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What problems does Riemannian optimization consider?

What does a Riemannian optimization algorithm look like?

How do Riemannian optimization methods perform?

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Problem Statement

Problem: Given f (x) :M→ R,
solve

min
x∈M

f (x)

where M is a Riemannian manifold.
M

R
f

Unconstrained optimization problem on a constrained space.

What is a Riemannian manifold?

Riemannian manifold = manifold + Riemannian metric

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Manifolds

M

R
f

Problem: minx∈M f (x)

Two kinds of manifolds:

M

x

E

M̄

x

E
M = M̄/G

[x ]

Figure: Left: an embedded submanifold; right: a quotient manifold

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Manifolds: Examples

Sphere Ellipsoid

Stiefel manifold: St(p, n) = {X ∈ Rn×p|XTX = Ip};
Grassmann manifold Gr(p, n): all p-dimensional subspaces of Rn;

All r -by-r symmetric positive definite matrices, S++(r);

All rank-r m-by-n matrices Rn×m
r ;

And many more.

A manifold may have multiple representations.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Manifolds: Representations

A manifold may have multiple representations. Representations influence
complexities of optimization algorithms.

An important question:

How to represent points on a manifold?

The fixed rank manifold: Rn×m
r = {X ∈ Rn×m | rank(X ) = r}1

Embedded manifold

Rn×m
r : submanifold of Rn×m

Quotient manifold

Rn×r
∗ × Rm×r

∗ /Rr×r
∗ , where the star ∗

means full rank

St(r , n)× S++(r)× St(r ,m)/St(r , r);

St(r , n)× Rm×r
∗ /St(r , r);

1

See details in A Riemannian approach for large-scale constrained least-squares with
symmetries, by B. Mishra, Ph.D thesis, 2014.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods



7/35

Riemannian Optimization
Optimization Framework

Experiments
Summary

Manifolds: Representations

A manifold may have multiple representations. Representations influence
complexities of optimization algorithms.

An important question:

How to represent points on a manifold?

The fixed rank manifold: Rn×m
r = {X ∈ Rn×m | rank(X ) = r}1

Embedded manifold

Rn×m
r : submanifold of Rn×m

Quotient manifold

Rn×r
∗ × Rm×r

∗ /Rr×r
∗ , where the star ∗

means full rank

St(r , n)× S++(r)× St(r ,m)/St(r , r);

St(r , n)× Rm×r
∗ /St(r , r);

1See details in A Riemannian approach for large-scale constrained least-squares with
symmetries, by B. Mishra, Ph.D thesis, 2014.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods



8/35

Riemannian Optimization
Optimization Framework

Experiments
Summary

Manifolds: The Fixed-rank Manifold
Embedded manifold

Rn×m
r

Quotient manifold

Rn×r
∗ × Rm×r

∗ /Rr×r
∗ ;

Definition of Rn×r
∗ × Rm×r

∗ /Rr×r
∗

Rn×r
∗ × Rm×r

∗ /Rr×r
∗ = {[(H,M)] | H ∈ Rn×r

∗ ,M ∈ Rm×r
∗ }, where

[(H,M)] = {(HP−1,MPT ) | P ∈ Rr×r
∗ }.

I : Rn×r
∗ × Rm×r

∗ /Rr×r
∗ → Rn×m

r : [(H,M)] = HMT ; (X = HMT )

M = Rn×m
r

X ∈ Rn×m

E = Rn×m

M̄ = Rn×r
∗ × Rm×r

∗

(H ,M)

E = Rn×r × Rm×r

M = M̄/G = Rn×r
∗ × Rm×r

∗ /Rr×r
∗

[(H ,M)]

Rn×m
r : naturally use Rn×m (inefficient)

Rn×r
∗ × Rm×r

∗ /Rr×r
∗ : naturally use Rn×r × Rm×r (efficient)

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Riemannian Metric

A Riemannian metric, denoted by g , is a smoothly-varying inner
product on the tangent spaces;

A Riemannnian metric defines angles and lengths;

M

x

ξ

η

R

gx(η, ξ)
TxM

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Riemannian Metric

M

Riemannian metric g1

M

Riemannian metric g2

Figure: Changing metric may influence the difficulty of a problem.

Riemannian metric influences

Riemannian gradient

Riemannian Hessian

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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What problems does Riemannian optimization consider?

What does a Riemannian optimization algorithm look like?

How do Riemannian optimization methods perform?

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Line Search-based Methods

Euclidean Optimization:

Update:
xk+1 = xk + αkdk = xk − αkB−1

k ∇f (xk);

Steepest descent: Bk = id;

Newton’s method: Bk = ∇2f (xk).

Riemannian Optimization:

Riemannian gradient

Riemannian Hessian

How to update?

R

f

Problem: minx∈Rn f (x)

Rn

Euclidean

M

R
f

Problem: minx∈M f (x)

Riemannian

Speaker: Wen Huang Introduction to Riemannian BFGS Methods



13/35

Riemannian Optimization
Optimization Framework

Experiments
Summary

Retractions

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk (αkηk)

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)[η] = η

Retraction influences convergence speed

η

x Rx(tη)

M

x
η

TxM

Rx(η)R̃x(η)

Two retractions:R and R̃

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Line Search-based Methods

Euclidean Optimization:

1 Given x0 ∈ Rn, k = 0;

2 Repeat: xk+1 = xk − αkB−1
k ∇f (xk) for

some αk and Bk ;

3 k ← k + 1 and goto 2;

Riemannian Optimization:

1 Given x0 ∈M, k = 0;

2 Repeat: xk+1 = Rxk

(
−αkB−1

k grad f (xk)
)

for some αk and Bk ;

3 k ← k + 1 and goto 2;

R

f

Problem: minx∈Rn f (x)

Rn

Euclidean

M

R
f

Problem: minx∈M f (x)

Riemannian

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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BFGS Methods

Euclidean BFGS method:

1 Given x0 ∈ Rn and B0, k = 0;

2 Repeat: xk+1 = xk − αkB−1
k ∇f (xk) for

some αk and Bk ;

3 Compute Bk+1 by (1)

4 k ← k + 1 and goto 2;

Euclidean BFGS update

Bk+1 = Bk −
BksksTk Bk

sTk Bksk
+

ykyT
k

yT
k sk

, (1)

where sk = xk+1 − xk , and
yk = ∇f (xk+1)−∇f (xk).

R

f

Problem: minx∈Rn f (x)

Rn

Euclidean

M

R
f

Problem: minx∈M f (x)

Riemannian

Speaker: Wen Huang Introduction to Riemannian BFGS Methods



16/35

Riemannian Optimization
Optimization Framework

Experiments
Summary

BFGS updates

Euclidean: Bk+1 = Bk −
BksksTk Bk

sTk Bksk
+

ykyT
k

yT
k sk

,

sk = xk+1 − xk , yk = ∇f (xk+1)−∇f (xk).

Explore information in previous iterates to accelerate algorithm;

A vector transport T : TM× TM→ TM : (ηx , ξx) 7→ Tηx ξx is
required;

M

xk

grad fk

TxM

xk+1

grad fk+1

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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BFGS updates

A Riemannian BFGS update:

Bk+1 = B̃k −
B̃ksk(B̃ksk)[

s[k B̃ksk
+

yky
[
k

y[ksk
,

where B̃k = Tξk ◦ Bk ◦ T
−1
ξk

, yk = grad f (xk+1)− Tξk grad f (xk),

sk = Tξk ξk , ξk = R−1
xk (xk+1)

Above Riemannian BFGS method does not work in general;
What fails? In the Euclidean setting,
Bk < 0
⇒
search direction dk = −Bk∇f (xk) is descent
⇒
line search with Wolfe conditions can be done
⇒

not true in the Riemannian setting

yT
k sk > 0
⇒
Bk+1 < 0.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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BFGS updates

A Riemannian BFGS update:

Bk+1 = B̃k −
B̃ksk(B̃ksk)[

s[k B̃ksk
+

yky
[
k

y[ksk
,

where B̃k = Tξk ◦ Bk ◦ T
−1
ξk

, yk = grad f (xk+1)− Tξk grad f (xk),

sk = Tξk ξk , ξk = R−1
xk (xk+1)

Above Riemannian BFGS method does not work in general;

Restrictions on retraction and vector transport;

Qi [Qi11]: exponential mapping and parallel translation
Ring and Wirth [RW12]: differentiated retraction and an isometric
vector transport
Huang et. al. [HGA15]: differentiated retraction along a direction
and an isometric vector transport
Huang et. al. [HAG17]: an isometric vector transport

Complete convergence analysis exists for above Riemannian BFGS

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Complexities of Vector Transport

Problems of computing B̃k = Tξk ◦ Bk ◦ T
−1
ξk

.

Explicit form of T may not exist;

Maybe too expensive: matrix multiplications or matrix-vector
multiplications

Intrinsic representation of tangent vectors and vector transport by
parallelization [HAG16]

Represent a tangent vector by Rd , where d is the dimension of the
manifold

Vector transport by parallelization reduces to an identity (efficient)

Speaker: Wen Huang Introduction to Riemannian BFGS Methods



20/35

Riemannian Optimization
Optimization Framework

Experiments
Summary

ROPTLIB

A C++ library is available at www.math.fsu.edu/~whuang2/ROPTLIB

BLAS and LAPACK;

Interfaces with R, Matlab, and Julia;

Windows, Linux, Mac

Included Methods:

Line-search: RBB, RBFGS, LRBFGS, RCG, RNewton;

Trust-region: RTRSR1, RTRNewton, LRTRSR1;

Included Manifolds:

Euclidean space;

Stiefel manifold, Orthogonal group, Sphere in Rn, Sphere in L2;

Grassmann manifold;

Elastic shape space;

Manifold of symmetric positive semidefinite matrices with rank fixed;

The fixed-rank manifold;

Any power or products of above manifolds;

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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What problems does Riemannian optimization consider?

What does a Riemannian optimization algorithm look like?

How do Riemannian optimization methods perform?
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Experiments

Karcher mean on symmetric positive definite (SPD) manifold

The blind deconvolution problem

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Karcher mean on SPD manifold

Problem: min
X∈S++(n)

F (X ) =
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2

F

Ai , i = 1, . . . ,K are given SPD matrices;

Domain is the SPD manifold S++(n);

Geodesic distance under the affine invariant metric

Distance: dist(X ,Y ) = ‖ log(Y−1/2XY−1/2)‖F
Metric: gX (ξX , ηX ) = trace(ξXX−1ηXX−1)

Geodesic convex and a unique minimizer;

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Karcher mean on SPD manifold: Metrics

M

Riemannian metric g1

M

Riemannian metric g2

Problem: min
X∈S++(n)

F (X ) =
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2

F

Euclidean metric:
gX (ξX , ηX ) = trace(ξTX ηX );

Affine invariant metric:
gX (ξX , ηX ) = trace(ξXX−1ηXX−1);

Condition number κ of Hessian at the minimizer:

Hessian of Euclidean metric

κ ≈ square of the condition number of the minimizer

Hessian of affine invariant metric

κ ≤ 20 in double precision theoretically;
κ ≤ 4 usually in our experiments;

Riemannian metric is important.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Karcher mean on SPD manifold: Retractions

M

x
η

TxM

Rx(η)R̃x(η)

Two retractions:R and R̃

R
(1)
X (ηX ) = X + ηX ;

Straight line;
Not preserve positive definiteness;

R
(2)
X (ηX ) = X + ηX + 1

2ηXX−1ηX ;

Retracted curve is a second order approximation of the geodesic;
Preserve positive definiteness;

Speaker: Wen Huang Introduction to Riemannian BFGS Methods



26/35

Riemannian Optimization
Optimization Framework

Experiments
Summary

Karcher mean on SPD manifold: Methods

R
(1)
X (ηX ) = X + ηX ;

R
(2)
X (ηX ) = X + ηX + 1

2
ηXX

−1ηX ;

Compared methods:2

Richardson-like (RL) iteration [BI13]: Riemannian metric + R
(1)
X +

carefully-chosen stepsize;

Riemannian BB method: R
(2)
X

Riemannian BFGS method: R
(2)
X

Limited-memory RBFGS method: R
(2)
X

2See detailed implementation of Riemannian methods in [YHAG17].
Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Results

0 10 20 30 40 50
iterations

10-10

100

d
is
t(
µ
,X

t)

RL Iteration

RBB

LRBFGS: 2

LRBFGS: 4

RBFGS

0 0.5 1 1.5
time (s)

×10-3

10-10

100

d
is
t(
µ
,X

t)

RL Iteration

RBB

LRBFGS: 2

LRBFGS: 4

RBFGS

Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations with K = 3 and n = 3;
1 ≤ κ(Ai ) ≤ 20

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Results

0 10 20 30 40 50
iterations

10-10

100

d
is
t(
µ
,X

t)

RL Iteration

RBB

LRBFGS: 2

LRBFGS: 8

RBFGS

0 5 10 15
time (s)

10-10

100

d
is
t(
µ
,X

t)

RL Iteration

RBB

LRBFGS: 2

LRBFGS: 8

RBFGS

Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations with K = 30 and n = 100;
104 ≤ κ(Ai ) ≤ 107.

Retraction is important.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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The Blind Deconvolution Problem

Problem:
min

X∈Rn×m
1

F (X ) = ‖y − diag(BXC∗)‖2
2.

y ∈ C`, B ∈ C`×n, and C ∈ C`×m are given;

Domain is the manifold of n-by-m rank-1 matrices;

The superscript star ∗ denotes the conjugate transpose operator.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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The Blind Deconvolution Problem

min
X∈Rn×m

1

F (X ) = ‖y − diag(BXC∗)‖2
2

M̄ = Rn×r
∗ × Rm×r

∗

(H ,M)

E = Rn×r × Rm×r

M = M̄/G = Rn×r
∗ × Rm×r

∗ /Rr×r
∗

[(H ,M)]

Two equivalent cost functions:3

on the quotient manifold

f1 : Rn
∗ × Rm

∗ /R1
∗ → R

: [(h,m)] 7→ f1([(h,m)]) = ‖y − diag(Bhm∗C∗)‖2
2.

on ambient space

f2 : Rn × Rm : (h,m) 7→ f2(h,m) = ‖y − diag(Bhm∗C∗)‖2
2;

3A penalty term [LLSW16] in the cost function is not added here for simplicity.
Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Results

f1 : Rn
∗ × Rm

∗ /R1
∗ → R; f2 : Rn × Rm → R

Apply the same type of method (Newton method with truncated CG) for
minimizing f1 and f2.

Table: An average of 50 runs. ` = 1024.

m/n 180/340 260/260 340/180
f1 f2 f1 f2 f1 f2

time 0.124 0.213 0.139 0.198 0.164 0.219
nf 38.26 37.72 39.54 37 37.82 35.88
ng 33.48 32.72 34.12 32 32.84 31.3
nH 173.56 347.24 181.64 264.32 189.06 268.38

error 8.53−8 1.52−7 7.38−8 1.24−7 3.97−8 5.00−8

Optimizing for f1 is faster than optimizing for f2.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Summary

Points in this talk:

Representation of a manifold changes complexity of an algorithm;

Riemannian metric influences the condition number of Hessian;

Retraction affects the number of iterations;

Optimizing over quotient manifold can be better than optimizing
over the ambient space;

Generalizing algorithms to the Riemannian setting is not
straightforward;

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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Thank you

Thank you!

Speaker: Wen Huang Introduction to Riemannian BFGS Methods
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