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@ What problems does Riemannian optimization consider?

@ What does a Riemannian optimization algorithm look like?

@ How do Riemannian optimization methods perform?
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Riemannian Optimization

Problem Statement

Problem: Given f(x): M — R, ®
solve T T

0 )

D

where M is a Riemannian manifold.

Unconstrained optimization problem on a constrained space.
What is a Riemannian manifold?

Riemannian manifold = manifold + Riemannian metric
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Riemannian Optimization

Manifolds

Problem: minyc 4 f(x) R

A

Two kinds of manifolds:

M= N1/G

@ﬁ

Figure: Left: an embedded submanifold; right: a quotient manifold
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Riemannian Optimization

Manifolds: Examples

— —

sprere Ellipsoid

Stiefel manifold: St(p, n) = {X € R™P|XTX = I,};
Grassmann manifold Gr(p, n): all p-dimensional subspaces of R";
All r-by-r symmetric positive definite matrices, S, (r);

All rank-r m-by-n matrices R}*™;

And many more.
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Riemannian Optimization

Manifolds: Examples

— —

sprere Ellipsoid

Stiefel manifold: St(p, n) = {X € R™P|XTX = I,};
Grassmann manifold Gr(p, n): all p-dimensional subspaces of R";
All r-by-r symmetric positive definite matrices, S, (r);

All rank-r m-by-n matrices R}*™;

And many more.

A manifold may have multiple representations.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods



Riemannian Optimization

Manifolds: Representations

A manifold may have multiple representations. Representations influence
complexities of optimization algorithms.

An important question:

How to represent points on a manifold?
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Riemannian Optimization

Manifolds: Representations

A manifold may have multiple representations. Representations influence
complexities of optimization algorithms.

An important question:

How to represent points on a manifold?

The fixed rank manifold: R?™™ = {X € R™™ | rank(X) = r}?

Embedded manifold Quotient manifold

e R”™: submanifold of R™*™ o RIX" x RI™"/RLX", where the star *
means full rank

@ St(r,n) x Sy (r) x St(r, m)/St(r,r);
@ St(r,n) x R /St(r, r);

1See details in A Riemannian approach for large-scale constrained least-squares with
symmetries, by B. Mishra, Ph.D thesis, 2014.
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Riemannian Optimization

Manifolds: The Fixed-rank Manifold

Embedded manifold Quotient manifold
) fom Y RZXI’ X R;TIXI’/R;XF;

Definition of R2*" x RM*" /REX"

RPX 5 RM*F /RO = {[(H, M)] | H € R™", M € R™*}, where
[(H, M)] = {(HP~*,MPT) | P € R{*"}.

o T:R™ x R™XrJRCXF s RPXm: [(H,M)] = HMT; (X = HMT)
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Riemannian Optimization

Manifolds: The Fixed-rank Manifold

Embedded manifold Quotient manifold
) fom Y RZXI’ X R;TIXI’/R;XF;

Definition of R2*" x RM*" /REX"

RPX 5 RM*F /RO = {[(H, M)] | H € R™", M € R™*}, where
[(H, M)] = {(HP~*,MPT) | P € R{*"}.

o T:R™ x R™XrJRCXF s RPXm: [(H,M)] = HMT; (X = HMT)

I — )
£ — grxm E=R"I xR M = MG = RIXT x RTXT [RI*7

e X € R™ [(H. M)]

Tl

A — X
M =R x R

o RI*™: naturally use R"™*™ (inefficient)
o RIXM x RM*M/RI*": naturally use R"*" x R™*" (efficient)
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Riemannian Optimization

Riemannian Metric

@ A Riemannian metric, denoted by g, is a smoothly-varying inner
product on the tangent spaces;

@ A Riemannnian metric defines angles and lengths;

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

Speaker: Wen Huang Introduction to Riemannian BFGS Methods



Riemannian Optimization

Riemannian Metric

Riemannian metric gy Riemannian metric g»

Figure: Changing metric may influence the difficulty of a problem.

Riemannian metric influences
@ Riemannian gradient

@ Riemannian Hessian
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Riemannian Optimization

@ What problems does Riemannian optimization consider?

@ What does a Riemannian optimization algorithm look like?

@ How do Riemannian optimization methods perform?
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Optimization Framework

Line Search-based Methods

Euclidean

Problem: minycgn f(x) R
Euclidean Optimization: -

o Update:
Xk+1 = Xk + apdy = x¢ — OszI:1Vf(Xk);

@ Steepest descent: By = id;
@ Newton's method: By = V?f(xy).

Riemannian

Riemannian Optimization: Problem: minyc g () .

e Riemannian gradient | _——u 7

@ Riemannian Hessian
@ How to update? '
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Optimization Framework

Retractions

Euclidean Riemannian
Xk+1 = Xk + i | X1 = Ry (0umi) .

«
A retraction is a mapping R from TM to M
satisfying the following:

@ R is continuously differentiable ‘\
e R(0)=x
° DR(0)fn] =1 ’

@ Retraction influences convergence speed )

Two retractions:R and R
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Optimization Framework

Line Search-based Methods

Euclidean

Euclidean Optimization: Problem: minyegn f(x) R
@ Given xg € R", k =0;
©Q Repeat: xx11 = xx — (kkBI:lVf(xk) for
some «y and By;
©Q k <+ k+1 and goto 2;

. . L. Riemannian
Riemannian Optimization:

Q@ Given xp € M, k=0; Problem: minye g f(x)f R

@ Repeat: x.1 = Ry, (—auBy Mgrad f(x)) | 7 7\ -

for some ay and By; ’

Q@ k <+ k+1 and goto 2;
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Optimization Framework

BFGS Methods

Euclidean BFGS method:
@ Given xg € R" and By, k = 0;

@ Repeat: xx11 = xx — akB;IVf(Xk) for
some «y and By;

© Compute Byy1 by (1)
Q@ k< k+1 and goto 2;

Euclidean BFGS update

Bisks) Bk . vy

Biky1 = Bk — ,
s) Brsk Vi sk

where sx = x¢41 — Xk, and
Yk = VF(xky1) — VF(x).

(1)

Euclidean

Problem: minycpn f(x)

Riemannian

Problem: minyec aq f(x)

[
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Optimization Framework

BFGS updates

Bysks! B T
Euclidean: Byx,1 = By — kSkSk Bk | YkYi

S,Z—Bksk y,;rsk ’
Sk = Xk+1 — Xky Yk = Vf(X[H,l) — Vf(Xk)
@ Explore information in previous iterates to accelerate algorithm;

@ A vector transport 7 : TM x TM — T M : (nx, &) = T x is
required; T M

grad fx
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Optimization Framework

BFGS updates

A Riemannian BFGS update:

B e (B Y b
Biy1 = By — Bks:(fgkgk) U:Uk,
ﬁkBkEk Y5k

where By = T¢, o By o 72:1 9k = grad f(xip1) — Te, grad f(xk),
sk = Te.bk & = R (xks1)
@ Above Riemannian BFGS method does not work in general;
@ What fails? In the Euclidean setting,
Br =0
=
search direction dy = —BkVf(xx) is descent
=
line search with Wolfe conditions can be done
=
ykTsk >0
=
By = 0.




Optimization Framework

BFGS updates

A Riemannian BFGS update:

B e (B Y b
Biy1 = By — Bks:(fgkgk) U:Uk,
ﬁkBkEk Y5k

where By = T¢, o By o 72:1 9k = grad f(xip1) — Te, grad f(xk),
sk = Te.bk & = R (xks1)
@ Above Riemannian BFGS method does not work in general;
@ What fails? In the Euclidean setting,
Bx =0
=
search direction dy = —BkVf(xx) is descent
=
line search with Wolfe conditions can be done
= not true in the Riemannian setting
ykTsk >0
=
Bk+1 = 0.




Optimization Framework

BFGS updates

A Riemannian BFGS update:

5 Bisi(Bisk) ’
Biyr = B — = :(~ ki) + Ut‘)k,
ﬁkBkSk Y15k

where By = Tg, o Bi o T¢, ", i = grad f(xi41) — Te, grad £ (i),
sk = Te, &k Ek = Ry M (Xk41)
@ Above Riemannian BFGS method does not work in general;
@ Restrictions on retraction and vector transport;

e Qi [Qil1]: exponential mapping and parallel translation

e Ring and Wirth [RW12]: differentiated retraction and an isometric
vector transport

e Huang et. al. [HGA15]: differentiated retraction along a direction
and an isometric vector transport

o Huang et. al. [HAG17]: an isometric vector transport

@ Complete convergence analysis exists for above Riemannian BFGS
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Optimization Framework

Complexities of Vector Transport

Problems of computing Bk =Te 0Bko 72:1
o Explicit form of 7 may not exist;

@ Maybe too expensive: matrix multiplications or matrix-vector
multiplications

Intrinsic representation of tangent vectors and vector transport by
parallelization [HAGL16]

@ Represent a tangent vector by RY, where d is the dimension of the
manifold

@ Vector transport by parallelization reduces to an identity (efficient)
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Optimization Framework

ROPTLIB

A C++ library is available at www.math.fsu.edu/~whuang2/ROPTLIB
e BLAS and LAPACK;
o Interfaces with R, Matlab, and Julia;
o Windows, Linux, Mac
Included Methods:
@ Line-search: RBB, RBFGS, LRBFGS, RCG, RNewton;
@ Trust-region: RTRSR1, RTRNewton, LRTRSRI;
Included Manifolds:
Euclidean space;
Stiefel manifold, Orthogonal group, Sphere in R”, Sphere in .2;

Grassmann manifold;

Elastic shape space;

Manifold of symmetric positive semidefinite matrices with rank fixed;
The fixed-rank manifold;

Any power or products of above manifolds;
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www.math.fsu.edu/~whuang2/ROPTLIB

Optimization Framework

@ What problems does Riemannian optimization consider?

@ What does a Riemannian optimization algorithm look like?

@ How do Riemannian optimization methods perform?
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Experiments

Experiments

e Karcher mean on symmetric positive definite (SPD) manifold

@ The blind deconvolution problem
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Experiments

Karcher mean on SPD manifold

K
_ . B 1 —1/2 2—1/2y(12
Problem: L F(X) = K ,Z:; [ log(A; " XA )k

Ai,i=1,... K are given SPD matrices;
Domain is the SPD manifold Sy (n);

Geodesic distance under the affine invariant metric

Distance: dist(X, Y) = || log(Y~Y/2XY~Y/2)| ¢
Metric: gx(&x,mx) = trace(Ex X 'nx X ™)

@ Geodesic convex and a unique minimizer;
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Experiments

Karcher mean on SPD manifold: Metrics

Problem: min F(X) log(A; /2 XA 12
roblem: min F(X) 2KZ” og(A )NE

X€Si4(n)

@ Euclidean metric: o Affine invariant metric:
gx (Ex,mx) = trace(£4mx); gx (Ex,mx) = trace(Ex X " Inx X 1);

Riemannian metric gi

Condition number x of Hessian at the minimizer:
@ Hessian of Euclidean metric
e K = square of the condition number of the minimizer ’
@ Hessian of affine invariant metric '

o k < 20 in double precision theoretically;
o Kk < 4 usually in our experiments;

Riemannian metric g

Riemannian metric is important.
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Experiments

Karcher mean on SPD manifold: Retractions

o RY(nx) = X +nx;
o Straight line;
o Not preserve positive definiteness;
o R (1x) = X +nx + Imx X~
o Retracted curve is a second order approximation of the geodesic;
o Preserve positive definiteness;

Two retractions:R and R
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Experiments

Karcher mean on SPD manifold: Methods

o RU(nx) = X +nx;

° R)(<2)(?7x) =X +nx + SnxX"Inx;

Compared methods:?

@ Richardson-like (RL) iteration [BI13]: Riemannian metric + R)(<1) +
carefully-chosen stepsize;

@ Riemannian BB method: R)(?)
@ Riemannian BFGS method: R)(?)
@ Limited-memory RBFGS method: R)(<2)

2See detailed implementation of Riemannian methods in [YHAG17].
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Experiments

Results

|
100 RL Iteration 106 RL Iteration
—E-RBB —E-RBB
LRBFGS: 2 LRBFCS: 2
. —©O~ LRBFGS: 4 . —©- LRBFGS: 4
. -7 RBFGS > —57~ RBFGS
2 =
T gl0 = glo
0 10 20 30 40 50 0 05 1 15
iterations time (s) x10°

Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations with K = 3 and n = 3;
1 <k(A) <20
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Experiments

Results

10°
= =
¥ 5
= o0 H RL Iteration = 110 RL Iteration
§ —=—RBB —E&-RBB
LRBFGS: 2 LRBFGS: 2
—e—LRBFGS: 8 —e—LRBFGS: 8
-7~ RBFGS -7~ RBFGS
0 10 20 30 40 50 0 5 10 15
iterations time (s)

Figure: Evolution of averaged distance between current iterate and the exact
Karcher mean with respect to time and iterations with K = 30 and n = 100;
10* < K(A) < 107,

Retraction is important.
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Experiments

The Blind Deconvolution Problem

Problem:

min F(X) = ||y — diag(BXC")]3.
XeR*™

o ycCt BecC" and C € C*™ are given;
@ Domain is the manifold of n-by-m rank-1 matrices;

@ The superscript star * denotes the conjugate transpose operator.
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Experiments

The Blind Deconvolution Problem

£ = R*r x RMXT

M= M/G =R x R JRI*"

min  F(X) = ||y — diag(BXC*)||3

XER*™ [(H, M)]

Two equivalent cost functions:3

@ on the quotient manifold
fi:R” xR™/R! - R
H[(h,m)] = A([(h,m)]) = |ly — diag(Bhm™C)|3.
@ on ambient space

£ :R" x R™: (h,m) — f(h,m) = ||y — diag(Bhm* C*)||3;

3A penalty term [LLSW16] in the cost function is not added here for simplicity.
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Experiments

Results

Apply the same type of method (Newton method with truncated CG) for
fi:R"xRT"/RL = R;f:R" xR™ =+ R

minimizing f; and f,.

Table: An average of 50 runs. ¢ = 1024.

m/n 180,/340 260/260 340/180
fi A fi A fi [
time | 0.124 0213 | 0130 0108 | 0.164 0219
nf 38.26  37.72 | 39.54 37 37.82  35.88
ng 33.48 3272 | 3412 32 32.84 313
nH | 17356 34724 | 181.64 264.32 | 189.06  268.38
error | 853 5 152 ; | 7.38.5 124 ; | 3.97 5 5.00 4

Optimizing for f; is faster than optimizing for f,.
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Summary

Summary

Points in this talk:
@ Representation of a manifold changes complexity of an algorithm;
@ Riemannian metric influences the condition number of Hessian;
@ Retraction affects the number of iterations;

@ Optimizing over quotient manifold can be better than optimizing
over the ambient space;

o Generalizing algorithms to the Riemannian setting is not
straightforward;
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Summary

Thank you!

Speaker: Wen Hu: Introduction to Riemannian BFGS Methods




Summary

References |

@ D. A. Bini and B. lannazzo

Computing the Karcher mean of symmetric positive definite matrices.
Linear Algebra and its Applications, 438(4):1700-1710, February 2013
doi:10.1016/j.1aa.2011.08.052

Wen Huang, P.-A. Absil, and K. A. Gallivan

Intrinsic representation of tangent vectors and vector transport on matrix manifolds.
Numerische Mathematik, 2016

Wen Huang, P.-A. Absil, and K. A. Gallivan

A riemannian bfgs method without differentiated retraction for nonconvex optimization problems.
Technical Report UCL-INMA-2017.04, U.C.Louvain, 2017

Wen Huang, K. A. Gallivan, and P.-A. Absil

A Broyden Class of Quasi-Newton Methods for Riemannian Optimization.
SIAM Journal on Optimization, 25(3):1660-1685, 2015

Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei

Rapid, robust, and reliable blind deconvolution via nonconvex optimization.
CoRR, abs/1606.04933, 2016

C. Qi
Numerical optimization methods on Riemannian manifolds.
PhD thesis, Florida State University, Department of Mathematics, 2011

) & & & =

W. Ring and B. Wirth

Optimization methods on Riemannian manifolds and their application to shape space.
SIAM Journal on Optimization, 22(2):596-627, January 2012
doi:10.1137,/11082885X

eaker: Wen Hua Introduction to Riemannian BFGS Methods



Summary

References |l

@ Xinru Yuan, Wen Huang, P.-A. Absil, and K. A. Gallivan.

A Riemannian quasi-newton method for computing the Karcher mean of symmetric positive definite matrices.
Technical Report FSU17-02, Florida State University, 2017

eaker: Wen Hua Introduction to Riemannian BFGS Methods



	Riemannian Optimization
	Optimization Framework
	Experiments
	Summary

