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Introduction

Riemannian Optimization

Problem: Given f(x) : M → R, solve

min
x∈M

f(x)

where M is a Riemannian manifold.
M

R
f

Two kinds of commonly-encountered manifolds

Embedded submanifold of a Euclidean space

M

x

E

Quotient manifold from an embedded submanifold

M̄

x

E
M = M̄/G

[x]
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Introduction

Riemannian Optimization

Problem: Given f(x) : M → R, solve

min
x∈M

f(x)

where M is a Riemannian manifold.
M

R
f

Examples:
Sphere: {x ∈ Rn | ‖x‖ = 1};
Stiefel manifold:
St(p, n) = {X ∈ Rn×p | XTX = Ip};
Fixed rank:
Rm×n

r = {X ∈ Rm×n : rank(X) = r};
etc;

Embedded submanifold of a Euclidean space

M

x

E
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Introduction

Riemannian Optimization

Problem: Given f(x) : M → R, solve

min
x∈M

f(x)

where M is a Riemannian manifold.
M

R
f

Examples:
Grassmann manifold:
the set of p dimensional linear spaces
in Rn

Gr(p, n) = St(p, n)/Op;
Shape space;
etc;

Quotient manifold from an embedded submanifold

M̄

x

E
M = M̄/G

[x]
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Introduction

Riemannian Optimization

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x

TxM

Riemannian manifold = Manifold + Riemannian metric (inner products)
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Introduction

Applications

Embedded submanifold: Computation on SPD manifold

SPD manifold:
Sn
++ = {X ∈ Rn×n : X = XT,X � 0};

Applications of SPD matrices
- Diffusion tensors in medical imaging

[CSV12, FJ07, RTM07]
- Describing images and video

[LWM13, SFD02, ASF+05, TPM06, HWSC15]

Motivation of averaging SPD matrices
- denoising / interpolation
- clustering / classification

Introduction and Some Basics 6
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Introduction

Applications
Embedded submanifold: Computation on SPD manifold

One averaging SPD matrices method:
G(A1, . . . ,Ak) = arg min

X∈Sn
++

1
2k

k∑
i=1

dist2(X,Ai),

where dist(X,Y) = ‖ log(X−1/2YX−1/2)‖F is the distance under the
Riemannian metric 〈ηX, ξX〉 = trace(ηXX−1ξXX−1).

Why shall we use Riemannian optimization approach?
K = 30, n = 100, and 1 ≤ κ(Ai) ≤ 105.

iterations
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[YHAG2020]: X. Yuan, W. Huang*, P.-A. Absil, K. A. Gallivan. “Computing the matrix geometric mean: Riemannian vs Euclidean
conditioning, implementation techniques, and a Riemannian BFGS method”, Numerical Linear Algebra with Applications, 27:5, 1-23, 2020.
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Introduction

Applications

Quotient manifold: Computation on shape space

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Classification
[LKS+12, HGSA15]
Face recognition
[DBS+13]

Introduction and Some Basics 8
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Introduction

Applications

Quotient manifold: Computation on shape space

Elastic shape analysis invariants:
Rescaling
Translation
Rotation
Reparametrization

The shape space is a quotient space

Figure: All are the same shape.

Introduction and Some Basics 9
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Introduction

Applications

Quotient manifold: Computation on shape space
Registration

shape 1 shape 2

q1

q̃2

q2

[q1] [q2]

Optimization problem minq2∈[q2] dist(q1, q2) is defined on a Riemannian
manifold

Introduction and Some Basics 10
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Introduction

Applications

Quotient manifold: Computation on shape space
Geodesic / Interpolation

min
α∈Hx,y

1
2

∫ 1

0
〈α̇(τ), α̇(τ)〉dτ

Computation of a geodesic between two shapes
Interpolation in shape space

Introduction and Some Basics 11
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Introduction

Applications
Quotient manifold: Computation on shape space

Karcher mean

min
X is a shape

1
2k

k∑
i=1

dist2(X,Si),

Computation of Karcher mean of a population of shapes

Riemannian optimization is used since these problems
naturally involve a Riemannian manifold

Introduction and Some Basics 12
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Introduction

Smooth Optimization Framework
Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk +∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:
Steepest descent: xk+1 = xk − αk∇f(xk)

Newton’s method: xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk)

Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide
Riemannian concepts describing
directions and movement on the
manifold
Riemannian analogues for gradient
and Hessian

xk xk + dk

Introduction and Some Basics 13



14/32

Introduction

Smooth Optimization Framework
Riemannian gradient and Riemannian Hessian

Definition
The Riemannian gradient of f at x is the unique tangent vector in TxM
satisfying ∀η ∈ TxM, the directional derivative

Df(x)[η] = g(gradf(x), η)

and gradf(x) is the direction of steepest ascent.

Definition
The Riemannian Hessian of f at x is a symmetric linear operator from TxM
to TxM defined as

Hessf(x) : TxM → TxM : η → ∇ηgradf,

where ∇ is the affine connection.

Introduction and Some Basics 14
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Introduction

Smooth Optimization Framework
Retractions

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk(αkηk)

Definition
A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable
Rx(0) = x
DRx(0)[η] = η

maps tangent vectors back to the manifold
defines curves in a direction

η

x Rx(tη)

TxM
x

η

Rx(η)

M

Introduction and Some Basics 15
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Introduction

Smooth Optimization Framework
Categories of Riemannian smooth optimization methods

Retraction-based: local information only
Line search-based: use local tangent vector and Rx(tη) to define line

Steepest decent
Newton

Local model-based: series of flat space problems
Riemannian trust region Newton (RTR)
Riemannian adaptive cubic overestimation (RACO)

Introduction and Some Basics 16
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Introduction

Smooth Optimization Framework
Categories of Riemannian smooth optimization methods

Retraction and transport-based: information from multiple tangent spaces
Nonlinear conjugate gradient: multiple tangent vectors
Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function;
formulas for combining information from multiple tangent spaces.

Vector Transport:
Vector transport: Transport a
tangent vector from one tangent
space to another;
Tηxξx, denotes transport of ξx to
tangent space of Rx(ηx). R is a
retraction associated with T ;

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure: Vector transport.
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Introduction

Smooth Optimization Framework
Retraction/Transport-based Riemannian Optimization

Given a retraction and a vector transport, we can generalize classical
unconstrained smooth optimization methods from Euclidean space to the

Riemannian manifold.

Do the Riemannian versions of those methods work well?

No, generally

Lose many theoretical results and important properties;

Impose restrictions on retraction/vector transport;

Introduction and Some Basics 18
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Introduction

Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;
2 Generalization Euclidean algorithms to the Riemannian setting;
3 Algorithms specialization for applications;
4 Library developments;

Introduction and Some Basics 19
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Introduction

Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;
2 Generalization Euclidean algorithms to the Riemannian setting;
3 Algorithms specialization for applications;
4 Library developments;

Manifold recognition
Riemannian metric
Retraction / Geodesic
Vector transport / Parallel translation

[EAS1998] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix
Analysis and Applications, 20(2):303–353, 1998
[CMV2017] T Carson, D. G. Mixon, and S. Villar. Manifold optimization for k-means clustering. In 2017 International Conference on

Sampling Theory and Applications (SampTA), 73–77. IEEE, 2017
[SDN2021] G. Song, W. Ding, and M. K. Ng, Low rank pure quaternion approximation for pure quaternion matrices, SIAM Journal on Matrix

Analysis and Applications, 42, pp. 58–82, 2021
[VAV2013] B. Vandereycken, P.-A. Absil, and S. Vandewalle. A Riemannian geometry with complete geodesics for the set of positive

semidefinite matrices of fixed rank, IMA Journal of Numerical Analysis, 33.2, 481–514, 2013.
[Zim2017] R. Zimmermann. A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric.

SIAM Journal on Matrix Analysis and Applications, 38.2, 322–342, 2017.
Introduction and Some Basics 19
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Introduction

Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;
2 Generalization Euclidean algorithms to the Riemannian setting;
3 Algorithms specialization for applications;
4 Library developments;

Smooth unconstrained optimization algorithms
Nonsmooth unconstrained optimization algorithms
Constrained optimization algorithms

Riemannian optimization mainly focuses on this topic.
Discuss later.
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Introduction

Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;
2 Generalization Euclidean algorithms to the Riemannian setting;
3 Algorithms specialization for applications;
4 Library developments;

Computations on the SPD manifold;
Computations on the shape space;
Clustering and graph partitions;
Beamforming in wireless communication;
Blind source separation;
etc

Introduction and Some Basics 19
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Introduction

Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;
2 Generalization Euclidean algorithms to the Riemannian setting;
3 Algorithms specialization for applications;
4 Library developments;

Representation of a manifold and tangent spaces;
Choose a Riemannian metric;
Choose a retraction;
Choose a vector transport;

Above factors may influence algorithms significantly.

Introduction and Some Basics 19
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Introduction

Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;
2 Generalization Euclidean algorithms to the Riemannian setting;
3 Algorithms specialization for applications;
4 Library developments;

Manopt (Matlab library) [Boumal, Mishra, Absil, Sepulchre(2014)]

Pymanopt (Python version of Manopt) [Townsend, Koep, Weichwald (2016)]

Manoptjl (Julia, nonsmooth methods) [Bergmann (2019)]

ROPTLIB (C++ library, interfaces to Matlab and Julia)
[Huang, Absil, Gallivan, Hand (2018)]

ManifoldOptim (R wrapper of ROPTLIB) [Martin, Raim, Huang, Adragni (2018)]

McTorch (Python, GPU acceleration)
[Meghawanshi, Jawanpuria, Kunchukuttan, Kasai, Mishra (2018)]

CDOpt (Python, embedded submanifold in the form of c(x) = 0)
[Xiao, Hu, Liu, Toh (2022)]

Introduction and Some Basics 19
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Introduction

Research Foci of Riemannian Optimization

1 Manifold recognition, geometry structure analyses and computations;
2 Generalization Euclidean algorithms to the Riemannian setting;
3 Algorithms specialization for applications;
4 Library developments;

Provide theories to explain behaviors of existing algorithms for
particular applications

[MBDG2023]: IRKA is a Riemannian gradient descent method;
[YHAG2020]: Richardson-like iteration for matrix geometric mean is a
Riemannian gradient descent method;
[BM2006]: The improved BFGS method is a Riemannian BFGS
method using vector transport by parallelization;

[MBDG2023] P. Mlinaric, C. Beattie, Z. Drmac, and S. Gugercin. IRKA is a Riemannian Gradient Descent Method. arxiv:2311.02031, 2023
[YHAG2020] X. Yuan, W. Huang, P.-A. Absil, K. A. Gallivan. Computing the matrix geometric mean: Riemannian vs Euclidean conditioning,

implementation techniques, and a Riemannian BFGS method, Numerical Linear Algebra with Applications, 27:5, 1-23, 2020
[BM2006] I. Brace and J. H. Manton. An improved BFGS-on-manifold algorithm for computing weighted low rank approximations.

Proceedings of 17th international Symposium on Mathematical Theory of Networks and Systems, P.1735–1738, 2006
Introduction and Some Basics 19
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Introduction

Comparison with Constrained Optimization

Not all Riemannian optimization problem can be formulated as
constrained optimization problems, and vice versa.

All iterates on the manifold
Convergence properties of unconstrained optimization algorithms
No need to consider Lagrange multipliers or penalty functions
Exploit the structure of the constrained set

M

Introduction and Some Basics 20
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Introduction

A Non-exhaustive Review
Smooth unconstrained problems

Steepest descent: Smith 1994; Helmke-Moore 1994; Iannazzo-Porcelli
2019;
Conjugate gradient: Smith 1994; Gallivan-Absil 2010; Ring-Wirth 2012;
Sato-Iwai 2015;
Quasi-Newton: Ring-Wirth 2012; Huang-Absil-Gallivan 2018;
Huang-Gallivan 2022
Newton-CG: Absil-Baker-Gallivan 2007; Huang-Huang 2023

Nonsmooth unconstrained problems
Proximal point method: Ferreira-Oliveira 2002;
Optimality conditions: Yang-Zhang-Song 2014;
Gradient sampling: Huang 2013; Hosseini and Uschmajew 2017;
ϵ-subgradient-based methods: Grohs-Hosseini 2015;
Proximal gradient methods: Huang-Wei 2022;
Proximal Newton method: Si-Absil-Huang-Jiang-Vary 2023;

Constrained problems:
Augmented Lagrangian methods: Boumal-Liu 2019;
Sequential quadratic programming: Obara-Okuno-Takeda 2022;
Frank-Wolfe Methods: Weber-Sra 2023;

Introduction and Some Basics 21
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Introduction

A Non-exhaustive Review

Smooth unconstrained problems:
Stiefel manifold: Wen-Yin 2012; Jiang-Dai 2014; Xiao-Liu-Yuan 2020;
Dai-Wang-Zhou 2020
Symplectic Stiefel manifold: Gao-Son-Absil-Stykel 2021
Symmetric positive definite manifold: Bini-Iannazzo 2013; Zhang 2017;
Yuan-Huang-Absil-Gallivan 2020;
Fixed rank manifold: Wen-Yin-Zhang 2012; Mishra 2014;
Sutti-Vandereycken 2021; Levin-Kileel-Boumal 2022

Nonsmooth unconstrained problems:
Stiefel Manifold: Huang-Wei 2019; Chen-Ma-So-Zhang 2020;
Xiao-Liu-Yuan 2020;
Fixed rank manifold: Cambier-Absil 2016;
Matrix manifolds: Zhou-Bao-Ding-Zhu 2022
Smooth equation constraints: Xiao-Liu-Toh 2023

Constrained problems:
Stiefel + non-negativity: Jiang-Meng-Wen-Chen 2019;
Symmetric positive definite + zeros: Phan-Menickelly 2020;

Introduction and Some Basics 22
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Introduction

Main references

An Introduction to Optimization on Smooth Manifolds,
Nicolas Boumal, Version of May 25 2020

A nice introduction for readers who do not have background
on Riemannain manifold

⇐=

Optimization Algorithms on Matrix Manifolds,
P.-A. Absil, R. Mahony, R. Sepulchre,
Princeton University Press, January 2008

More suitable for readers who are familiar with Riemannian manifold.
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space
Embedded submanifolds
Topology
Tangent space

Introduction and Some Basics 25
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space

Embedded submanifolds
Topology
Tangent space

Linear spaces: Rn, Rn×p, Sym(n), Cn, Rn1×n2×n3

Euclidean space: A linear space equipped with a Euclidean metric

Introduction and Some Basics 25
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space
Embedded submanifolds

Topology
Tangent space

Definition
Let M be a subset of a linear space E . We say M is a embedded
submanifold of E if either of the following holds:

1 M is an open subset of E . Then we also call M an open submanifold.
if M = E , we also call it a linear manifold.

2 For a fixed integer k ≥ 1 and for each x ∈ M there exists a
neighborhood U of x in E and a smooth function h : U → Rk such that

If y is in U , then h(y) = 0 if and only if y ∈ M; and
rankDh(x) = k.

Such a function h is called a local defining function for M at x.
Introduction and Some Basics 25
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space
Embedded submanifolds

Topology
Tangent space

Example
Show that the unique sphere Sn−1 = {x ∈ Rn : xTx = 1} is an embedded
submanifold.
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space
Embedded submanifolds

Topology
Tangent space

Example
Show that {(x1, x2) : x21 − x22 = 0} is not an embedded submanifold.

Introduction and Some Basics 25
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space
Embedded submanifolds
Topology

Tangent space

Definition
A subset U of M is open in M if U is the intersection of M with an open
subset of E . This is called the subspace topology.

Introduction and Some Basics 25
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space
Embedded submanifolds
Topology

Tangent space

Proposition
Let M be an embedded submanifold of E . Any open subset of M is also an
embedded (but not necessarily open) submanifold of E , with same
dimension and tangent spaces as M.

Example
Show that ∆n+1

+ = {x ∈ Rn : x1 + ·+ xn = 1 and x1, . . . , xn > 0} is an
embedded submanifold.

Introduction and Some Basics 25
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space
Embedded submanifolds
Topology
Tangent space

Definition
Let M be a subset of E . For all x ∈ M, define:

TxM = {c′(0) : c : I → M is smooth around 0 and c(0) = x},

where I is an open subset of R.
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space
Embedded submanifolds
Topology
Tangent space

Theorem
Let M be an embedded submanifold of E . Consider x ∈ M and the set
TxM. If M is an open submanifold, then TxM = E . Otherwise,
TxM = kerDh(x) with h any local defining function at x.
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Embedded Submanifolds

Embedded submanifolds
Definitions

What is a smooth Riemannian manifold? (focus on Embedded
submanifolds)

Embedding space: Euclidean space
Embedded submanifolds
Topology
Tangent space

Example
Derive an expression of TxSn−1, where Sn−1 is the unique sphere.

Introduction and Some Basics 25
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Embedded Submanifolds

Embedded submanifolds
Smooth maps

Smooth maps on smooth manifolds

Definitions
Differential
Properties of differentials
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Embedded Submanifolds

Embedded submanifolds
Smooth maps

Smooth maps on smooth manifolds
Definitions

Differential
Properties of differentials

Definition
Let M and M′ be embedded submanifolds of E and E ′. A map
F : M → M′ is smooth if and only if it admits a smooth extension
F : U → E ′ in a neighborhood U of M in E , so that F(x) = F(x) for all
x ∈ M, that is, F is the restriction of F to M : F = F|M

Introduction and Some Basics 26
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Embedded submanifolds
Smooth maps

Smooth maps on smooth manifolds
Definitions

Differential
Properties of differentials

Introduction and Some Basics 26



26/32

Embedded Submanifolds

Embedded submanifolds
Smooth maps

Smooth maps on smooth manifolds
Definitions

Differential
Properties of differentials

Example
Given a smooth extension of the function f : Sn−1 → R : x 7→ xTAx on
the unique sphere.
Given an example of an embedded submanifold M and a smooth
function f : M → R for which where does not exist a smooth extension
f : E → R smooth on all of E .
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Embedded submanifolds
Smooth maps

Smooth maps on smooth manifolds
Definitions
Differential

Properties of differentials

Definition
The differential of F : M → M′ at x is a linear operator
DF(x) : TxM → TF(x)M′ defined by:

DF(x)[v] = d
dtF(c(t))|t=0,

where c is a smooth curve on M passing through x at t = 0 with velocity v.
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Embedded submanifolds
Smooth maps

Smooth maps on smooth manifolds
Definitions
Differential

Properties of differentials

Proposition
Let F be a smooth extension of F : M → M′. Therefore,
DF(x) = DF(x)|TxM.

DF(x) is linear since DF(x) is linear.
The definition of DF(x) is independent of c with c(0) = x and
c′(0) = v.
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Embedded submanifolds
Smooth maps

Smooth maps on smooth manifolds
Definitions
Differential

Properties of differentials

Proposition
Let F be a smooth extension of F : M → M′. Therefore,
DF(x) = DF(x)|TxM.

DF(x) is linear since DF(x) is linear.
The definition of DF(x) is independent of c with c(0) = x and
c′(0) = v.
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Embedded Submanifolds

Embedded submanifolds
Smooth maps

Smooth maps on smooth manifolds
Definitions
Differential

Properties of differentials

Example
Let f : Sn−1 → R : x 7→ xTAx, where A = AT. Compute Df(x)[v] for
v ∈ TxSn−1.
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Embedded Submanifolds

Embedded submanifolds
Smooth maps

Smooth maps on smooth manifolds
Definitions
Differential
Properties of differentials

Example
Let f : M → R, F : M → M′ and G : M′ → M′′ be smooth, where M,
M′, and M′′ are embedded submanifolds of E , E ′ and E ′′ respectively.
Then

Show that fF : x → f(x)F(x) is smooth from M to E ′ and we have
product rule:

D(fF)(x)[v] = F(x)Df(x)[v] + f(x)DF(x)[v].

Show that D(G ◦ F)(x)[v] = DG(F(x))[DF(x)[v]].
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Tangent bundle and vector fields

Tangent bundle: Definition
Vector fields: Definition
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Embedded submanifolds
Tangent bundle and vector fields

Tangent bundle and vector fields
Tangent bundle: Definition

Vector fields: Definition

Definition
The tangent bundle of a manifold M is the disjoint union of the tangent
spaces of M:

TM = {(x, v) : x ∈ M and v ∈ TxM}.

Note that the first component x is used for the notion of “disjoint” union
when M is en embedded submanifold. In the abstract definition of the
tangent bundle, tangent spaces are disjoint by definition. It follows that
TM = ∪x∈MTxM.
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Embedded submanifolds
Tangent bundle and vector fields

Tangent bundle and vector fields
Tangent bundle: Definition

Vector fields: Definition

Theorem
If M is an embedded submanifold of E , the tangent bundle TM is an
embedded submanifold of E × E of dimension 2dim(M).
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Embedded submanifolds
Tangent bundle and vector fields

Tangent bundle and vector fields
Tangent bundle: Definition
Vector fields: Definition

Definition
A vector field on a manifold M is a map V : M → TM such that V(x) is
in TxM for all x ∈ M. If V is a smooth map, we say it is a smooth vector
field. The set of smooth vector fields is denoted by X(M).
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Embedded submanifolds
Tangent bundle and vector fields

Tangent bundle and vector fields
Tangent bundle: Definition
Vector fields: Definition

Proposition
For M an embedded submanifold of E , a vector field V on M is smooth if
and only if there exists a smooth vector field V on U ⊆ E (a neighborhood
of M) such that V = V|M.
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Embedded submanifolds
Tangent bundle and vector fields

Tangent bundle and vector fields
Tangent bundle: Definition
Vector fields: Definition

Example
Give a smooth vector field on Sn−1, where Sn−1 is the unit sphere.

Introduction and Some Basics 27



28/32

Embedded Submanifolds

Embedded submanifolds
Retraction

Retraction

Definition
Recognition
Construction

Introduction and Some Basics 28



28/32

Embedded Submanifolds

Embedded submanifolds
Retraction

Retraction
Definition

Recognition
Construction

A retraction on M is a smooth map R : TM → M with the following
properties. For each x ∈ M, let Rx : TxM → M be the restriction of R at
x, so that Rx(v) = R(x, v). Then

1 Rx(0) = x, and
2 DRx(0) : TxM → TxM is the identity map: DRx(0)[v] = v.

Equivalently, each curve c(t) = Rx(tv) satisfies c(0) = x and c′(0) = v.
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Embedded submanifolds
Retraction

Retraction
Definition

Recognition
Construction

Example
Show that below two maps are retractions on Sn−1

Rx(v) = x+v
∥x+v∥ , and

Rx(v) = cos(‖v‖)x + sin(‖v‖) v
∥v∥ ,

where v ∈ TxSn−1.
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Embedded submanifolds
Retraction

Retraction
Definition
Recognition

Construction

Let M be an embedded manifold of a vector space E and let N be an
abstract manifold such that dim(M) + dim(N ) = dim(E). Assume that
there is a diffeomorphism ϕ : M×N → E∗ : (F,G) 7→ ϕ(F,G), where E∗ is
an open subset of E , with a neural element I in N satisfying
ϕ(F, I) = F,∀F ∈ M.

Theorem [AMS08, Proposition 4.1.2]
The mapping

RX(ξ) = π1(ϕ
−1(X + ξ))

defines a retraction M, where π1 : M×N → M : (F,G) 7→ F is the
projection onto the first component.
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Embedded submanifolds
Retraction

Retraction
Definition
Recognition
Construction

Exponential mapping: Rx(v) = γ(1), where γ(t) is the geodesic such
that γ(0) = x and γ′(0) = v.
Retraction by projection: Rx(v) = argminy∈M ‖x + v − y‖
Orthographic retraction: Rx(v) = x + v + u, where u ∈ T⊥

x M.
See [AM12].
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Riemannian metric

Definition
Riemannian manifold, Riemannian submanifold
Riemannian gradient
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Embedded submanifolds
Riemannian metric

Riemannian metric
Definition

Riemannian manifold, Riemannian submanifold
Riemannian gradient

Definition
An inner product on TxM is a bilinear, symmetric, positive definite function
〈·, ·〉 : TxM× TxM → R. It induces a norm for tangent vectors:
‖u‖x =

√
〈u, u〉. A metric on M is a choice of inner product 〈·, ·〉 for each

x ∈ M.

Definition
A metric 〈·, ·〉 on M is a Riemannian metric if it varies smoothly with x in
the sense that if V,W are two smooth vector fields on M then the function
x 7→ 〈V(x),W(x)〉 is smooth from M to R.

Introduction and Some Basics 29



29/32

Embedded Submanifolds

Embedded submanifolds
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Riemannian metric
Definition

Riemannian manifold, Riemannian submanifold
Riemannian gradient

Definition
An inner product on TxM is a bilinear, symmetric, positive definite function
〈·, ·〉 : TxM× TxM → R. It induces a norm for tangent vectors:
‖u‖x =

√
〈u, u〉. A metric on M is a choice of inner product 〈·, ·〉 for each

x ∈ M.

Definition
A metric 〈·, ·〉 on M is a Riemannian metric if it varies smoothly with x in
the sense that if V,W are two smooth vector fields on M then the function
x 7→ 〈V(x),W(x)〉 is smooth from M to R.

Introduction and Some Basics 29



29/32

Embedded Submanifolds

Embedded submanifolds
Riemannian metric

Riemannian metric
Definition
Riemannian manifold, Riemannian submanifold

Riemannian gradient

Definition
A manifold with a Riemannian metric is a Riemannian manifold.
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Embedded submanifolds
Riemannian metric

Riemannian metric
Definition
Riemannian manifold, Riemannian submanifold

Riemannian gradient

Proposition
Let M be an embedded submanifold of E , and let 〈·, ·〉 be the Euclidean
metric on E . Then, the metric on M defined at each x by restriction,
〈u, v〉 = 〈u, v〉 for u, v ∈ TxM is a Riemannian metric.

Definition
Let M be an embedded submanifold of a Euclidean space E . Equipped with
the Riemannian metric obtained by restriction of the metric of E , we call M
a Riemannian submanifold of E .
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Riemannian metric

Riemannian metric
Definition
Riemannian manifold, Riemannian submanifold

Riemannian gradient

Proposition
Let M be an embedded submanifold of E , and let 〈·, ·〉 be the Euclidean
metric on E . Then, the metric on M defined at each x by restriction,
〈u, v〉 = 〈u, v〉 for u, v ∈ TxM is a Riemannian metric.

Definition
Let M be an embedded submanifold of a Euclidean space E . Equipped with
the Riemannian metric obtained by restriction of the metric of E , we call M
a Riemannian submanifold of E .
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Embedded Submanifolds

Embedded submanifolds
Riemannian metric

Riemannian metric
Definition
Riemannian manifold, Riemannian submanifold
Riemannian gradient

Definition
Let f : M → R be a smooth function on a Riemannian manifold M. The
Riemannian gradient of f is the vector field gradf on M uniquely defined by
these identities:

∀(x, v) ∈ TM,Df(x)[v] = 〈v, gradf(x)〉,

where 〈·, ·〉 is the Riemannian metric.
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Embedded Submanifolds

Embedded submanifolds
Riemannian metric

Riemannian metric
Definition
Riemannian manifold, Riemannian submanifold
Riemannian gradient

Proposition
Let M be a Riemannian submanifold of E endowed with the Euclidean
metric 〈·, ·〉 and let f : M → R be a smooth function. The Riemannian
gradient of f is given by

gradf(x) = Projx(gradf(x)),

where f is a smooth extension of f to a neighborhood of M in E , and Projx
denotes the orthogonal projection to TxM.
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Embedded Submanifolds

Embedded submanifolds
Riemannian metric

Riemannian metric
Definition
Riemannian manifold, Riemannian submanifold
Riemannian gradient

Example
Derive the Riemannnian gradient of f : Sn−1 → R : x 7→ xTAx, where the
Riemannian metric is the Euclidean metric and A = AT.
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Embedded submanifolds
Riemannian metric

Riemannian metric
Definition
Riemannian manifold, Riemannian submanifold
Riemannian gradient

Example
Show that the Riemannian gradient is unique by its definition.
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Embedded submanifolds
Riemannian metric

Riemannian metric
Definition
Riemannian manifold, Riemannian submanifold
Riemannian gradient

Example
Consider the relative interior of the simplex,

M = ∆n−1
+ = {x ∈ Rn : x1, . . . , xn > 0 and x1 + · · ·+ xn = 1},

as an embedded submanifold of Rn. Its tangent spaces are given by
TxM = {v ∈ Rn : v1 + · · ·+ vn = 0}.

Show that 〈u, v〉 =
∑n

i=1
uivi
xi

defines a Riemannian metric on M. Then,
considering a smooth function f : M → R and a smooth extension f on a
neighborhood of M in Rn (equipped with the Euclidean metric), give an
expression for gradf(x) in terms of gradf(x).
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A Riemannian steepest descent algorithm

A Riemannian gradient descent algorithm
First-order optimality conditions
Convergence
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Embedded submanifolds
A Riemannian steepest descent algorithm

A Riemannian steepest descent algorithm
A Riemannian gradient descent algorithm

First-order optimality conditions
Convergence

A representative Riemannian steepest descent algorithm:
1: Given: Initial step size σ > 0; Shrinking parameter ρ ∈ (0, 1); c ∈ (0, 1);

initial iterate x0 ∈ M;
2: for k = 0, 1, 2,. . . do
3: Find the largest α ∈ {σ, σρ, σρ2, . . . , } such that

f(Rxk(−α gradf(xk))) ≤ f(xk)− cα‖gradf(xk)‖2xk

4: Set xk+1 = Rxk(−α gradf(xk)).
5: end for
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Embedded submanifolds
A Riemannian steepest descent algorithm

A Riemannian steepest descent algorithm
A Riemannian gradient descent algorithm
First-order optimality conditions

Convergence

Theorem
Let f : M → R be a smooth function on a Riemannian manifold. If x is a
local minimizer of f, then gradf(x) = 0.

Definition
Given a smooth function f on a Riemannian manifold M, we call x ∈ M a
critical point or a stationary point of f is gradf(x) = 0.
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Embedded submanifolds
A Riemannian steepest descent algorithm

A Riemannian steepest descent algorithm
A Riemannian gradient descent algorithm
First-order optimality conditions

Convergence

Theorem
Let f : M → R be a smooth function on a Riemannian manifold. If x is a
local minimizer of f, then gradf(x) = 0.

Definition
Given a smooth function f on a Riemannian manifold M, we call x ∈ M a
critical point or a stationary point of f is gradf(x) = 0.
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Embedded submanifolds
A Riemannian steepest descent algorithm

A Riemannian steepest descent algorithm
A Riemannian gradient descent algorithm
First-order optimality conditions
Convergence

Assumption
1 There exists flow ∈ R such that f(x) ≥ flow for all x ∈ M.
2 For a given subset S of the tangent bundle TM, there exists a

constant L > 0 such that, for all (x, s) ∈ S,

f(Rx(s)) ≤ f(x) + 〈gradf(x), s〉+ L
2‖s‖2.
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Embedded submanifolds
A Riemannian steepest descent algorithm

A Riemannian steepest descent algorithm
A Riemannian gradient descent algorithm
First-order optimality conditions
Convergence

Theorem
Let f be a smooth function satisfying the assumptions. Let {(xi, si)}∞i=0 be
the pairs generated by the algorithm. If these pairs are in S defined in the
assumption, then

lim
k→∞

‖gradf(xk)‖ = 0.
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