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Symmetric Positive Definite (SPD) Matrix

Definition

A symmetric matrix A is called positive definite iff all its eigenvalues are
positive.

2× 2 SPD matrix

u√
λu

v√
λv

3× 3 SPD matrix

u√
λu

v√
λv

w√
λw
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Motivation of Averaging SPD Matrices

Possible applications of SPD matrices

- Diffusion tensors in medical imaging
[CSV12, FJ07, RTM07]

- Describing images and video
[LWM13, SFD02, ASF+05, TPM06,
HWSC15]

Motivation of averaging SPD matrices

- Aggregate several noisy measurements of the same object

- Subtask in interpolation methods, segmentation, and clustering
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Averaging Schemes: from Scalars to Matrices

Let A1, . . . ,AK be SPD matrices.

Generalized arithmetic mean: 1
K

K∑
i=1

Ai

→ Not appropriate in many practical applications

A A+B
2 B

detA = 50 det(A+B
2 ) = 267.56 detB = 50

Generalized geometric mean: (A1 · · ·AK )1/K

→ Not appropriate due to non-commutativity

→ How to define a matrix geometric mean?
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Desired Properties of a Matrix Geometric Mean

The desired properties are given in the ALM list1, some of which are:

G (Aπ(1), . . . ,Aπ(K)) = G (A1, . . . ,AK ) with π a permutation of (1, . . . ,K)

if A1, . . . ,AK commute, then G(A1, . . . ,AK ) = (A1, . . . ,AK )1/K

G(A1, . . . ,AK )−1 = G(A−1
1 , . . . ,A−1

K )

det(G(A1, . . . ,AK )) = (det(A1) · · · det(AK ))1/K

1T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004
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Geometric Mean of SPD Matrices

A well-known mean on the manifold of SPD matrices is the Karcher
mean [Kar77]:

G (A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai ), (1)

where δ(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F is the geodesic distance
under the affine-invariant metric

g(ηX , ξX ) = trace(ηXX−1ξXX−1)

The Karcher mean defined in (1) satisfies all the geometric
properties in the ALM list [LL11]
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Algorithms

G (A1, . . . ,Ak) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai ),

Riemannian steepest descent [RA11, Ren13]

Riemannian Barzilai-Borwein method [IP15]

Riemannian Newton method [RA11]

Richardson-like iteration [BI13]

Riemannian steepest descent, conjugate gradient, BFGS, and trust
region Newton methods [JVV12]

Limited-memory Riemannian BFGS method [YHAG16]
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Conditioning of the Objective Function

Hemstitching phenomenon
for steepest descent

well-conditioned Hessian ill-conditioned Hessian

Small condition number ⇒ fast convergence

Large condition number ⇒ slow convergence

Means of SPD Matrices 8



Conditioning of the Karcher Mean Objective Function

Riemannian metric:

gX (ξ, η) = trace(ξX−1ηX−1)

Euclidean metric:

gX (ξ, η) = trace(ξη)

Condition number κ of Hessian at the minimizer µ:

Hessian of Riemannian metric:

- κ(HR) ≤ 1 +
ln(maxκi )

2
, where κi = κ(µ−1/2Aiµ

−1/2)

- κ(HR) ≤ 20 if max(κi ) = 1016

Hessian of Euclidean metric:

-
κ2(µ)

κ(HR)
≤ κ(HE) ≤ κ(HR)κ2(µ)

- κ(HE ) ≥ κ2(µ)/20
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BFGS Quasi-Newton Algorithm: from Euclidean to Riemannian

replace by Rxk (ηk)

Update formula:

y

xk+1 = xk + αkηk

Search direction:
ηk = −B−1

k grad f (xk)

Bk update:

Bk+1 = Bk −
BksksTk Bk

sTk Bksk
+

ykyT
k

yT
k sk

,

forspace
where sk = xk+1 − xk , and yk = grad f (xk+1)− grad f (xk)

x x
replaced by R−1

xk (xk+1) on different tangent spaces
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Riemannian BFGS (RBFGS) Algorithm

Update formula:

xk+1 = Rxk (αkηk) with ηk = −B−1
k grad f (xk)

Bk update [HGA15]:

Bk+1 = B̃k −
B̃k sk(B̃k sk)[

(B̃k sk)[sk
+

yky[k
y[k sk

,

where sk = Tαkηkαkηk , yk = β−1
k grad f (xk+1)− Tαkηk grad f (xk),

and B̃k = Tαkηk ◦ Bk ◦ T −1
αkηk

.

Stores and transports B−1
k as a dense matrix

Requires excessive computation time and storage space for
large-scale problem
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Limited-memory RBFGS (LRBFGS)

Riemannian BFGS:

Bk+1 = B̃k − B̃k sk (B̃k sk )[

(B̃k sk )[sk
+

yky[k
y[k sk

,

where sk = Tαkηkαkηk , yk = β−1
k grad f (xk+1)− Tαkηk grad f (xk),

and B̃k = Tαkηk ◦ Bk ◦ T −1
αkηk

Limited-memory Riemannian BFGS:

Stores only the m most recent sk and yk

Transports those vectors to the new tangent space rather than the
entire matrix B−1

k

Computational and storage complexity depends upon m
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Implementations

Representations of tangent vectors

: TX Sn
++ = {S ∈ Rn×n|S = ST}

Extrinsic representation: n2-dimensional vector

Intrinsic representation: d-dimensional vector where d = n(n + 1)/2

Retraction

Exponential mapping: ExpX (ξ) = X 1/2 exp(X−1/2ξX−1/2)X 1/2

Second order approximation retraction [JVV12]:

RX (ξ) = X + ξ +
1

2
ξX−1ξ

Vector transport

Parallel translation: Tpη (ξ) = QξQT , with Q = X
1
2 exp(

X−
1
2 ηX−

1
2

2
)X−

1
2

Vector transport by parallelization [HAG15]: essentially an identity
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Complexity Comparison for LRBFGS

Extrinsic approach:

Function

Riemannian gradient

Intrinsic approach:

Function

Riemannian gradient

Both approaches have the same complexities: f + ∇f cost
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Complexity Comparison for LRBFGS

Extrinsic approach:

Function

Riemannian gradient

Retraction

- Evaluate RX (η)

Intrinsic approach:

Function

Riemannian gradient

Retraction

- Compute η from η̃d

- Evaluate RX (η)

Intrinsic cost = Extrinsic cost + 2n3 + o(n3)
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Complexity Comparison for LRBFGS

Extrinsic approach:

Function

Riemannian gradient

Retraction

Riemannian metric

- 6n3 + o(n3)

Intrinsic approach:

Function

Riemannian gradient

Retraction

Reduces to Euclidean metric

- n2 + o(n2)

Means of SPD Matrices 16



Complexity Comparison for LRBFGS

Extrinsic approach:

Function

Riemannian gradient

Retraction

Riemannian metric

(2m) times of vector transport

Intrinsic approach:

Function

Riemannian gradient

Retraction

Reduces to Euclidean metric

No explicit vector transport
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Complexity Comparison for LRBFGS

Extrinsic approach:

Function

Riemannian gradient

Retraction

Riemannian metric

(2m) times of vector transport

Intrinsic approach:

Function

Riemannian gradient

Retraction

Reduces to Euclidean metric

No explicit vector transport

Complexity comparison:

f +∇f +

27n3 + 12mn2+

2m × Vector transport cost

f +∇f +

22n3/3 + 4mn2
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Numerical Results: Comparison of Different Algorithms

K = 100, size = 3× 3, d = 6

1 ≤ κ(Ai ) ≤ 200
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Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations
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Numerical Results: Comparison of Different Algorithms

K = 30, size = 100× 100, d = 5050

1 ≤ κ(Ai ) ≤ 20
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Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations
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Numerical Results: Riemannian vs. Euclidean Metrics

K = 100, n = 3, and 1 ≤ κ(Ai ) ≤ 106.
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Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations
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Outline

Karcher mean computation on Sn
++

Divergence-based means on Sn
++

L1-norm median computation on Sn
++

Application: Structure tensor image denoising

Summary
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Motivations

Karcher mean

K(A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai ), (1)

where δ(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F
pros: holds desired properties

cons: high computational cost

Use divergences as alternatives to the geodesic distance due to their
computational and empirical benefits

A divergence is like a distance except it lacks

triangle inequality

symmetry
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LogDet α-divergence and Associated Mean

The LogDet α-divergence is defined as

G (A1, . . . ,Ak) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2
LD,α(Ai ,X ) , (2)

where the LogDet α-divergence on Sn
++ is given by

δ2
LD,α(X ,Y ) =

4

1− α2
log

det( 1−α
2 X + 1+α

2 Y )

det(X )
1−α

2 det(Y )
1+α

2

The LogDet α-divergence is asymetric in general, except for α = 0

(2) defines the right mean. The left mean can be defined in a similar
way.
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Karcher Mean vs. LogDet α-divergence Mean

Complexity comparison for problem-related operations

function gradient total

LD α-div. mean
2Kn3

3
3Kn3 11Kn3

3

Karcher mean 18Kn3 5Kn3 23Kn3

Invariance properties

scaling
invariance

rotation
invariance

congruence
invariance

inversion
invariance

LD α-div. mean 3 3 3 7

Karcher mean 3 3 3 3
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Numerical Experiment: Comparions of Different Algorithms

K = 100, n = 3, and 10 ≤ κ(Ai ) ≤ 106 Fixed Point iteration2: stepsize =
1 − α
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2Z. Chebbi and M. Moakher. Means of Hermitian positive-definite matrices based on the
log-determinant -divergence function. Linear Algebra and its Applications, 436(7):1872C1889, 2012

2Z. Chebbi and M. Moakher. Means of Hermitian positive-definite matrices based on the
log-determinant -divergence function. Linear Algebra and its Applications, 436(7):1872C1889, 2012

2Z. Chebbi and M. Moakher. Means of Hermitian positive-definite matrices based on the
log-determinant -divergence function. Linear Algebra and its Applications, 436(7):1872C1889, 2012

2Z. Chebbi and M. Moakher. Means of Hermitian positive-definite matrices based on the
log-determinant -divergence function. Linear Algebra and its Applications, 436(7):1872C1889, 2012
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Numerical Experiment: Comparions of Different Algorithms
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Outline

Karcher mean computation on Sn
++

Divergence-based means on Sn
++

L1-norm median computation on Sn
++

Application: Structure tensor image denoising

Conclusion
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Motivations

The mean of a set of points is sensitive to outliers

The median is robust to outliers

0 1 2 3 4 5 6 7 8 9 10
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points

outliers

mean

median

Figure: The geometric mean and median in R2 space.
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Riemannian Median of SPD Matrices

The Riemannian median of a set of SPD matrices is defined as:

M(A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ(Ai ,X ),

where δ(X ,Y ) is a distance or the square root of a divergence function.

The cost function is non-smooth at X = Ai

There may exist multiple local minima for some δ
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Numerical Experiment

Original data (K = 50) Outliers

outliers 0 1 5 10 25 50

δR

Median

Mean
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Outline

Karcher mean computation on Sn
++

Divergence-based means on Sn
++

Riemannian L1-norm median computation on Sn
++

Application: Structure tensor image denoising

Conclusion
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Application: Structure Tensor Image Denoising

A structure tensor image is a spatial
structured matrix field

I : Ω ⊂ Z2 → Sn
++

Noisy tensor images are simulated by
replacing the pixel values by an outlier
tensor with a given probability Pr

Denoising is done by averaging
matrices in the neighborhood of each
pixel

Mean Riemannian Error:

MRE =
1

#Ω

∑
(i,j)∈Ω

δR(Ii,j , Ĩi,j)

Original tensor image

Noisy tensor image
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Structure Tensor Image Denoising: Pr = 0.02
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Structure Tensor Image Denoising: MRE and Time

MRE comparison

Means
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Structure Tensor Image Denoising: Pr = 0.1

Means of SPD Matrices 36



Structure Tensor Image Denoising: MRE and Time

MRE comparison
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Summary

Karcher mean for SPD matrices

Analyze the conditioning of the Hessian of the Karcher mean cost
function
Apply a limited-memory Riemannian BFGS method to computing
the SPD Karcher mean with efficient implementations
Recommend using LRBFGS as the default method for the SPD
Karcher mean computation

Other averaging techniques for SPD matrices

Investigate divergence-based means and Riemannian L1-norm
medians on Sn

++

Use recent development in Riemannian optimization to develop
efficient and robust algorithm on Sn

++

Evaluate the performance of different averaging techniques in
applications
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Thank you!
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