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Problem Statement

Problem: Given f (x) :M→ R,
solve

min
x∈M

f (x)

where M is a Riemannian manifold.
M

R
f

Manifolds:

Stiefel: St(p, n) = {X ∈ Rn×p : XTX = Ip};
Grassmann: the set of p dimensional linear spaces in Rn;

Fixed rank: Rm×n
r = {X ∈ Rm×n : rank(X ) = r} or tensor;

Symmetric positive definite: Sn++ = {X ∈ Rn×n : X � 0};
And many more;
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Riemannian Manifolds

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x
TxM

Riemannian manifold = Manifold + Riemannian metric (inner products)
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Motivation
One example

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Classification
[LKS+12, HGSA15]

Face recognition
[DBS+13]
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Motivation
One example

Elastic shape analysis invariants:

Rescaling

Translation

Rotation

Reparametrization

The shape space is a quotient space

Figure: All are the same shape.
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Motivation
One example

shape 1 shape 2

q1

q̃2

q2

[q1] [q2]

Optimization problem minq2∈[q2] dist(q1, q2) is defined on a
Riemannian manifold
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Motivation
One example

Computation of a geodesic between two shapes

Interpolation in shape space
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Motivation
One example

Computation of Karcher mean of a population of shapes
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Motivation
More Applications

Role model extraction

Computations on SPD matrices

Blind source separation

Phase retrieval problem

Blind deconvolution

Synchronization of rotations

Computations on low-rank tensor

Low-rank approximate solution for Lyapunov equation
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Optimization Framework
Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:

Steepest descent: xk+1 = xk − αk∇f (xk)

Newton’s method: xk+1 = xk −
[
∇2f (xk)

]−1∇f (xk)

Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide

Riemannian concepts describing
directions and movement on the
manifold

Riemannian analogues for gradient
and Hessian

xk xk + dk
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Optimization Framework
Riemannian gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in TxM
satisfying ∀η ∈ TxM, the directional derivative

D f (x)[η] = 〈grad f (x), η〉

and grad f (x) is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
TxM to TxM defined as

Hess f (x) : TxM→ TxM : η → ∇η grad f ,

where ∇ is the affine connection.
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Optimization Framework
Retractions

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk (αkηk)

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx(tη)

TxM
x

η

Rx(η)

M
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Optimization Framework
Categories of Riemannian smooth optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and Rx(tη) to define line

Steepest decent

Newton

Local model-based: series of flat space problems

Riemannian trust region Newton (RTR)

Riemannian adaptive cubic overestimation (RACO)
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Optimization Framework
Categories of Riemannian smooth optimization methods

Retraction and transport-based: information from multiple tangent spaces

Nonlinear conjugate gradient: multiple tangent vectors

Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function;

formulas for combining information from multiple tangent spaces.
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Optimization Framework
Vector Transports

Vector Transport

Vector transport: Transport a tangent
vector from one tangent space to
another

Tηx ξx , denotes transport of ξx to
tangent space of Rx(ηx). R is a
retraction associated with T

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure: Vector transport.
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Optimization Framework
Retraction/Transport-based Riemannian Optimization

Given a retraction and a vector transport, we can generalize many
Euclidean methods to the Riemannian setting. Do the Riemannian
versions of the methods work well?

No

Lose many theoretical results and important properties;

Impose restrictions on retraction/vector transport;
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Optimization Framework
Riemannian optimization methods

Elements required for optimizing a cost function (M, g):

an representation for points x on M, for tangent spaces TxM, and
for the inner products gx(·, ·) on TxM;

choice of a retraction Rx : TxM→M;

formulas for f (x), grad f (x) and Hess f (x) (or its action);

Computational and storage efficiency;
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Optimization Framework
Riemannian Metric

M

Riemannian metric g1

M

Riemannian metric g2

Figure: Changing metric may influence the difficulty of a problem.

Riemannian metric influences

Riemannian gradient

Riemannian Hessian
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Optimization Framework
Comparison with Constrained Optimization

All iterates on the manifold

Convergence properties of unconstrained optimization algorithms

No need to consider Lagrange multipliers or penalty functions

Exploit the structure of the constrained set

M
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A non-exhaustive review
Some History of Optimization On Manifolds

Smooth unconstrained problems

Steepest descent: Smith 1994; Helmke-Moore 1994;
Iannazzo-Porcelli 2019;
Conjugate gradient: Smith 1994; Gallivan-Absil 2010; Ring-Wirth
2012; Sato-Iwai 2015;
Quasi-Newton: Ring-Wirth 2012; Huang-Absil-Gallivan 2018;
Huang-Gallivan 2022
Trust region Newton: Absil-Baker-Gallivan 2007;

Nonsmooth unconstrained problems

Proximal point method: Ferreira-Oliveira 2002;
Optimality conditions: Yang-Zhang-Song 2014;
Gradient sampling: Huang 2013; Hosseini and Uschmajew 2017;
ε-subgradient-based methods: Grohs-Hosseini 2015;
Proximal gradient methods: Huang-Wei 2022;

Constrained problems:

Augmented Lagrangian methods: Boumal-Liu 2019;
Sequential quadratic programming: Obara-Okuno-Takeda 2022;
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A non-exhaustive review
Some History of Optimization On Manifolds

Smooth unconstrained problems:

Stiefel manifold: Wen-Yin 2012; Jiang-Dai 2014; Xiao-Liu-Yuan
2020; Dai-Wang-Zhou 2020
Symmetric positive definite manifold: Bini-Iannazzo 2013; Zhang
2017; Yuan-Huang-Absil-Gallivan 2020;
Fixed rank manifold: Wen-Yin-Zhang 2012; Mishra 2014;
Sutti-Vandereycken 2021; Levin-Kileel-Boumal 2022

Nonsmooth unconstrained problems:

Stiefel Manifold: Huang-Wei 2019; Chen-Ma-So-Zhang 2020;
Xiao-Liu-Yuan 2020;
Fixed rank manifold: Cambier-Absil 2016;
Matrix manifolds: Zhou-Bao-Ding-Zhu 2022

Constrained problems:

Stiefel + non-negativity: Jiang-Meng-Wen-Chen 2019;
Symmetric positive definite + zeros: Phan-Menickelly 2020;
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A non-exhaustive review
Some History of Optimization On Manifolds

Riemannian optimization libraries for general problems:

Boumal, Mishra, Absil, Sepulchre(2014)
Manopt (Matlab library)

Townsend, Koep, Weichwald (2016)
Pymanopt (Python version of manopt)

Bergmann (2019)
Manoptjl (Julia, nonsmooth methods)

Huang, Absil, Gallivan, Hand (2018)
ROPTLIB (C++ library, interfaces to Matlab and Julia)

Martin, Raim, Huang, Adragni (2018)
ManifoldOptim (R wrapper of ROPTLIB)

Meghawanshi, Jawanpuria, Kunchukuttan, Kasai, Mishra (2018)
McTorch (Python, GPU acceleration)
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A non-exhaustive review
Our Work

Smooth unconstrained problems

Broyden family including BFGS method [HGA15, HAG17, HAG18]
Trust-region symmetric rank-one method [HAG15]
Their limited-memory versions [HG22]

Nonsmooth unconstrained problems

ε-subgradient with quasi-Newton method [HHY18]
Proximal gradient methods [HW21a]
Proximal Newton method [SAH+23]

Applications:

Elastic shape analysis [HGSA15]
Blind deconvolution [HH18]
Phase retrieval [HGZ16]
Sparse principal component analysis [HW21c]
Gray/color image completion [CH23, PH23]

Library: ROPTLIB [HAGH18]
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Clustering problem

A Riemannian optimization approach to clustering problems

Riemannian proximal gradient methods

Numerical experiments

Collaborators:

Meng Wei, Florida State University

Kyle A. Gallivan, Florida State University

Paul Van Dooren, Université catholique de Louvain

W. Huang, M. Wei, K. A. Gallivan, and P. Van Dooren, A Riemannian
Optimization Approach to Clustering Problems, arxiv:2208.03858, 2022
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Problem Statement

Clustering problems

The task of clustering is to group a set of objects such that the objects in
the same group are more similar or closely connected under certain
criterion to each other than to those in other groups.

Clustering problems that can be formulated as

min
X∈An,k

f (X ),

where An,k = {X ∈ Rn×k : XTX = Ik ,X ≥ 0, 1n ∈ span(X )}.

Spectral clustering

Normalized cuts

k-means

Community detection

Etc
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Problem Statement
A clustering problem: k-means

0 Initial estimations for the means

1 Assign points to their closest means and creates groups

2 Means are updated by computing the means of the new groups

0The figure is from https://www.cnblogs.com/xiaxuexiaoab/p/10211279.html
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Problem Statement
A clustering problem: k-means

0 Initial estimations for the means

1 Assign points to their closest means and creates groups

2 Means are updated by computing the means of the new groups

n points ai in Rd represented by A = [a1, a2, . . . , an]T ∈ Rn×d , k clusters;

0 initial k means, M = [m1,m2, . . . ,mk ]T ∈ Rk×d ;

1 Find an indicator matrix Y ∈ Rn×k such that
Y = argminY ‖A− YM‖2

F ;

2 The new means:
M+ = argminM∈Rk×d ‖A− YM‖2

F ⇒ M+ = (Y TY )−1Y TA

Optimization problem [BDM09]:

min
Y
‖A− Y (Y TY )−1Y TA‖2

F ,

where Y is an indicator matrix

Speaker: Wen Huang Riemannian Optimization with its Application
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Problem Statement
A clustering problem: k-means

Optimization problem:

min
Y
‖A− Y (Y TY )−1Y TA‖2

F ⇐⇒ min
X∈An,k

‖A− XXTA‖2
F

where An,k = {X ∈ Rn×k : XTX = Ik ,X ≥ 0, 1n ∈ span(X )}.

For X ∈ An,k ,

Only one entry is nonzero in each row

All positive entries in a column have the same value

Xij 6= 0 implies that point i is in the cluster j

The optimization problem is in the form of

min
X∈An,k

f (X ),

where f is smooth.
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Problem Statement
A clustering problem: community detection

Adjacency matrix A ∈ Rn×n (Undirected)

Ideal adjacency matrix A = ZZT

Z ∈ Rn×k defines the communities
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Problem Statement
A clustering problem: community detection

Existing methods:

The GN algorithm [New04]

The spectral modularity maximization algorithm [New06]

The Louvain method [BGLL08]

The infomap algorithm [RB08]

Statistical inference [NL07]

Deep learning [YCH+16].

Modularity optimization approaches have shown to be highly effective [For10]
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Problem Statement
A clustering problem: community detection

Maximize modularity:

f̃ : Ãn,k → R : Y 7→ trace(Y TMY ),

where M = A− A1n1
T
n A

1Tn A1n
and Ãn,k is the set of indicator matrices.

For ideal graph:

A = ZZT

The global minimizer of f̃ is Z

Zij = 1 implies that node i is in the community j

Speaker: Wen Huang Riemannian Optimization with its Application



32/63

Problem Statement
A clustering problem: community detection

Maximize modularity with modifications [WHGVD21]:

f̃ : An,k → R : X 7→ trace(XTMX ),

where An,k = {X ∈ Rn×k : XTX = Ik ,X ≥ 0, 1n ∈ span(X )} and

M = A− A1n1
T
n A

1Tn A1n

For idea graph, i.e., A = ZZT , it can be proven that the maximizer Z̃ of f
is given by normalizing the columns of Z . Therefore, Z̃ defines the same
communities.

The optimization problem is also in the form of

min
X∈An,k

f (X ) = −f̃ (X ),

where f is smooth.
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Problem Statement
A clustering problem: normalized cut

Normalized cut:

min
Y TDY=Iq,Y≥0,1n∈span(Y )

trace(Y TLY ),

where L ∈ Rn×n is the Laplacian matrix of a graph and D ∈ Rn×n is the
diagonal matrix of the node degrees.

Normalized cut reformulation: (Let D1/2Y = x)

min
XTX=Iq,X≥0,v∈span(X )

trace(XTD−1/2LD−1/2X ),

where v = diag(D1/2) > 0.

Note that it is required here that v ∈ span(X ) instead of 1n ∈ span(X ).
We only discuss 1n ∈ span(X ) for simplicity. But the following
derivations still work for v ∈ span(X ) and v > 0.
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Problem Statement
Reformulation of the optimization problem

k-means: min
X∈An,k

‖A− XXTA‖2
F com. det.: min

X∈An,k

−trace(XTMX )

Expression:

min
X∈An,k

f (X ),

where An,k = {X ∈ Rn×k : XTX = Ik ,X ≥ 0, 1n ∈ span(X )}

Variant:
min

X∈Bn,k

f (X ),

where Bn,k = {X ∈ Rn×k : XTX = Ik , ‖X‖0 = n, 1n ∈ span(X )}

Variant:
min

X∈Fn,k

f (X ) + λ‖X‖1,

where Fn,k = {X ∈ Rn×k : XTX = Ik , 1n ∈ span(X )}
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Community Detection
A representative model for community detection

min
X∈Fn,k

f (X ) + λ‖X‖1,

where Fn,k = {X ∈ Rn×k : XTX = Ik , 1n ∈ span(X )}

Riemannian proximal gradient methods consider

min
x∈M

F (x) = f (x) + g(x),

M is a Riemannian manifold;

f is continuously differentiable and may be nonconvex; and

g is continuous, but may be not differentiable.
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Community Detection
A representative model for community detection

min
X∈Fn,k

f (X ) + λ‖X‖1,

where Fn,k = {X ∈ Rn×k : XTX = Ik , 1n ∈ span(X )}

Riemannian proximal gradient methods consider

min
x∈M

F (x) = f (x) + g(x),

Prove that Fn,k is a manifold

Use a Riemannian proximal gradient method
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Riemannian Manifold Structure of Fn,q

Theorem

The set Fn,q is an embedded submanifold of St(q, n) with dimension
dim(St(q, n))− (n− q) = nq − q(q + 1)/2− n + q. Furthermore, Fn,q is
also an embedded submanifold of Rn×q with the same dimension and
Fn,q is compact.

Verify [Bou20, Definition 8.70]

Any X ∈ Fn,q, find a function h : U ⊆ St(q, n)→ Rn−q such that

h−1(0) = Fn,q ∩ U
rankD h(X ) = n − q

h is constructed from the exponential mapping on St(q, n)
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Riemannian Manifold Structure of Fn,q

Riemannian metric: 〈U,V 〉 = trace(UTV ), ∀U,V ∈ Rn×q

Tangent space:

TX Fn,q = {XΩ + X⊥K : ΩT = −Ω,K ∈ R(n−q)×q,KXT1n = 0}

and orthogonal projection is

PTX
(Z ) = X

XTZ − ZTX

2
+ (I − XXT )Z (I − α̂α̂T )

where α̂ = XT11/‖XT1n‖
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Riemannian Manifold Structure of Fn,q

Retractions on Fn,q are given by

RX (ηx) = 1nq
T
∗ /
√
n + RSt

X (ηx)(I − q∗q
T
∗ )

where q∗ = RSt
X (ηx)T1n/‖RSt

X (ηx)T1n‖ and RSt
X is a retraction on the

Stiefel manifold St(q, n).

For any X ∈ St(q, n) with XT1n 6= 0:

1nq
T
∗ /
√
n + X (I − q∗q

T
∗ ) = argmin

Y∈F
‖X − Y ‖2 (1)

Combine a retraction on St(q, n) with the orthogonal projection (1)

If X /∈ St(q, n), the closed form solution of (1) is unknown
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A Riemannian Proximal Gradient Method
Euclidean setting

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + g(x), (2)

A proximal gradient method1:

initial iterate:x0,{
dk = arg minp∈Rn 〈∇f (xk), p〉 + L

2‖p‖
2
F + g(xk + p), (Proximal mapping)

xk+1 = xk + dk . (Update iterates)

g = 0: reduce to steepest descent method;

L: greater than the Lipschitz constant of ∇f ;

Proximal mapping: easy to compute;

Any limit point is a critical point;

O(1/k) sublinear convergence rate for convex f and g ;

Local convergence rate by KL property;

1

The update rule: xk+1 = arg minx 〈∇f (xk ), x − xk 〉+ L
2
‖x − xk‖2 + g(x).
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A Riemannian Proximal Gradient Method
A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

dk = arg min
p∈Rn×m

〈∇f (xk), p〉 +
L

2
‖p‖2

F + g(xk + p)

A Riemannian proximal mapping [CMSZ20]

1 ηk = arg minη∈Txk
M 〈∇f (xk), η〉 + L

2‖η‖
2
F + g(xk + η);

2 xk+1 = Rxk (αkηk) with an appropriate step size αk ;

Only works for a manifold with a linear ambient space;

Proximal mapping is defined in tangent space;

Convex programming;

Solved for the Stiefel manifold by a semismooth Newton
algorithm [XLWZ18b];

Convergence to a stationary point;

No convergence rate results;

1[CMSZ18]: S. Chen, S. Ma, M. C. So, and T. Zhang, Proximal gradient method
for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization,
30(1):210-239, 2020
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A Riemannian Proximal Gradient Method
A Riemannian Proximal Gradient Method in [HW21a]

ManPG [CMSZ20]

ηk = arg min
η∈Txk

M
〈∇f (xk), η〉 +

L

2
‖η‖2

F + g(xk + η)

RPG [HW21a]

1 ηk = arg minη∈Txk
M 〈gradf (xk), η〉xk + L

2‖η‖
2
xk + g(Rxk (η));

2 xk+1 = Rxk (ηk);

General framework for Riemannian optimization;

Any limit point is a critical point;

O(1/k) sublinear convergence rate for retraction-convex f and g ;

Local convergence rate by Riemannian KL property;

Solving the proximal mapping by exploring the manifold structure or
using the semismooth Newton iteratively;
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A Riemannian Proximal Gradient Method
A Riemannian Proximal Gradient Method without solving the subproblem exactly

Both ManPG and RPG require the Riemannian proximal
mapping to be solved exactly

Theoretically, but not practical numerically

Can we relax this requirement and still preserve desired convergence
properties?

ManPG (yes)

RPG [HW21b]
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A Riemannian Proximal Gradient Method
Semismooth Newton method in ManPG

The Riemannian proximal mapping in [CMSZ20] can be rewritten as

arg min
BT
x η=0

〈ξx , η〉 +
1

2µ
‖η‖2

F + g(x + η)

where BT
x η = (〈b1, η〉, 〈b2, η〉, . . . , 〈bm, η〉)T , and {b1, . . . , bm} forms an

orthonormal basis of NxM.

The Lagrangian function:

L(η,Λ) = 〈ξx , η〉+
1

2µ
〈η, η〉+ g(X + η)− 〈Λ,BT

x η〉.

Therefore

KKT:

{
∂ηL(η,Λ) = 0

BT
x η = 0

=⇒
{
η = Proxµg (x − µ(ξx − BxΛ))− x

BT
x η = 0

where Proxµg (z) = argminv∈Rn×p
1
2‖v − z‖2

F + µg(v).
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A Riemannian Proximal Gradient Method
Semismooth Newton method in ManPG

Semismooth Newton method finds the Λ such that

Ψ(Λ) := BT
x (Proxµg (x − µ(ξx − BxΛ))− x) = 0

η∗ = Proxµg (x − µ(ξx − BxΛ))− x

Ψ is not differentiable everywhere but semismooth;

Semismooth Newton:
1 JΨ(Λk)[d ] = −Ψ(Λk), where JΨ is the generalized Jacobian of Ψ;
2 Λk+1 = Λk + dk

Regularized semismooth Newton [XLWZ18a]

Solving the equation inexactly
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A Riemannian Proximal Gradient Method
Semismooth Newton method in ManPG

Solving the equation inexactly implies:

Ψ(Λ) = ε 6= 0.

If Ψ(Λ) = ε,

η∗ = Proxµg (x − µ(ξx − BxΛ))− x is not even in the tangent space
TxM in this case

Use v̂(Λ) = PTxM(Proxµg (x − µ(ξx − BxΛ))− x) instead

How small does ε need to be?

‖ε‖F ≤
√

4µ2L2
g + ‖v̂(Λ)‖2

F/2− 2µLg ,
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A Riemannian Proximal Gradient Method
ManPG without solving the subproblem exactly

Algorithm 1 ManPG without solving the subproblem exactly

1: Given x0, ν ∈ (0, 1), σ ∈ (0, 1/(8µ)), µ > 0;
2: for k = 0, 1, . . . do
3: Approximately solve

min
η∈Txk

M
〈grad f (xk), η〉 +

1

2µ
‖η‖2

F + g(xk + η)

such that ‖Ψk(Λ)‖F ≤
√

4µ2L2
g + ‖v̂k(Λ)‖2

F/2− 2µLg ;

4: Set ηk = v̂k(Λ) and set α = 1;
5: while F (Rxk (αηxk )) > F (xk)− σα‖ηxk‖2

F do
6: α = να;
7: end while
8: xk+1 = Rxk (αηxk );
9: end for

Speaker: Wen Huang Riemannian Optimization with its Application



47/63

A Riemannian Proximal Gradient Method
ManPG without solving the subproblem exactly

Assumption

The function f is Lipschitz continuously differentiable on M and g is
Lipschitz continuous on M.

Theorem

Suppose the assumption holds. Then for any µ > 0, there exists a
constant ᾱ ∈ (0, 1] such that for any 0 < α < ᾱ, the sequence {xk}
generated by Algorithm 1 satisfies

F (Rxk (αηxk ))− F (xk) ≤ − α

8µ
‖ηxk‖2

F .

Moreover, the step size α > ρᾱ for all k.
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A Riemannian Proximal Gradient Method
ManPG without solving the subproblem exactly

Theorem

Suppose the assumption holds. Then any accumulation point of the
sequence {xk} generated by Algorithm 1 is a stationary point, i.e., if x∗ is
an accumulation point of the above sequence, then 0 ∈ PTx∗M∂F (x∗).

Ideas in the proofs (Suppose Ψ(Λ) = ε 6= 0)

Consider the nearby optimization problem:

arg min
BT
x η=ε

〈ξx , η〉 +
1

2µ
‖η‖2

F + g(x + η)

Its minimizer is given by v(Λ) = Proxµg (x − µ(ξx − BxΛ))− x

Show that v̂(Λ) = PTxMv(Λ) satisfies the same properties as η∗

The vein of the remaining proofs follows [CMSZ20, HW21c]
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Numerical experiments
Community detection

min
X∈Fn,k

−trace(XTMX ) + λ‖X‖1,

where Fn,k = {X ∈ Rn×k : XTX = Ik , 1n ∈ span(X )}.
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Numerical experiments
Community detection

Comparing models and effectiveness

µLFR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lou.(k)

NMI 1.000 1.000 1.000 1.000 1.000 0.998 0.980 0.298 0.084
AMI 1.000 1.000 1.000 1.000 1.000 0.997 0.965 0.238 0.039
Mod. 0.949 0.849 0.750 0.650 0.549 0.449 0.347 0.209 0.196
time 0.544 0.747 1.033 1.204 1.700 2.076 2.767 5.452 5.506
k 20 20 20 20 20 20 19 12 12

New.(k)

NMI 0.998 0.683 0.678 0.667 0.549 0.391 0.280 0.134 0.049
AMI 0.998 0.599 0.599 0.602 0.470 0.307 0.209 0.090 0.023
Mod. 0.948 0.474 0.446 0.400 0.305 0.237 0.191 0.157 0.146
time 0.645 0.466 0.437 0.452 0.423 0.341 0.365 0.321 0.311
k 20 18 17 18 15 9 7 6 6

I-A.

NMI 1.000 1.000 1.000 1.000 1.000 0.999 0.960 0.451 0.129
AMI 1.000 1.000 1.000 1.000 1.000 0.999 0.953 0.403 0.056
Mod. 0.949 0.849 0.750 0.650 0.549 0.449 0.341 0.173 0.111
time 0.635 0.469 0.587 0.949 0.674 0.472 1.033 1.630 1.675
k 20 20 20 20 20 20 20 20 20

Louvain method [BGLL08]

Newman algorithm [New06]

I-AManPG (With acceleration)

Speaker: Wen Huang Riemannian Optimization with its Application



50/63

Numerical experiments
Community detection

Comparing models and effectiveness

µLFR
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New.(k)
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I-A.

NMI 1.000 1.000 1.000 1.000 1.000 0.999 0.960 0.451 0.129
AMI 1.000 1.000 1.000 1.000 1.000 0.999 0.953 0.403 0.056
Mod. 0.949 0.849 0.750 0.650 0.549 0.449 0.341 0.173 0.111
time 0.635 0.469 0.587 0.949 0.674 0.472 1.033 1.630 1.675
k 20 20 20 20 20 20 20 20 20

The generalized LFR benchmark graphs [LF09]

The larger µ is, the more difficult the community detection is

An average of 10 random runs

NMI: normalized mutual information [DDGDA05], AMI: adjusted
mutual information [VEB10]
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Numerical experiments
Community detection

Comparing efficiency of ManPG with/without solving
the subproblem exactly

K. q = 2 q = 3 q = 4 q = 5

Measurements Exactly Approx Exactly Approx Exactly Approx Exactly Approx

NMI 1 1 0.811 0.811 0.687 0.687 0.542 0.542

AMI 1 1 0.672 0.672 0.505 0.505 0.364 0.364

Mod. 0.372 0.372 0.373 0.373 0.420 0.420 0.382 0.382

time(s) 6.568 6.170 6.278 3.675 3.520 2.735 5.394 2.137

Less computational time, same effectiveness
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Numerical experiments
Normalized cut for image segmentation

min
X∈Fn,k

−trace(XTD−1/2WD−1/2X ) + λ‖X‖1,

where W is the weight/affinity matrix,
Fn,k = {X ∈ Rn×k : XTX = Ik , v ∈ span(X )}.
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Numerical experiments
Normalized cut for image segmentation

baby cameraman coins football

gantrycrane liftingbody onion panther

pears peppers saturn tape

Figure: The tested images
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Numerical experiments
Normalized cut for image segmentation
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Compare four methods and their combination with kernel k-means:

Bach and Jordan [BJ03] (BJ), Shi and Malik [SM00] (SM), Karypis
and Kumar [KK98] (ME), our method (AM)

Their combination with kernel k-means, denoted by BJ-k, SM-k,
ME-k, and AM-k respectively
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Numerical experiments
Normalized cut for image segmentation
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Compare four methods and their combination with kernel k-means:

Bach and Jordan [BJ03] (BJ), Shi and Malik [SM00] (SM), Karypis
and Kumar [KK98] (ME), our method (AM)

Their combination with kernel k-means, denoted by BJ-k, SM-k,
ME-k, and AM-k respectively
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Numerical experiments
Normalized cut for image segmentation

3 clusters 5 clusters

AM-k

7 clusters

3 clusters 5 clusters

ME-k

7 clusters

3 clusters 5 clusters

BJ-k

7 clusters

3 clusters 5 clusters

SM-k

7 clusters

The segmentations by
the Riemannian
approach look more
intuitive, especially
for 7 clusters.
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Summary

Riemannian optimization problem statement

Motivation

Smooth optimization framework

Literature review

Clustering Problem
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Thank you

Thank you!
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