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Abstract

This paper addresses the problem of computing the Karcher mean of a collection of symmetric
positive definite matrices. We show in detail that the condition number of the Riemannian
Hessian of the underlying optimization problem is never very ill conditioned in practice, which
explains why the Riemannian steepest descent approach has been observed to perform well. We
also show theoretically and empirically that this property is not shared by the Euclidean Hessian.
Then we present a limited-memory Riemannian BFGS method to handle this computational
task. We also provide methods to produce efficient numerical representations of geometric
objects that are required for Riemannian optimization methods on the manifold of symmetric
positive definite matrices. Through empirical results and a computational complexity analysis,
we demonstrate the robust behavior of the limited-memory Riemannian BFGS method and the
efficiency of our implementation when compared to state-of-the-art algorithms.

1 Introduction

Symmetric positive definite (SPD) matrices are fundamental objects in various domains. For ex-
ample, a 3D diffusion tensor, i.e., a 3 × 3 SPD matrix, is commonly used to model the diffusion
behavior of the media in diffusion tensor magnetic resonance imaging (DT-MRI) [9, 11, 32]. In
addition, representing images and videos with SPD matrices has shown promise for segmentation
and recognition in several studies, such as [4, 21, 28, 35, 36]. In these and similar applications,
it is often of interest to average SPD matrices. Averaging is required, e.g., to aggregate several
noisy measurements of the same object. It also appears as a subtask in interpolation methods [1],
segmentation [5, 31], and clustering [23]. An efficient implementation of averaging method is crucial
for applications where the mean computation must be done many times. For example, in K-means
clustering, one needs to compute the means of each cluster in each iteration.

A natural way to average over a collection of SPD matrices, {A1, . . . , AK}, is to take their
arithmetic mean, i.e., G(A1, . . . , AK) = (A1 + · · ·+AK)/K. However, this is not appropriate in ap-
plications where invariance under inversion is required, i.e., G(A1, . . . , AK)−1 = G(A−11 , . . . , A−1K ).
In addition, the arithmetic mean may cause a “swelling effect” that should be avoided in diffu-
sion tensor imaging. Swelling is defined as an increase in the matrix determinant after averaging,
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see [11] for example. An alternative is to generalize the definition of geometric mean from scalars to
matrices, which yields G(A1, . . . , AK) = (A1 . . . AK)1/K . However, this generalized geometric mean
is not invariant under permutation since matrices are not commutative in general. Ando et al. [3]
introduced a list of fundamental properties, referred to as the ALM list, that a matrix “geometric”
mean should possess, such as invariance under permutation, monotonicity, congruence invariance,
and invariance under inversion, to name a few. These properties are known to be important in
numerous applications, e.g. [6, 27, 29]. However, they do not uniquely define a mean for K ≥ 3.
There can be many different definitions of means that satisfy all the properties. The Karcher mean
proposed in [26] has been recognized as one of the most suitable means for SPD matrices in the
sense that it satisfies all properties in the ALM list [6, 27].

1.1 Karcher mean

Let Sn++ be the manifold of n× n SPD matrices. Since Sn++ is an open submanifold of the vector
space of n × n symmetric matrices, its tangent space at point X, denoted by TX Sn++, can be
identified as the set of n × n symmetric matrices. The manifold Sn++ becomes a Riemannian
manifold when endowed with the affine-invariant metric, see [31], given by

gX(ξX , ηX) = trace(ξXX
−1ηXX

−1). (1.1)

The Karcher mean of {A1, . . . , AK}, also called the Riemannian center of mass, is the minimizer
of the sum of squared distances

µ = arg min
X∈Sn++

F (X), with F : Sn++ → R, X 7→ 1

2K

K∑
i=1

δ2(X,Ai), (1.2)

where δ(p, q) = ‖ log(p−1/2qp−1/2)‖F is the geodesic distance associated with Riemannian metric
(1.1). It is proved in [26] that function F has a unique minimizer. Hence a point µ ∈ Sn++ is
a Karcher mean if it is a stationary point of F , i.e., gradF (µ) = 0, where gradF denotes the
Riemannian gradient of F under metric (1.1). However, a closed-form solution for problem (1.2)
is unknown in general, and for this reason, the Karcher mean is usually computed by iterative
methods.

1.2 Related work

Various methods have been used to compute the Karcher mean of SPD matrices. Most of them
resort to the framework of Riemannian optimization (see, e.g., [2]), since problem (1.2) requires
optimizing a function on a manifold. In particular, [25] presents a survey of several optimization
algorithms, including Riemannian versions of steepest descent, conjugate gradient, BFGS, and
trust-region Newton methods. The authors conclude that the first order methods, steepest descent
and conjugate gradient, are the preferred choices for problem (1.2) in terms of time efficiency. The
benefit of fast convergence of Newton’s method and BFGS is nullified by their high computational
costs per iteration, especially as the size of the matrices increases. It is also empirically observed
in [25] that the Riemannian metric yields much faster convergence for their tested algorithms
compared with the induced Euclidean metric, which is given by gX(ηX , ξX) = trace(ξXηX).

A Riemannian version of the Barzilai-Borwein method (RBB) has been considered in [22].
Several stepsize selection rules have been investigated for the Riemannian steepest descent (RSD)
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method. A constant stepsize strategy is proposed in [34] and a convergence analysis is given. An
adaptive stepsize selection rule based on the explicit expression of the Riemannian Hessian of the
cost function F is studied in [33, Algorithm 2], which is actually the optimal stepsize for strongly
convex function in Euclidean space, see [30, Theorem 2.1.14]. That is, the stepsize is chosen as αk =
2/(Mk+Lk), whereMk and Lk are the lower and upper bounds on the eigenvalues of the Riemannian
Hessian of F , respectively. A version of Newton method for the Karcher mean computation is also
provided in [33]. A Richardson-like iteration is derived and evaluated empirically in [7], and is
available in the Matrix Means Toolbox1. It is seen in Section 3.2 that the Richardson-like iteration
is a steepest descent method with stepsize αk = 1/Lk.

1.3 Contributions

First, by providing lower and upper bounds on the condition number of the Riemannian and Eu-
clidean Hessians of the cost function (1.2), we give a theoretical explanation for the above-mentioned
behavior of the Riemannian and Euclidean steepest descent algorithms for SPD Karcher mean
computation. Then we provide a detailed description of a limited-memory Riemannian BFGS
(LRBFGS) method for this mean computation problem. Riemannian optimization methods such
as LRBFGS involve manipulation of geometric objects on manifolds, such as tangent vectors, eval-
uation of a Riemannian metric, retraction, and vector transport. We present detailed methods to
produce efficient numerical representations of those objects on the Sn++ manifold. In fact, there
are several alternatives to choose from for geometric objects on Sn++. We offer theoretical and
empirical suggestions on how to choose between those alternatives for LRBFGS based on computa-
tional complexity analysis and numerical experiments. Our numerical experiments indicate that as
a result, and in spite of the favorable bound on the Riemannian Hessian that ensures Riemannian
steepest descent to be an efficient method, the obtained LRBFGS method outperforms state-of-
the-art methods on various instances of the problem. We also show that RBB is a special case of
LRBFGS.

Another contribution of our work is to provide a C++ toolbox for the SPD Karcher mean com-
putation, which includes LRBFGS, RBFGS, RBB, and RSD. The toolbox2 relies on ROPTLIB,
an object-oriented C++ library for optimization on Riemannian manifolds [19]. To the best of our
knowledge, there is no other publicly available C++ toolbox for the SPD Karcher mean computa-
tion. Our previous work [38] provides a MATLAB implementation3 for this problem. The Matrix
Means Toolbox1 developed by Bini et al. in [7] is also written in MATLAB. As an interpreted
language, MATLAB’s execution efficiency is lower than compiled languages, such as C++. In ad-
dition, the timing measurements in MATLAB can be skewed by MATLAB’s overhead, especially
for small-size problems. As a result, we resort to C++ for efficiency and reliable timing.

Finally, we test the performance of LRBFGS on problems of various sizes and conditioning, and
compare with the state-of-the-art methods mentioned above. The size of a problem is characterized
by the number of matrices as well as the dimension of each matrix, and the conditioning of the
problem is characterized by the condition number of matrices. It is shown empirically that LRBFGS
is appropriate for large-size problems or ill-conditioned problems. Especially when one has little
knowledge of the conditioning of a problem, LRBFGS becomes the method of choice since it is
robust to problem conditioning and parameter setting. The numerical results also illustrate the

1http://bezout.dm.unipi.it/software/mmtoolbox/
2http://www.math.fsu.edu/~whuang2/papers/RMKMSPDM.htm
3http://www.math.fsu.edu/~whuang2/papers/ARLBACMGM.htm

3

http://bezout.dm.unipi.it/software/mmtoolbox/
http://www.math.fsu.edu/~whuang2/papers/RMKMSPDM.htm
http://www.math.fsu.edu/~whuang2/papers/ARLBACMGM.htm


speedup of using C++ vs. MATLAB, especially for small-size problems. It is observed that the
C++ implementation is faster than MATLAB by a factor of 100 or more with the factor gradually
reducing as the size of the problem gets larger.

The paper is organized as follows. Section 2 studies the conditioning of the objective func-
tion (1.2) under the Riemannian metric and the Euclidean metric. Section 3 presents the imple-
mentation techniques for Sn++ and computational complexity analysis. Detailed descriptions of the
SPD Karcher mean computation methods considered (namely RL, RSD-QR, RBB, and LRBFGS)
are given in Section 4. Numerical experiments are reported in Section 5. Conclusions are drawn in
Section 6.

A preliminary version of some of the results presented in this paper can be found in the confer-
ence paper [38].

2 Conditioning of the objective function

The convergence speed of optimization methods depends on the conditioning of the Hessian of
the cost function at the minimizer. Large values of condition number lead to slow convergence of
optimization algorithms, especially for steepest descent methods. The choice of the metric has an
important influence on the difficulty of an optimization problem via influencing the conditioning of
the Hessian of the cost function. A good choice of metric may reduce the condition number of the
Hessian.

Rentmeesters et al. [33, inequality (3.29)] gives bounds on the eigenvalues of the Riemannian
Hessian of the squared distance function fA(X) = 1

2δ
2(X,A) given A ∈ Sn++. On this basis, the

bounds on the eigenvalues of the Riemannian Hessian of F can be obtained trivially. We summarize
the results from [33] in Theorem 2.1 and, for completeness, we give the proof omitted by [33].

Theorem 2.1. Let F be the objective function defined in problem (1.2) and X ∈ Sn++. Then the
eigenvalues of the Riemannian Hessian of F at X are bounded by

1 ≤ HessF (X)[∆X,∆X]

‖∆X‖2
≤ 1 +

log(maxi κi)

2
, (2.1)

where κi denotes the condition number of matrix X−1/2AiX
−1/2 (or equivalently L−1x AiL

−T
x with

X = LxL
T
x being the Cholesky decomposition of X).

Proof. The proof is a simple generalization from [33, inequality (3.29)], which gives bounds on the
eigenvalues of the Riemannian Hessian of the function fA(X) as

1 ≤ Hess fA(X)[∆X,∆X]

‖∆X‖2
≤ log κ

2
coth(

log κ

2
), (2.2)

where κ is condition number of X−1/2AX−1/2. Notice that the objective function F (X) =
1
K

∑K
i=1 fAi(X). Thus, we have

1 ≤ HessF (X)[∆X,∆X]

‖∆X‖2
≤ 1

K

K∑
i=1

log κi
2

coth(
log κi

2
). (2.3)

Since x coth(x) is strictly increasing and bounded by 1+x on [0,∞], the right hand side of inequal-
ity (2.3) is thus bounded by 1 + log(maxi κi)/2.
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Theorem 2.1 implies that we cannot expect a very ill-conditioned Riemannian Hessian in prac-
tice. However, this is not the case when the Euclidean metric is used. In Theorem 2.2, we derive
bounds on the condition number of the Euclidean Hessian of F at the minimizer. We need the
following lemma before deriving the bounds.

Lemma 2.1. Let A ∈ Sn++ be a symmetric positive definite matrix with eigenvalues satisfying
0 < λ1 ≤ λ2 ≤ · · · ≤ λn, and η ∈ Rn×n be an n× n real symmetric matrix. Then, we have

max
η=ηT

tr(AηAη)

‖η‖2F
= λ2n, and min

η=ηT

tr(AηAη)

‖η‖2F
= λ21. (2.4)

Proof. LetA = QΣQT be the eigenvalues decomposition ofA, whereQQT = I and Σ = diag(λ1, . . . , λn).
Then, we have

tr(AηAη)

‖η‖2F
=

tr(QΣQT ηTQΣQT η)

‖QT ηQ‖2F
=

tr(Ση̃TΣη̃)

‖η̃‖2F
. (2.5)

Notice that we can rewrite the trace term on the right hand of equation (2.5) as

tr(Ση̃TΣη̃) = vec(η̃Σ)T vec(Ση) = vec(η̃)T (In ⊗ Σ)(Σ⊗ In) vec(η̃) = vec(η̃)T (Σ⊗ Σ) vec(η̃). (2.6)

On one hand, we have

max
η̃=η̃T

tr(Ση̃TΣη̃)

‖η̃‖2F
≤ max

η̃∈Rn×n
tr(Ση̃TΣη̃)

‖η̃‖2F
= max

η̃∈Rn×n
vec(η̃)T (Σ⊗ Σ) vec(η̃)

vec(η̃)T vec(η̃)
= λ2n. (2.7)

The last equality comes from the fact that the eigenvalues of Σ ⊗ Σ are λiλj , i = 1, . . . , n, j =
1, . . . , n. On the other hand,

max
η̃=η̃T

tr(Ση̃TΣη̃)

‖η̃‖2F
≥ tr(ΣηT0 Ση0)

‖η0‖2F
= λ2n, (2.8)

where η0 = ene
T
n and en = (0, . . . , 0, 1)T . That is, η0 is an n×n zero matrix except the (n, n) entry

is 1. Combining inequalities (2.7) and (2.8), we obtain the first part of (2.4).
Similarly, we have

min
η̃=η̃T

tr(Ση̃TΣη̃)

‖η̃‖2F
≥ min

η̃∈Rn×n
tr(Ση̃TΣη̃)

‖η̃‖2F
= min

η̃∈Rn×n
vec(η̃)T (Σ⊗ Σ) vec(η̃)

vec(η̃)T vec(η̃)
= λ21. (2.9)

On the other hand, we let η0 = e1e
T
1 and e1 = (1, 0, . . . , 0)T . Then, we have

min
η̃=η̃T

tr(Ση̃TΣη̃)

‖η̃‖2F
≤ tr(ΣηT0 Ση0)

‖η0‖2F
= λ21. (2.10)

Combining inequalities (2.9) and (2.10) immediately lead to the second part of (2.4).

For notational simplicity, we use super script ‘E’ and ‘R’ to differentiate the Euclidean metric
and the Riemannian metric.
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Theorem 2.2. Let f : Sn++ → R be twice continuously differentiable and µ be a stationary point
for f . Assume the largest and smallest eigenvalues of the Riemannian Hessian of f at µ are Λmax

and Λmin respectively, i.e.,

Λmin ≤
〈HessR f(µ)[η], η〉R

〈η, η〉R
≤ Λmax. (2.11)

Then the condition number of the Euclidean Hessian of f at µ, denoted by κ(HE), is bounded by

1

κ(HR)
κ2(µ) ≤ κ(HE) ≤ κ(HR)κ2(µ), (2.12)

where κ(µ) is the condition number of µ, and κ(HR) = Λmax/Λmin is the condition number of the
Riemannian Hessian of f at µ.

Proof. Recall that the condition number of the Euclidean Hessian of f at µ can be expressed as

κ(HE) = max
η=ηT

〈HessE f(µ)[η], η〉E

〈η, η〉E
/ min
η=ηT

〈HessE f(µ)[η], η〉E

〈η, η〉E
, (2.13)

and that of the Riemannian Hessian can be written in a similar way.
For any X ∈ Sn++ and η ∈ TX Sn++, the action of Hessian of f on η under the Riemannian

metric is given by [25]

HessR f(X)[η] = D(gradR f)(X)[η]− 1

2
(ηX−1 gradR f(X) + gradR f(X)X−1η). (2.14)

WhenX = µ is a stationary point of f , i.e., gradR f(µ) = 0, we have HessR f(µ)[η] = D(gradR f)(µ)[η].
As 〈gradE f(X), η〉E = D f(X)[η] = 〈gradR f(X), η〉R, we have

gradR f(X) = X gradE f(X)X. (2.15)

Therefore, equation (2.14) yields

HessR f(µ)[η] = η gradE f(µ)µ+ µ(D(gradE f)(µ)[η])µ+ µ gradE f(µ)η (2.16)

= µ(D(gradE f)(µ)[η])µ = µ(HessE f(µ)[η])µ. (2.17)

This gives us

〈HessR f(µ)[η], η〉R = tr(µ−1 HessR f(µ)[η]µ−1η) = tr(HessE f(µ)[η]η) = 〈HessE f(µ)[η], η〉E.
(2.18)

It follows that
〈HessE f(µ)[η], η〉E

〈η, η〉E
=
〈HessR f(µ)[η], η〉R

〈η, η〉R
· 〈η, η〉

R

〈η, η〉E
. (2.19)

By assumption, we have

Λmin ≤
〈HessR f(µ)[η], η〉R

〈η, η〉R
≤ Λmax. (2.20)
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Assume that the eigenvalues of µ are 0 < λ1 ≤ · · · ≤ λn, and then the eigenvalues of µ−1 are
0 < 1/λn ≤ · · · ≤ 1/λ1. From Lemma 2.1, we have

max
η=ηT

〈η, η〉R

〈η, η〉E
=

1

λ21
and min

η=ηT

〈η, η〉R

〈η, η〉E
=

1

λ2n
. (2.21)

Multiplying inequality (2.20) and equation (2.21) gives

Λmin

λ21
≤ max

η=ηT

〈HessE f(µ)[η], η〉E

〈η, η〉E
≤ Λmax

λ21
, (2.22)

and
Λmin

λ2n
≤ min

η=ηT

〈HessE f(µ)[η], η〉E

〈η, η〉E
≤ Λmax

λ2n
. (2.23)

Dividing inequality (2.22) by (2.23) gives us the lower and upper bounds on the condition number
of the Euclidean Hessian of f at stationary point µ:

Λmin

Λmax

λ2n
λ21
≤ κ(HE) ≤ Λmax

Λmin

λ2n
λ21
. (2.24)

That is,
1

κ(HR)
κ2(µ) ≤ κ(HE) ≤ κ(HR)κ2(µ). (2.25)

Remark 2.1. Notice that equality (2.18) can be simply obtained by the fact that 〈HessF (µ)[η], η〉
is independent of the metric when µ is a critical point of F . The proof can be found in [2, Section
5.5].

For the cost function F in (1.2), it is seen from Theorem 2.2 that the condition number of
the Euclidean Hessian at the minimizer (stationary point) is bounded below by the square of
the condition number of the minimizer scaled by the reciprocal of the condition number of the
Riemannian Hessian of F . Hence when the minimizer is ill-conditioned, the Euclidean Hessian of
F at the minimizer is ill-conditioned as well, which will slow down the optimization methods. Our
numerical experiments in Section in 5.3 demonstrate this expectation.

3 Implementation for the Sn
++ manifold

This section is devoted to the implementation details of the required objects for Riemannian opti-
mization methods on the SPD Karcher mean computation problem. Manifold-related objects in-
clude tangent vectors, the Riemannian metric, isometric vector transport, and retraction. Problem-
related objects include the cost function and Riemannian gradient evaluations. As an extension of
our previous work [38], we also provide a floating point operation (flop) count4, for most operations.

4see [14, Section 1.2.4]
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3.1 Representations of a tangent vector and the Riemannian metric

The Sn++ manifold can be viewed as a submanifold of Rn×n, and its tangent space at X is the set of
symmetric matrices, i.e., TX Sn++ = {S ∈ Rn×n|S = ST }. The dimension of Sn++ is d = n(n+ 1)/2.
Thus, a tangent vector ηX in TX Sn++ can be represented either by an n2-dimensional vector in
Euclidean space E , or a d-dimensional vector of coordinates in a given basis BX of TX Sn++. The
n2-dimensional representation is called the extrinsic approach, and the d-dimensional one is called
the intrinsic approach. For simplicity, we use w to denote the dimension of the embedding space,
i.e., w = n2.

The computational benefits of using intrinsic representation are addressed in [16, 17]: (i) Work-
ing in d-dimension reduces the computational complexity of linear operations on the tangent space.
(ii) There exists an isometric vector transport, called vector transport by parallelization, whose
intrinsic implementation is simply the identity. (iii) The Riemannian metric can be reduced to the
Euclidean metric. However, the intrinsic representation requires a basis of tangent space, and in
order to obtain the computational benefits mentioned above, it must be orthonormal. Hence, if
a manifold admits a smooth field of orthonormal tangent space bases with acceptable computa-
tional complexity, the intrinsic representation often leads to a very efficient implementation. This
property holds for Sn++ as shown next.

The orthonormal basis BX of TX Sn++ that we select is given by

{LeieTi LT : i = 1, . . . , n}
⋃
{ 1√

2
L(eie

T
j + eje

T
i )LT , i < j, i = 1, . . . , n, j = 1, . . . , n}, (3.1)

where X = LLT denotes the Cholesky decomposition, and {e1, . . . , en} is the standard basis of
n-dimensional Euclidean space. Another choice is to use the matrix square root X1/2 instead of
Cholesky decomposition of X, which however costs more [15]. It is easy to verify the orthonormality
of BX under the Riemannian metric (1.1), i.e., B[

XBX = Id×d for all X ∈ Sn++. (The notation
a[ denotes the function a[ : TXM → R : v 7→ gX(a, v), where g stands for the Riemannian
metric (1.1).) We assume throughout the paper that BX stands for our selected orthonormal basis
of TX Sn++ defined in (3.1).

Let ηX be a tangent vector in TX Sn++ and vX be its intrinsic representation. We define function
E2DX : ηX 7→ vX = B[

XηX that maps the extrinsic representation to the intrinsic representation.
Using the orthonormal basis defined in (3.1), the intrinsic representation of ηX is obtained by taking
the diagonal elements of L−1ηXL

−T , and its upper triangular elements row-wise and multiplied by√
2. A detailed description of function E2D is given in Algorithm 1. The number of flops for each

step is given on the right of the algorithm.
Since BX forms an orthonormal basis of TX Sn++, the Riemannian metric (1.1) reduces to the

Euclidean metric under the intrinsic representation, i.e.,

g̃X(vX , uX) := gX(ηX , ξX) = gX(BXvX , BXuX) = vTXuX , (3.2)

where ηX = BXvX , ξX = BXuX ∈ TX Sn++. The evaluation of (3.2) requires 2d flops, which is
cheaper than the evaluation of (1.1).

For the intrinsic approach, retractions (see Section 3.2) require mapping the intrinsic represen-
tation back to the extrinsic representation, which may need extra work. Let function D2EX : vX 7→
ηX = BXvX denote this mapping. In practice, the function D2EX using basis (3.1) is described in
Algorithm 2.
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Algorithm 1 Compute E2DX(ηX)

Input: X = LLT ∈ Sn++, ηx ∈ TX Sn++.
1: Compute Y = L−1ηX by solving linear system LY = ηX ; . # n3

2: Y ← Y T (i.e., Y = ηXL
−T ) ;

3: Compute Z = L−1ηXL
−T by solving linear system LZ = Y ; . # n3

4: return vX = (z11, . . . , znn,
√

2z12, . . . ,
√

2z1n,
√

2z23, . . . ,
√

2z2n, . . . ,
√

2z(n−1)n)T ; . # d

Algorithm 2 Compute D2EX(vX)

Input: X = LLT ∈ Sn++, vx ∈ Rn(n+1)/2.
1: ηii = vX(i) for i = 1, . . . , n; . # n
2: k = n+ 1;
3: for i = 1, . . . , n do . # n2 − n(n+ 1)/2
4: for j = i+ 1, . . . , n do
5: ηij = vX(k) and ηji = vX(k);
6: k = k + 1;
7: end for
8: end for
9: return LηLT ; . # 2n3

3.2 Retraction and vector transport

The concepts of retraction and vector transport can be found in [2]. A retraction is a smooth
mapping R from the tangent bundle TM onto M such that (i) R(0x) = x for all x ∈ M (where
0x denotes the origin of TxM) and (ii) d

dtR(tξx)|t=0 = ξx for all ξx ∈ TxM. A vector transport
T : TM⊕TM→ TM, (ηx, ξx) 7→ Tηxξx with associated retraction R is a smooth mapping such
that, for all (x, ηx) in the domain of R and ξx, ζx ∈ TxM, it holds that (i) Tηxξx ∈ TR(ηx)M,
(ii) T0xξx = ξx, (iii) Tηx is a linear map. Some methods, such as RBFGS in [20, Algorithm 1]
and LRBFGS, require the vector transport to be isometric, i.e., gR(ηx)(TSηx ξx, TSηx ζx) = gx(ξx, ζx).
Throughout the paper, we use the notation TS for isometric vector transport.

The choice of retraction and vector transport is a key step in the design of efficient Riemannian
optimization algorithms. The exponential mapping is a natural choice for retraction. When Sn++

is endowed with the Riemannian metric (1.1), the exponential mapping is given by, see [12],

ExpX(ηX) = X1/2 exp(X−1/2ηXX
−1/2)X1/2, (3.3)

for all X ∈ Sn++ and ηX ∈ TX Sn++. In practice, the exponential mapping (3.3) is expensive to
compute. The exponential of matrix M is computed as exp(M) = U exp(Σ)UT , with M = UΣUT

being the eigenvalue decomposition. Obtaining Σ and U by Golub-Reinsch algorithm requires 12n3

flops, see [14, Figure 8.6.1]. Hence the evaluation of exp(M) requires 16n3 flops in total. More
importantly, when computing the matrix exponential exp(M), eigenvalues of large magnitude can
lead to numerical difficulties. Jeuris et al. [25] proposed a retraction

RX(ηX) = X + ηX +
1

2
ηXX

−1ηX , (3.4)

which is a second order approximation to the exponential mapping (3.3). Retraction (3.4) is cheaper

9



to compute and requires 3n3 + o(n3) flops, and tends to avoid numerical overflow. An important
property of retraction (3.4) is stated in Proposition 3.1.

Proposition 3.1. Retraction RX(η) defined in (3.4) remains symmetric positive definite for all
X ∈ Sn++ and η ∈ TX Sn++.

Proof. For all v 6= 0, X ∈ Sn++, and η ∈ TX Sn++, we have

vTRX(η)v =
1

2
vT (X + 2η + ηX−1η)v +

1

2
vTXv

=
1

2
vT (X1/2 + ηX−1/2)(X1/2 + ηX−1/2)T v +

1

2
vTXv > 0.

(3.5)

Another retraction that can be computed efficiently is the first order approximation to (3.3),
i.e.,

RX(ηX) = X + ηX . (3.6)

In fact, retraction (3.6) is the exponential mapping when Sn++ is endowed with the Euclidean
metric. However, the result of retraction (3.6) is not guaranteed to be positive definite. Therefore
one must be careful when using this Euclidean retraction. One remedy is to reduce the stepsize
when necessary. The Richardson-like iteration in [7] is a steepest descent method using Euclidean
retraction (3.6).

Parallel translation is a particular instance of vector transport. The parallel translation on Sn++

is given by, see [12],

TpξX (ηX) = X1/2 exp(
X−1/2ξXX

−1/2

2
)X−1/2ηXX

−1/2 exp(
X−1/2ξXX

−1/2

2
)X1/2. (3.7)

The computation of parallel translation involves the matrix exponential, which is computationally
expensive. Note, however, that if parallel translation is used together with the exponential map-
ping (3.3), the most expensive exponential computation can be shared by rewriting (3.7) and (3.3)
as shown in Algorithm 4. Even so, the matrix exponential computation is still required. We thus
resort to another vector transport.

Recently, Huang et al. [16, Section 2.3.1] proposed a novel way to construct an isometric vector
transport, called vector transport by parallelization. It is defined by

TS = BYB
[
X , (3.8)

where BX and BY are orthonormal bases of TX Sn++ and TY Sn++ defined in (3.1) respectively. Let
vX = B[

XηX be the intrinsic representation of ηX . Then, the intrinsic approach of (3.8), denoted
by T dS , is given by

T dS vX = B[
Y TSηX = B[

YBYB
[
XBXvX = vX (3.9)

That is, the intrinsic representation of vector transport by parallelization is simply the identity,
which is the cheapest vector transport one can expect.

Another possible choice for the vector transport is the identity mapping: TidξX (ηX) = ηX .
However, vector transport Tid is not applicable to the LRBFGS in [20, Algorithm 2] since it is not
isometric under Riemannian metric (1.1).

10



Given a retraction, Huang et al. [20, Section 2] provides a method to construct an isometric
vector transport such that the pair satisfies the locking condition5, denoted by TL, which is given
by

TLξX ηX = BY (I − 2v2v
T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)B[

1ηX , (3.10)

where v1 = B[
XξX−z, v2 = z−βB[

Y TRξX ξX , β = ‖ξX‖/‖TRξX ξX‖, and TR denotes the differentiated

retraction. z can be any tangent vector satisfying ‖z‖ = ‖B[
1ξX‖ = ‖βB[

2TRξX ξX‖. z = −B[
1ξX

and z = −βB[
2ξX are natural choices. The intrinsic representation of (3.10) is given by

T dL vX = B[
YBY (I − 2v2v

T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)B[

1ηX (3.11)

= (I − 2v2v
T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)vX . (3.12)

The evaluation of the intrinsic vector transport (3.12) requires 12d flops, i.e., 6n2.

3.3 Riemannian gradient of the sum of squared distances function

The cost function (1.2) can be rewritten as

f(X) =
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2F =

1

2K

K∑
i=1

‖ log(L−1AiXL
−T
Ai

)‖2F (3.13)

where Ai = LAiL
T
Ai

. We use Cholesky decomposition rather than the matrix square root due to
computational efficiency. The matrix logarithm is computed in a similar way as the exponential,
i.e., log(M) = U log(Σ)UT with M = UΣUT being the eigenvalue decomposition. So the number
of flops required by the evaluation of (3.13) is 18Kn3.

The Riemannian gradient of the cost function F in (1.2) is given by, see [26],

gradF (X) = − 1

K

K∑
i=1

Exp−1X (Ai), (3.14)

where Exp−1X (Y ) is the log-mapping, i.e., the inverse exponential mapping. On Sn++, the log-
mapping is computed as

Exp−1X (Y ) = X1/2 log(X−1/2Y X−1/2)X1/2 = log(Y X−1)X. (3.15)

Note that the computational complexity of the Riemannian gradient is less than that conveyed in
formula (3.15) since the most expensive logarithm computation is already available from the eval-
uation of the cost function at X. Specifically, each term in (3.14) is computed as −Exp−1X (Ai) =
− log(AiX

−1)X = log(XA−1i )X = LAi log(L−1AiXL
−T
Ai

)L−1AiX, and the term log(L−1AiXL
−T
Ai

) is avail-
able from the evaluation of the cost function F (X) in (3.13). Hence the computation of gradient
requires 5Kn3 flops if log(L−1AiXL

−T
Ai

) is given.

5see [20, Section 2 Equation (2.8)] for the definition of the locking condition
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4 Description of the SPD Karcher mean computation methods

In this section, we present the algorithms for SPD Karcher mean computation, including a limited-
memory Riemannian BFGS (LRBFGS) [20], Riemannian Barzilai-Borwein (RBB) [22], Riemannian
steepest descent with stepsize selection rule proposed by Q. Rentmeesters (RSD-QR) [33], and a
Richardson-like iteration (RL) [7]. All of the algorithms are retraction-based methods, namely, an
iterate xk on a manifold M is updated by

xk+1 = Rxk(αkηk), (4.1)

where R is a retraction onM, ηk ∈ TxkM is the search direction and αk ∈ R denotes the stepsize.
For the steepest descent method, the search direction in (4.1) is taken as the negative gradi-

ent, i.e., ηk = − grad f(xk). RSD-QR for the SPD Karcher mean computation is summarized in
Algorithm 3 based on [33, Algorithm 2]. The differences between RSD-QR and RL are the choice
of stepsize strategy in Step 11 and the retraction in Step 13 of Algorithm 3. For RL, the stepsize
is taken as αRL = 1/∆, where ∆ is the upper bound on the eigenvalues of the Hessian of the cost
function as computed in Step 10, and the Euclidean retraction (3.6) is used. The number of flops
required per iteration is 22Kn3 + o(Kn3). For RSD-QR, the chosen stepsize is αQR = 2/(U + ∆),
where U = 1 is the lower bound on the eigenvalues of the Hessian of the cost function. It is easy to
verify that 1/∆ ≤ 2/(1+∆), with equality when ∆ = 1. Since the eigenvalues of the Hessian of the
cost function are bounded by U and ∆, then ∆ = 1 implies that all the eigenvalues of the Hessian
are exactly 1. So αRL = αQR if and only if the Hessian of the cost function is the identity matrix,
and we have αRL < αQR in general. The exponential mapping (3.3) is used by RSD-QR in [33].
In practice, we use retraction (3.4), since the exponential mapping contains matrix exponential
evaluation, and it turns out to be a problem if the eigenvalues of matrices in some intermediate
iterations become too large, resulting in numerical overflow. Then each iteration in RSD-QR needs
22Kn3 +4/3n3 +o(Kn3) flops. Even though RSD-QR is slightly more expensive per iteration than
RL, it will be seen in our experiments to require fewer iterations to achieve a desired tolerance, to
perform very well on small-size problems in terms of time efficiency, and to consistently outperform
RL in various situations.

RBB also belongs to the class of steepest descent methods, combined with a stepsize that makes
implicit use of second order information of the cost function, see [10, 22] for details. The two most
frequently used versions of the BB stepsize are

αBB1
k+1 =

g(sk, sk)

g(sk, yk)
, (4.2)

αBB2
k+1 =

g(sk, yk)

g(yk, yk)
, (4.3)

where sk = Tαkηk(αkηk), yk = grad f(xk+1) − Tαkηk(grad f(xk)), and g(sk, yk) > 0. An adaptive
BB stepsize selection rule given in [13], denoted by ABBmin, is defined as

αABBmin
k+1 =

min{αBB2
j : j = max(1, k −ma), . . . , k}, if

αBB2
k+1

αBB1
k+1

< τ

αBB1
k+1 , otherwise

(4.4)

where ma is a nonnegative integer and τ ∈ (0, 1).
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Algorithm 3 RSD for the SPD Karcher mean computation

Input: Ai = LAiL
T
Ai

; tolerance for stopping criteria ε; initial iterate x0 ∈ Sn++;
1: k = 0;
2: while ‖ grad f(xk)‖ > ε do
3: for i = 1, . . . ,K do
4: Compute Mi = L−1Ai xkL

−T
Ai

; . # 2n3

5: Compute Mi = UΣU−1 and set λ = diag(Σ); . # 12n3

6: Compute the condition number ci = max(λ)/min(λ); . # 1
7: Compute Ki = U log(Σ)U−1; . # 4n3

8: Compute Gi = LAiKiL
−1
Ai
xk; . # 4n3

9: end for
10: Compute the upper bound on the eigenvalues of the Hessian of the cost

function: ∆ = 1
K

K∑
j=1

log cj
2 coth(

log cj
2 ); . # 5K

11: Compute stepsize αk = α(∆);

12: Compute grad f(xk) = 1
K

K∑
i=1

Gi; . # (K + 1)n2

13: Compute xk+1 = Rxk(−αk grad f(xk));
14: k = k + 1;
15: end while

In [22], RBB based on (4.2) has been applied to the SPD Karcher mean computation. We
summarize that implementation in Algorithm 4, which uses an extrinsic representation of a tan-
gent vector, exponential mapping (3.3) and parallel translation (3.7). Algorithm 5 states our
implementation of RBB using the intrinsic representation approach, retraction (3.4) and vector
transport by parallelization (3.9). We present the number of flops for each step on the right-
hand side of the algorithms, except problem-related operations, i.e., function, gradient evaluations
and line search procedure. Note that Step 7 and Step 11 in Algorithm 4 share the common
term exp(αkx

−1
k ηk), which dominates the computational time and is only computed once. Having

w = n2 and d = n(n+ 1)/2, the number of flops per iteration for Algorithm 4 and Algorithm 5 are
103n3/3 + o(n3) and 22n3/3 + o(n3) respectively. The number of flops required by Algorithm 5 is
smaller than that of Algorithm 4, and the computational efficiency mainly comes from the choice
of retraction and the fact that the Riemannian metric reduces to the Euclidean metric when the
intrinsic representation of a tangent vector is used.

Our previous work [38] tailors the LRBFGS in [20, Algorithm 2] to the SPD Karcher mean
computation problem. The limited-memory BFGS method is based on the BFGS method which
stores and transports the inverse Hessian approximation as a dense matrix. Specifically, the search
direction in RBFGS is ηk = −B−1k grad f(xk), where Bk is a linear operator that approximates
the action of the Hessian on TxkM. Bk requires a rank-two update at each iteration, see [20,
Algorithm 1] for the update formula. Unlike BFGS, the limited-memory version of BFGS stores
only some relatively small number of vectors that represent the approximation implicitly. Therefore
LRBFGS is appropriate for large-size problems, due to its benefit in reducing storage requirements
and computation time per iteration.

As a continuation of our work in [38], we provide specific LRBFGS for the SPD Karcher mean

13



Algorithm 4 RBB for the SPD Karcher mean computation using extrinsic representation [22]

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); initial iterate x0 ∈
Sn++; the first stepsize αBB0 ;

1: k = 0;
2: Compute f(xk), grad f(xk);
3: while ‖ grad f(xk)‖ > ε do
4: Set stepsize αk = αBBk ;
5: Set ηk = − grad f(xk); . # w
6: If ‖ grad grad f(xk)‖/‖ grad f(x0)‖ < accuracy

then set xk+1 = xk exp(αkx
−1
k ηk) and go to Step 10;

7: Compute x̃k = xk exp(αkx
−1
k ηk); . # 61n3/3

8: If f(x̃k) ≤ f(xk) + δαkg(grad f(xk), ηk),

then set xk+1 = x̃k and go to Step 10;
9: Set αk = %αk and go to Step 7;

10: Compute grad f(xk+1);
11: Compute sk = αkηk exp(αkx

−1
k ηk), yk = grad f(xk+1) + ηk exp(αkx

−1
k ηk); . # 2n3 + n2

12: Compute αBBk+1 = g(sk, sk)/g(sk, yk); . # 12n3

13: Set αBBk+1 = min{αmax,max{ε, αBBk+1}} if g(sk, yk) > 0; otherwise, αBBk+1 = αmax;
14: k = k + 1;
15: end while

computation in Algorithm 6 and 7, so that readers are able to implement the methods conveniently.
In fact, those two algorithms are ready to solve any optimization problems on Sn++ as long as
the readers provide a cost function and its Riemannian gradient. Algorithm 6 uses the extrinsic
representation, and Algorithm 7 uses the intrinsic representation. The number of flops for each
step is given on the right-hand side of the algorithms. For simplicity of notation, we use λm, λr,
and λt to denote the flops in the metric, retraction, and vector transport evaluations respectively,
and use superscripts, w and d, to denote the extrinsic and intrinsic representations respectively.
The numbers of flops per iteration for Algorithm 6 and Algorithm 7, respectively, are

#w = 2(l + 2)λwm + 4lw + λwr + 4w + 2(l + 1)λwt , (4.5)

#d = 2(l + 2)λdm + 4ld+ λdr + 4d+ (13n3/3 + 2d). (4.6)

Notice that m is the upper limit of the limited-memory size l. Also notice that there is no λdt term
in equation (4.6) since the vector transport by parallelization is used, which is the identity. The
last term (13n3/3 + 2d) in (4.6) comes from the evaluation of functions E2D and D2E given in
Algorithm 1 and 2. For the metric evaluation, we have λwm = 6n3 + o(n3) and λdm = n2 + o(n2) for
different representations. Simplifying and rearranging (4.5) and (4.6), we have

#w = 12ln3 + 24n3 + λwr + 2(l + 1)λwt + o(ln3) + o(n3), (4.7)

#d = 4ln2 + 13n3/3 + λdr + o(ln2) + o(n3). (4.8)

From (4.7) and (4.8), the computational benefit of the intrinsic representation is substantial. The
limited-memory size l imposes a much heavier burden on Algorithm 6 where the extrinsic repre-
sentation is used. In our implementation of Algorithm 7, we suggest retraction (3.4), which needs
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Algorithm 5 RBB for the SPD Karcher mean computation using intrinsic representation and
vector transport by parallelization

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); initial iterate x0 ∈
M; the first stepsize αBB0 ;

1: k = 0;
2: Compute grad f(xk);
3: Compute xk = LkL

T
k ; . #n3/3

4: Compute gfdk = E2Dxk(grad f(xk)) by Algorithm 1; . # 2n3 + d
5: while ‖gfdk‖ > ε do
6: Set stepsize αk = αBBk ;
7: Set ηk = −gfdk; . #d
8: Compute ηwk = D2Exk(ηk) by Algorithm 2; . #2n3 + n(n+ 1)/2
9: If ‖gfdk‖/‖gfd0‖ < accuracy

then set xk+1 = Rxk(αkη
w
k ) using (3.4) and go to Step 13;

10: Compute x̃k = Rxk(αkη
w
k ) using (3.4) ; . # 3n3 + 3n2

11: If f(x̃k) ≤ f(xk) + δαkη
T
k gfdk,

then set xk+1 = x̃k and go to Step 13;
12: Set αk = %αk and go to Step 10;
13: Compute grad f(xk+1);
14: Compute xk+1 = Lk+1L

T
k+1; . #n3/3

15: Compute gfdk = E2Dxk(grad f(xk)) by Algorithm 1; . # 2n3 + d
16: Compute sk = αkηk, yk = gfdk+1 − gfdk; . #2d
17: Compute αBBk+1 = sTk sk/s

T
k yk; . # 4d

18: Set αBBk+1 = min{αmax,max{ε, αBBk+1}} if g(sk, yk) > 0; otherwise, αBBk+1 = αmax;
19: k = k + 1;
20: end while
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3n3 +o(n3) flops. Hence the overall flops required by Algorithm 7 is #d = 4ln2 + 22n3/3 +o(ln2) +
o(n3). Notice that if the locking condition is imposed on Algorithm 7, extra 12(l + 1)n2 flops are
needed. For Algorithm 6, any choice of retraction and vector transport would yield a larger flop
compared to Algorithm 7. Notice that the identity vector transport using extrinsic representation
is not applicable since it is not isometric under metric (1.1).

However, our complexity analysis above focuses on manifold- and algorithm-related operations,
the problem-related operations—function, gradient evaluations and line search procedure—are not
considered. From the discussion in Section 3.3, the evaluation of the cost function requires 18Kn3

flops, and the computation of the gradient requires extra 5Kn3 flops given the function evaluation.
The line search procedure may take a few steps to terminate, and each step requires one cost
function evaluation. In the ideal case where the initial stepsize satisfies the Armijo condition in
Step 21 in Algorithm 7, i.e., the cost function is evaluated only once, the flops required by problem-
related operations is 23Kn3. As n gets larger, the proportion of computational time spent on
function and gradient evaluations is

23Kn3

23Kn3 + 4ln2 + 22n3/3
≈ 23K

23K + 22/3
≥ 23 · 3

23 · 3 + 22/3
≈ 90.39%. (4.9)

Inequality (4.9) implies that the problem-related operations dominate the computation time for
matrices with high dimension, which is consistent with our empirical observations in experiments
that 70% − 90% of the computational time is from function and gradient evaluations. If the line
search procedure requires more steps to terminate, then the problem-related operations would result
in a larger proportion of total computational time. Therefore, it is crucial to have a good initial
stepsize.

Finally, note that LRBFGS with zero memory size, i.e., m = 0, is equivalent to RBB. This is
easy to verify by setting m = 0 in Algorithm 6 and 7. Just as there are different versions of the BB
stepsize, alternatives are available for the initial scalling γk+1 in step 24 of Algorithm 6 and step 29
of Algorithm 7, such as BB1 (4.2), BB2 (4.3), and ABBmin (4.4). In particular, we use BB2 (4.3)
as the default.

5 Experiments

In this section, we compare the performance of LRBFGS described in Algorithm 7 and exist-
ing state-of-the-art methods, including the Riemannian Barzilai-Borwein method (RBB) provided
in [22] (using implementation in Algorithm 5), the Riemannian steepest descent method with
stepsize selection rule proposed by Q. Rentmeesters et al. (RSD-QR) in [33, Section 3.6], the
Richardson-like iteration (RL) of [7], and the Riemannian BFGS method (RBFGS) presented
in [18, 20].

All experiments are performed on the Florida State University HPC system using Quad-Core
AMD Opteron(tm) Processor 2356 2.3GHz. Experiments in Section 5.2 are carried out using

6If the locking condition is imposed, then y
(k+1)
k = grad f(xk+1)/βk − Tαkηk grad f(xk), where βk =

‖αkηk‖/‖TRαkηkαkηk‖.
7If retraction (3.4) and isometric vector transport (3.12) that satisfy the locking condition are used, sk and

yk are computed as follows: compute zw = TRαkηwk (αkη
w
k ), where TRξη = η + (ηX−1ξ + ξX−1η)/2; obtain the

intrinsic representation z of zw by Algorithm 1; compute β = α2
kη
T
k ηk/z

T z, v1 = 2αkηk, v2 = −αkηk − βz; Define
sk = (I − 2v2v

T
2 /v

T
2 v2)(I − 2v1v

T
1 /v

T
1 v1)(αkηk), yk = gfdk+1/β − (I − 2v2v

T
2 /v

T
2 v2)(I − 2v1v

T
1 /v

T
1 v1)gfdk.
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Algorithm 6 LRBFGS for problems on Sn++ manifold using extrinsic representation and general
vector transport

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); initial iterate x0 ∈
M; an integer m > 0;

1: k = 0, γ0 = 1, l = 0;
2: Compute grad f(xk);
3: while ‖ grad f(xk)‖ > ε do
4: H0

k = γk id. Obtain ηk ∈ TxkM by the following algorithm, Step 5 to Step 15:
5: q ← grad f(xk);
6: for i = k − 1, k − 2, . . . , k − l do . # l(λwm + 2w)

7: ξi ← ρig(s
(k)
i , q);

8: q ← q − ξiy(k)i ;
9: end for

10: r ← H0
kq; . # w

11: for i = k − l, k − l + 1, . . . , k − 1 do . # l(λwm + 2w)

12: ω ← ρig(y
(k)
i , r);

13: r ← r + s
(k)
i (ξi − ω);

14: end for
15: Set ηk = −r, αk = 1; . # w
16: If ‖ grad f(xk)‖/‖ grad f(x0)‖ < accuracy

then set xk+1 = Rxk(αkηk) and go to Step 20; . # λwr
17: Compute x̃k = Rxk(αkηk); . # λwr
18: If f(x̃k) ≤ f(xk) + δαkg(grad f(xk), ηk),

then set xk+1 = x̃k and go to Step 20;
19: Set αk = %αk and go to Step 17;
20: Compute grad f(xk+1);

21: Define s
(k+1)
k = Tαkηkαkηk and y

(k+1)
k = grad f(xk+1)− Tαkηk grad f(xk);

6 . # 2λwt + 2w

22: Compute a = g(y
(k+1)
k , s

(k+1)
k ) and b = ‖s(k+1)

k ‖2; . # 2λwm
23: if a

b ≥ 10−4‖ grad f(xk)‖ then . # λwm

24: Compute c = ‖y(k+1)
k ‖2 and define ρk = 1/a and γk+1 = a/c; . # λwm

25: Add s
(k+1)
k , y

(k+1)
k and ρk into storage and if l ≥ m, then discard vector pair

{s(k)k−l, y
(k)
k−l} and scalar ρk−l from storage, else l ← l + 1; Transport s

(k)
k−l+1, s

(k)
k−l+2, . . . , s

(k)
k−1

and y
(k)
k−l+1, y

(k)
k−l+2, . . . , y

(k)
k−1 from TxkM to Txk+1

M by T , then get s
(k+1)
k−l+1, s

(k+1)
k−l+2, . . . , s

(k+1)
k−1

and y
(k+1)
k−l+1, y

(k+1)
k−l+2, . . . , y

(k+1)
k−1 ; . # 2(l − 1)λwt

26: else
27: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l}, {s

(k+1)
k , . . . , s

(k+1)
k−l+1} ←

{Tαkηks
(k)
k−1, . . . , Tαkηks

(k)
k−l} and {y(k+1)

k , . . . , y
(k+1)
k−l+1} ← {Tαkηky

(k)
k−1, . . . , Tαkηky

(k)
k−l}; . # 2lλwt

28: end if
29: k = k + 1;
30: end while
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Algorithm 7 LRBFGS for problems on Sn++ manifold using intrinsic representation and vector
transport by parallelization

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); initial iterate x0 ∈
M; an integer m > 0;

1: k = 0, γ0 = 1, l = 0;
2: Compute grad f(xk);
3: Compute xk = LkL

T
k ; . #n3/3

4: Compute gfdk = E2Dxk(grad f(xk)) by Algorithm 1; . # 2n3 + d
5: while ‖gfdk‖ > ε do
6: Obtain ηk ∈ Rd, intrinsic representation of a tangent vector ηw ∈ TxkM, by the following

algorithm, Step 7 to Step 17:
7: q ← gfdk;
8: for i = k − 1, k − 2, . . . , k − l do . # l(λdm + 2d)
9: ξi ← ρiq

T si;
10: q ← q − ξiyi;
11: end for
12: r ← γkq; . # d
13: for i = k − l, k − l + 1, . . . , k − 1 do . # l(λdm + 2d)
14: ω ← ρir

T yi;
15: r ← r + si(ξi − ω);
16: end for
17: set ηk = −r, αk = 1; . # d
18: Compute ηwk = D2Exk(ηk) by Algorithm 2; . # 2n3 + n(n+ 1)/2
19: If ‖ grad gfdk‖/‖gfd0‖ < accuracy,

then set xk+1 = Rxk(αkη
w
k ) and go to Step 23; . # λdr

20: Compute x̃k = Rxk(αkη
w
k ); . # λdr

21: If f(x̃k) ≤ f(xk) + δαkη
T
k gfdk,

then set xk+1 = x̃k and go to Step 23;
22: Set αk = %αk and go to Step 20;
23: Compute grad f(xk+1);
24: Compute xk+1 = Lk+1L

T
k+1; . #n3/3

25: Compute gfdk = E2Dxk(grad f(xk)) by Algorithm 1; . # 2n3 + d
26: Define sk = αkηk and yk = gfdk+1 − gfdk;

7 . # 2d
27: Compute a = yTk sk and b = ‖sk‖22; . # 2λdm
28: if a

b ≥ 10−4‖gfdk‖2 then . # λdm

29: Compute c = ‖y(k+1)
k ‖22 and define ρk = 1/a and γk+1 = a/c; . # λdm

30: Add sk, yk and ρk into storage and if l ≥ m, then discard vector pair
{sk−l, yk−l} and scalar ρk−l from storage, else l← l + 1;

31: else
32: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l}, {sk, . . . , sk−l+1} ←

{sk−1, . . . , sk−l} and {yk, . . . , yk−l+1} ← {yk−1, . . . , yk−l}
33: end if
34: k = k + 1;
35: end while
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C++, compiled with gcc-4.7.x. Section 5.4 presents a comparison of computation time between
MATLAB and C++ implementations. All MATLAB experiments are performed using MATLAB
R2015b (8.6.0.267246) 64-bit (glnxa64). In particular, we use the MATLAB implementation of RL
in Bini et al.’s Matrix Means Toolbox1.

Regarding the parameter setting, we set Armijo parameter δ = 10−4, backtracking reduction
factor % = 0.5 for well-conditioned data sets and % = 0.25 for ill-conditioned ones, maximum stepsize
αmax = 100, and minimum stepsize αmin is machine epsilon. We mention here that it is found from
our experiments (not shown in this paper) that LRBFGS is much less sensitive to % than RBB for
ill-conditioned problems. LRBFGS behaves similarly well over a range of values of %, but for RBB,
we must set % = 0.25 to achieve satisfactory performance. The initial stepsize in the first iteration
is chosen by the strategy in [33], i.e., α0 = 2/(1 + L), where L is the upper bound at the initial
iterate defined in inequality (2.1). For LRBFGS, we use different memory sizes m as specified in the
legends of the figures, and impose the locking condition for ill-conditioned matrices. Specifically, we
impose the locking condition on LRBFGS in the bottom plots of Figure 1, 2, 3, and 4. As we have
shown in Section 4, imposing the locking condition requires extra complexity. For well-conditioned
data sets, the problem is easy to handle, and the locking condition is not necessary. While in the
ill-conditioned case, imposing the locking condition can reduce the number of iterations. The extra
time caused by the locking condition is smaller than the time saved by a reduction in the number
of function and gradient evaluations. The benefit of the locking condition is also demonstrated
in [18]. In order to achieve sufficient accuracy, we skip the line search procedure when the iterate is
close enough to the minimizer by setting accuracy = 10−5 in Algorithm 5 and 7. Unless otherwise
specified, our choice of the initial iterate is the arithmetic-harmonic mean [24] of data matrices.
We run the algorithms until they reach their highest accuracy.

For simplicity of notation, throughout this section we denote the number, dimension, and
condition number of the matrices by K, n, and κ respectively. For each choice of (K,n) and
the range of conditioning desired, a single experiment comprises generating 5 different sets of K
random n× n matrices with appropriate condition numbers, and running all 5 algorithms on each
set with identical parameters. The result of the experiment is the distance to the true Karcher
mean averaged over 5 sets as a function of iteration and time. To obtain sufficiently stable timing
results, an average time is taken of several runs for a total runtime of at least 1 minute.

5.1 Experiment design

The experiments are designed in the same way as our previous work [38]. For each experiment, we
choose a desired (true) Karcher mean µ, and construct data matrices Ai’s such that their Karcher
mean is exactly µ, i.e.,

∑K
i=1 Exp−1µ (Ai) = 0 holds. The benefits of this scheme are: (i) We can

control the conditioning of µ and the Ai’s, and observe the influence of the conditioning on the
performance of algorithms. (ii) Since µ is known, we can monitor the distance δ between µ and
the iterates produced by various algorithms, thereby removing the need to consider the effects of
termination criteria.

Given a Karcher mean µ, the Ai’s are constructed as follows: (i) Generate Wi in Matlab, with
n being the size of matrix, f the order of magnitude of the condition number, and p an integer less
than n,

[O, ˜ ] = qr (randn(n ) ) ;
D = diag ( [ rand (1 , p)+1 , (rand (1 , n−p)+1)∗10ˆ(− f ) ] ) ;
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W = O ∗ D ∗ O’ ; W = W/norm(W, 2 ) .

(ii) Compute ηi = Exp−1µ (Wi). (iii) Enforce the condition
∑K

i=1 ηi = 0 on ηi’s. (iv) Compute
Ai = Expµ(ηi). For more details, see [38, Section 5.1].

5.2 Comparison of performance between different algorithms using C++

We now compare the performances of all 5 algorithms on various data sets by examining results
from representative experiments for different choices of (K,n, κ).

Figure 1 displays the performance results of different algorithms running on small-size problems,
taking K = 3 and n = 3. Both well-conditioned (1 ≤ κ(Ai) ≤ 20) and ill-conditioned (105 ≤
κ(Ai) ≤ 1010) data sets are tested. In the well-conditioned case, it is seen that all 5 algorithms are
comparable in terms of time efficiency even though they require different numbers of iterations. For
ill-conditioned matrices, RL and RSD-QR require significantly more iterations, but they are still
efficient in terms of timing due to the low computational cost per iteration. RBB and LRBFGS
require similar numbers of iterations, but LRBFGS withm > 0 takes more time. The computational
complexity per iteration for Algorithm 7 with the locking condition is 23Kn3 + 22n3/3 + 16ln2 +
o(ln2) + o(n3) as discussed in Section 4. So when the size of the problem is small, the impact of
memory size l is visible. But this is not the case when the size of the problem gets larger, as shown
in Figure 2 and 3.

Figure 2 and Figure 3 report the results of tests conducted on data sets with large K (K =
100, n = 3) and large n (K = 30, n = 100) respectively. Note that when n = 100, the dimension
of Sn++ is d = n(n + 1)/2 = 5050. In each case, both well- and ill-conditioned data sets are
tested. For well-conditioned matrices, we observe that LRBFGS and RBB perform similarly, with
a slight advantage for LRBFGS. The advantage of LRBFGS becomes larger as the matrices become
increasingly ill-conditioned. Note that RBFGS is very inefficient for large n as expected and shown
in Figure 3.

As the last test in this section, we compare the performances of the algorithms using two
different initial iterates: the arithmetic-harmonic mean and the Cheap mean [8]. The Cheap mean
is known to be a good approximation of the Karcher mean, but, is not cheap to compute. We
use Bini et al.’s Matrix Means Toolbox1 for the computation of the Cheap mean. We consider 30
badly conditioned 30 × 30 matrices (106 ≤ κ(Ai) ≤ 109). The results are presented in Figure 4.
Notice that the time required to compute the initial iterate is included in the plots. The x-axis
of the bottom-right plot does not start from 0, which shows that the computation of the Cheap
mean is time demanding. We observe that the choice of initial iterate is crucial to RBFGS, and it
affects the other algorithms in the early steps. When the initial iterate is close enough to the true
solution, as shown in the bottom right plot in Figure 4, we observe a faster convergence in the first
a few steps for all algorithms. In both cases, LRBFGS outperforms the other algorithms in terms
of computation time and number of iterations per unit of accuracy required.

5.3 Comparison of the Riemannian metric and Euclidean metric

In this section we compare two different metrics, the Euclidean metric and Riemannian metric, for
RSD, LRBFGS and RBFGS. RSD refers to the standard steepest descent in [25], and the initial
stepsize is taken as the classical strategy in [37, (3.44)]. Notice that LRBFGS with m = 0 is RBB,
i.e., RSD with the BB stepsize. Figure 5 shows the results from representative experiments for
various choices of (K,n, κ). For each data set {A1, . . . , AK}, the majority (> 60%) of the data
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Figure 1: Evolution of averaged distance between current iterate and the exact Karcher mean with
respect to time and iterations with K = 3, n = 3. Top: 1 ≤ κ(Ai) ≤ 20; Bottom: 105 ≤ κ(Ai) ≤
1010.

matrices are well-conditioned, i.e, κ(Ai) < 100. The condition number of the true Karcher mean
of each set of matrices, i.e., µ(A1, . . . , AK), is between 10 and 20. In the legends, ‘Euc’ refers to
the Euclidean metric and ‘Rie’ refers to the Riemannian metric. We observe that the Riemannian
metric shows more than 200 times faster convergence speed for RSD. When the Riemannian metric
is used, LRBFGS with m = 0 and m = 2 behave similarly just as the well-conditioned case in
Section 5.2. However, in the case of the Euclidean metric, LRBFGS with m = 2 is much faster
than m = 0. For RBFGS, the influence of the metric becomes less significant compared to simpler
methods.

5.4 Comparison of C++ and MATLAB implementations

Finally, we compare the time efficiency of the algorithms implemented by C++ and MATLAB
for the SPD Karcher mean computation. The results are reported in Figure 6. The first column
indicates that the C++ and MATLAB implementations are identical in terms of iterations. The
second column displays the log-log plots of computation time vs. average distance between each
iterate and the exact Karcher mean. For small-size problems, the C++ implementation is faster
than that of MATLAB by a factor of 100 or more with the factor gradually reducing as n or K gets
larger. This phenomenon can be explained by the fact that when n or K is small, the difference
of efficiency between C++ and MATLAB implementations is mainly due to the difference between
compiled languages and interpreted languages. When n or K gets larger, the BLAS and LAPACK
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Figure 2: Evolution of averaged distance between current iterate and the exact Karcher mean
with respect to time and iterations with K = 100 and n = 3; Top: 1 ≤ κ(Ai) ≤ 200; Bottom:
103 ≤ κ(Ai) ≤ 107.

calls start to dominate the computation time, which leads to a decrease in the factor. Note that
we implement LRBFGS and RBB as a user-friendly library. It is observed that the overhead of
MATLAB library machinery dominates the computation time for k = 3 and n = 3, but it becomes
negligible for large-size problems.

6 Conclusion

In this paper, we consider computing the Karcher mean of SPD matrices using efficient forms of
the Riemannian optimization methods. There are several alternatives from which to choose the
representation of a tangent vector, retraction and vector transport. We provide complexity-based
recommendations for those alternatives.

Our numerical experiments provide empirical guidelines to choose between various methods
and two metrics. It is observed that RSD-QR and RL perform very well when n and K are small,
and RSD-QR systematically outperforms RL. As n or K gets larger, RSD-QR and RL become
less appealing, while RBB and LRBFGS single out. We recommend using LRBFGS as the default
method for the SPD Karcher mean computation mainly for three reasons: (i) When the data matri-
ces are well-conditioned, LRBFGS and RBB are competitive, with a slight advantage for LRBFGS
on some test sets. (ii) As the data matrices get ill-conditioned, LRBFGS outperfroms RBB. (iii)
The performance of RBB depends on the choice of parameters, such as the reduction factor % in

22



Figure 3: Evolution of averaged distance between current iterate and the exact Karcher mean
with respect to time and iterations with K = 30 and n = 100; Top: 1 ≤ κ(Ai) ≤ 20; Bottom:
104 ≤ κ(Ai) ≤ 107.

the back tracking line search procedure, while LRBFGS is much less sensitive to parameter choices.
Since RBB is in fact LRBFGS with m = 0, that is to say, LRBFGS can benefit from choosing
m > 0.

We also present empirical illustration of the speedup of C++ implementation compared with
MATLAB implementation. Notice that it is demonstrated theoretically and empirically that for
large-size problems, the dominant computation time (70% - 90%) is in the problem-related opera-
tions, i.e., function and gradient evaluations, and therefore we conclude that our implementations
of manifold- and algorithm-related objects have reached the limit of efficiency.
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Figure 5: Comparison of different algorithms using Riemannian metric and Euclidean metric. Top
row: K = 3, n = 3, and 1 ≤ κ(Ai) ≤ 104; Middle row: K = 100, n = 3, and 1 ≤ κ(Ai) ≤ 106;
Bottom: K = 30, n = 100, and 1 ≤ κ(Ai) ≤ 105.
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Figure 6: Comparison between C++ and MATLAB implementations with different choices of
(K,n, κ). Top row: K = 3, n = 3, and 1 ≤ κ(Ai) ≤ 20; Middle row: K = 100, n = 3, and
1 ≤ κ(Ai) ≤ 20; Bottom: K = 30, n = 100, and 1 ≤ κ(Ai) ≤ 20.
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