f(x)+ (VF(x),v) + —||v]|2 4+ h(x + v);
veT, M 2t
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A Riemannian proximal Newton method

G-semismoothness of v(x)

v(x) (Here dropping the subscript for simplicity)

1
v(x) = argmin f(x)+ (VF(x),v) + —||v]|2 4+ h(x + v);
veT, M 2t

Above problem can be rewritten as

1
argmin (V£(x), v) + —|v[[Z + h(x + v)
BTv=0 2t

where B v = ((by, V), (bo, V), ..., {bm,Vv))T, and {by,..., by} forms an
orthonormal basis of T+ M.
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A Riemannian proximal Newton method

G-semismoothness of v(x)
The Lagrangian function:

L(v,\) = (Vf(x),v)+ %(v, v) + h(x +v) = (\,Blv).

Therefore

f 0.L(v,\)=0 v = Proxe (x — t(VF(x) — BeA)) — x
KKT'{ Blv=0 :>{ Blv=0

where Proxes(z) = argmin, cgap 5 ||v — z||% + h(v).

Define

F:R™R™ 5 R (x; v, \) <V +x Provalx T VT + BXA]))
: XY, B, v )

v(x) is the solution of the system F(x, v(x), A\(x)) = 0;
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A Riemannian proximal Newton method

G-semismoothness of v(x)

Define

F - ROXRM oy RO - (v, \) > <v+x - Proxth(xf t[Vf(x) + BX/\])) .

.
B v

@ F is semismooth;

@ v(x) is G-semismooth by the G-semismooth Implicit Function
Theorem in [Gow04, PSS03];

[Gow04] M.S. Gowda. Inverse and implicit function theorems for H-differentiable and semismooth
functions. Optimization Methods and Software, 19(5):443-461, 2004.

[PSS03] Jong-Shi Pang, Defeng Sun, and Jie Sun. Semismooth homeomorphisms and strong
stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research,
28(1):39-63, 2003.
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A Riemannian proximal Newton method

G-semismoothness of v(x)

Lemma (G-Semismooth Implicit Function Theorem)

Suppose that F : R" x R™ — R™ is a semismooth function with respect
to OgF in an open neighborhood of (x°, y°) with F(x°,y°) = 0. Let
H(y) = F(x°,y), if every matrix in OcH(y®) is nonsingular, then there
exists an open set V C R" containing x°, a set-valued fucntion

K:V — R™" and a G-semismooth function f : YV — R™ with respect
to K satisfying f(x°) = y°, for every x € V,

F(x,f(x)) =0,
and the set-valued function KC is

K:x = {—(A) " Ac: [Ac A)] € OsF (x, f(x)) 1,

where the map x — K(x) is compact valued and upper semicontinuous.

Speaker: Wutao Si A Riemannian Proximal Newton Method



A Riemannian proximal Newton method

G-semismoothness of v(x)

Without loss of generality, we assume that the nonzero entries of x, are
in the first part, i.e., x, = [x],07]T

Let BT = [BY,BT], where B,, € RI*9 and B, € RO=Dxd_ |t s
assumed that j > d and EX* is full column rank.
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A Riemannian proximal Newton method

G-semismoothness of v(x)

Without loss of generality, we assume that the nonzero entries of x, are
in the first part, i.e., x, = [x],07]T

Let BT = [BY,BT], where B,, € RI*9 and B, € RO=Dxd_ |t s
assumed that j > d and EX* is full column rank.

v(x) is a G-semismooth function of x in a neighborhood of x,

Under the above Assumption, there exists a neighborhood U of x, such
that v : U — R" : x — v(x) is a G-semismooth function with respect to
IC.,, where

Ky :x = {=[L,, 0]B7'A: [A B] € 9pF (x, v(x), A(x)) } .

For x € U, any element of IC,(x) is called a generalized Jacobi of v at x.

Here, the G-semismooth implicit function theorem is used
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A Riemannian proximal Newton method

G-semismoothness of v(x)

The generalized Jacobi of v at x is
{ T \Tle] = = [l =P + AV F(x) = £2)] w — M.BH(DBI ] v, Voo
M, € Bcproxth(x)},

where A, = M, — M,B.H,BT My, H, = (BT M,B,) ™",
Ly(1) = Wi(-, BeA(x)), and W, denotes the Weingarten map;

° v(x.)=0;

o Set J(x) =1, —A, + tA(V3f(x) — Ly) : Ty M — T, M, since
BLJ(x) = 0;

@ The Riemannian proximal Newton direction: J(x)u(x) = —v(x);
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A Riemannian proximal Newton method

Local superlinear convergence rate

Assumption:
O Let BT =[BT,B]] where B,, ¢ R'*¢ and and B,, € R(")x9_ |t is
assumed that j > d and EX* is full column rank;
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A Riemannian proximal Newton method

Local superlinear convergence rate

Assumption:
O Let B] =[BT,B]], where B,, ¢ R"*? and and B,, € R(")*9 |t is
assumed that j > d and EX* is full column rank;

@ There exists a neighborhood U of x, = [x],07]T on M such that for
any x = [xT,%T]T €U, it holds that X+ 7 # 0 and X + 0 = 0.

1
v(x) = argmin f(x) 4+ (VF(x),v) + =|[v[|% + h(x + V)
veT M 2t
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A Riemannian proximal Newton method

Local superlinear convergence rate

Assumption:
O Let B] =[BT,B]], where B,, ¢ R"*? and and B,, € R(")*9 |t is
assumed that j > d and EX* is full column rank;

@ There exists a neighborhood U of x, = [x],07]T on M such that for
any x = [xT,%T]T €U, it holds that X+ 7 # 0 and X + 0 = 0.

Suppose that x, be a local optimal minimizer. Under the above
Assumptions, assume that J(x,) is nonsingular. Then there exists a
neighborhood U of x, on M such that for any xo € U, RPN Algorithm
generates the sequence {xx} converging superlinearly to x.
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A Riemannian proximal Newton method

The proposed method for smooth problems

Smooth case: min f(x)
xeM

@ KKT conditions:
VF(x) + %v +BA=0, and B] v = 0;
@ Closed form solutions:
Ax) = —=BI'Vf(x), v(x) = —tgrad f(x);
@ Action of J(x): for w € Ty M

J(x)[w] = — tProjp_a(V?f(x) — Lx)Projp_aw] = —t Hess f(x)[w]

J(x)u(x) = —v(x) = Hess f(x)[u(x)] = — grad f(x);
It is the Riemannian Newton method;
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Numerical experiments

The proposed method for smooth problems

Euclidean proximal gradient method and its variants;

Riemannian proximal gradient method and its variants;
@ A Riemannian proximal Newton method;

@ Numerical experiments;

Speaker: Wutao Si A Riemannian Proximal Newton Method



Numerical Experiments

Sparse PCA problem

in —t XTATAX X
xeon race( )+ wll X1,

where A € R™*" is a data matrix and
St(r,n) = {X € R™" | XTX = I,} is the compact Stiefel manifold.

© Ru(nx) = (x +n:)( +ndm) "

o t=1/(2]All3);

@ Run ManPG until ||v|| reaches 107%, i.e., it reduces by a factor
of 103. The resulting x as the input of RPN;
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Numerical Experiments

differentn,r=5, 1 =0.6 different r, n = 300, = 0.8

<
&

10-10,

e
S

the norm of search direction
the norm of search direction

10715 ¢
1 2 3 4 5
iteration iteration

Figure: Random data. Left: different n = {100, 200, 300, 400} with r =5 and
u = 0.6; Right: different r = {2,4,6,8} with n =300 and 1 = 0.8
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Numerical Experiments

A Hybrid version of ManPG and RPN

Require: xo € M, t >0, p € (0, %] € >0;
1: for k=0,1,... do
2. Compute v, by solving the Riemannian proximal gradient

subproblem;
3:  if ||vk| > € then
4 Set v = 1;
5 while F(R, (avk)) > F(x) — 3al|v||* do
6: a = pa;
7 end while
8 Xie41 = Ry (avie);
9 else
10: Compute uy by solving J(xk)ux = —vi;
11: Xk+1 = ka(uk);
12:  end if
13: end for
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Numerical Experiments

Consider the simple version of sparse PCA with r =1, i.e.,

min —xT AT Ax + p|x]|1,
xesn—t

where A € R™*" is a data matrix.
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Numerical Experiments

Precision Comparison

Table: An average result of 5 random runs for random data with different
setting of (n, 11). The subscript k indicates a scale of 10. iter-u denotes the
number of using the new search direction wy.

(n, ) Algo iter iter-v  iter-u f sparsity [ vie ||
(5000,1.5) ManPG 3000 897 - —4.59; 0.37 7.41_g
(5000,1.5) RPN 334 - 5 —4.59; 0.37 4.53_16
(10000,1.8) ManPG 3000 1736 - —1.02; 0.32 2.19_3
(10000,1.8) RPN 580 - 6 —1.02; 0.32 5.69_16

(30000,2.0) | ManPG | 3000 1283
(30000,2.0) | RPN 347 -
(50000,2.2) | ManPG | 3000 1069
(50000,2.2) | RPN 789 :
(80000,2.5) | ManPG | 3000 834
(80000,2.5) | RPN 839 -

—3.98, 0.22 119 ¢
—3.98, 022  5.25_15
—7.06, 0.18 7567
018  1.41_y4
—1.17, 017 141,
—1.175 017  1.94_15

o oo
|
N
=)
S
S

Stopping criteria: ManPG does not terminate until iteration attains the
maximal iteration (3000), RPN terminate until [|v4|| < 10712
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Numerical Experiments

CPU Comparison

o0 n = 5000, 1= 1.5 100n=10090,u=1.8 1o n = 30000, i = 2
——ManPG ManPG
—RPN ——RPN
1075} \
10'10» B 10-10, 1 -10 L ()
) ) 10
107 g L oo 108 b
0 0.5 1 0 0.5 1 0 1 2
CPU CPU CPU

Figure: Random data: the norm of search direction vi versus CPU for different
(n, i), where the blue circle indicates the use of the new direction wy.
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Numerical Experiments

Synthetic Data

Synthetic Data [SCL*18] : we first obtain an m x n noise-free matrix,
then the data matrix A is generated by adding a random noise matrix,
where each entry of the noise matrix is drawn form A/(0,0.25), we set
m = 400, n = 4000 and p = 1.2.

Principal Components

0.8
0.6 B
0.4 q
0.2 4
0
—— Principal component 1
—— Principal component 2
02 Principal component 3 B
—— Principal component 4
—— Principal component 5
0.4 T T T . . . .
0 500 1000 1500 2000 2500 3000 3500 4000

Figure: The five principal components used in the synthetic data.
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Numerical Experiments

Synthetic Data

Synthetic data Synthetic data
10° 10°
——ManPG —t—ManPG
—%—RPN TFTRPN
10° 10°
S 3
0]
10710 10710 r
107° ) 107°
A4 A4
0 20 40 60 0 0.05 0.1
Iter CPU

Figure: Plots of ||vk|| versus iterations and CPU times respectively, where ||vi||

is the norm of search direction, data matrix A € R*%*%%0 is from the synthetic
data, p is set to be 1.2. Note that the blue circle indicates the use of the new

direction wuy.
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@ Briefly review Euclidean and Riemannian proximal gradient method and
its variants;

Propose a Riemannian proximal Newton method [SAHT23]

@ Local superlinear convergence rate is proven;

Numerical experiments show its performance;

[SAHT23] W.Si, P.-A Absil, W. Huang, R. Jiang, and S. Vary (2023). A Riemannian Proximal
Newton Method. arXiv preprint arXiv:2304.04032.
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@ Globalization;

Other types of h(x);

General manifold;
@ Riemannian proximal inexact-Newton methods;

@ Riemannian proximal quasi-Newton methods;
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Tha
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Thank you!
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