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1 Geometric Mean of SPD Matrices

Motivations;
Averaging on a Riemannian manifold;
Algorithms and manifold geometry;

2 Signal Recovery on Low-rank Matrices

Motivations;
Problem formulations;
Algorithms and manifold geometry;

3 Rank Overestimation (Hermitian PSD low-rank Constraints);

Problem formulation;
Riemannian metrics;
Condition number for nearly low-rank solutions;
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Symmetric Positive Definite (SPD) Matrix

Definition

A symmetric matrix A is called positive definite A � 0 iff all its
eigenvalues are positive.

Sn
++ = {A ∈ Rn×n : A = AT ,A � 0}

2× 2 SPD matrix

u√
λu

v√
λv

3× 3 SPD matrix

u√
λu v√

λv

w√
λw

Wen Huang Influence of Metrics



4/86

Geometric Mean of SPD Matrices
Signal Recovery on Low-rank Matrices

Rank Overestimation

Motivations
Averaging on a Riemannian manifold
Algorithms and manifold geometry

Motivation of Averaging SPD Matrices

Possible applications of SPD matrices

- Diffusion tensors in medical imaging
[CSV12, FJ07, RTM07]

- Describing images and video
[LWM13, SFD02, ASF+05, TPM06,
HWSC15]

Motivation of averaging SPD matrices

- denoising / interpolation

- clustering / classification
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Motivation of Averaging SPD Matrices
Application: Electroencephalography (EEG) Classification

13 Hz 17 Hz 21 Hz No led

The subject is either asked to focus on one specific blinking LED or
a location without LED

EEG system is used to record brain signals

Covariance matrices of size 24× 24 are used to represent EEG
recordings [KCB+15, MC17]

Covariance matrices in Sn
++ = {A ∈ Rn×n : A = AT ,A � 0}
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EEG Classification: Examples of Covariance Matrices
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EEG Classification: Minimum Distance to Mean classier

Goal: classify new covariance matrix using Minimum Distance to Mean
Classifier

For each class k = 1, . . . ,K , compute the center µk of the
covariance matrices in the training set that belong to class k

Classify a new covariance matrix X according to

k̂ = argmin
1≤k≤K

δ(X , µk)
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EEG Classfification: Accuracy

Accuracy comparison

Means

Euc. Log-Euc. Ind. J-Div. Rie. α-Div. S-α-Div. Rie.-Med. α-Med. S-α-Med.

A
cc
u
ra
cy

(%
)

50

55

60

65

70

75

80

85

90

95

100

52.83%
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Euclidean metric is not appropriate to define the problem!

Is Euclidean metric appropriate for optimization? Averaging SPD matrices.
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Averaging Schemes: from Scalars to Matrices

Let A1, . . . ,AK be SPD matrices.

Generalized arithmetic mean: 1
K

K∑
i=1

Ai

→ Not appropriate in many practical applications

A A+B
2 B

detA = 50 det(A+B
2 ) = 267.56 detB = 50

Generalized geometric mean: (A1 · · ·AK )1/K

→ Not appropriate due to non-commutativity

→ How to define a matrix geometric mean?
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Desired Properties of a Matrix Geometric Mean

The desired properties are given in the ALM list1, some of which are:

G (Aπ(1), . . . ,Aπ(K)) = G (A1, . . . ,AK ) with π a permutation of (1, . . . ,K)

if A1, . . . ,AK commute, then G(A1, . . . ,AK ) = (A1, . . . ,AK )1/K

G(A1, . . . ,AK )−1 = G(A−1
1 , . . . ,A−1

K )

det(G(A1, . . . ,AK )) = (det(A1) · · · det(AK ))1/K

1T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004
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Geometric Mean of SPD Matrices

A well-known mean on the manifold of SPD matrices is the Karcher
mean [Kar77]:

G (A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai ), (1)

where δ(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F is the geodesic distance
under the affine-invariant metric

g(ηX , ξX ) = trace(ηXX
−1ξXX

−1)

The Karcher mean defined in (1) satisfies all the geometric
properties in the ALM list [LL11]
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Geometric Mean of SPD Matrices

Optimization problem:

G (A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

‖ log(X−1/2YX−1/2)‖2
F ,

Derived from Riemannian manifold;

An optimization problem on an open set (cone);

What algorithms are preferred?
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Algorithms

G (A1, . . . ,Ak) = argmin
X∈Sn

++

1

2K

K∑
i=1

‖ log(X−1/2YX−1/2)‖2
F ,

Existing algorithms:

Riemannian steepest descent [RA11, Ren13]

Riemannian Barzilai-Borwein method [IP15]

Riemannian Newton method [RA11]

Richardson-like iteration [BI13]

Riemannian steepest descent, conjugate gradient, BFGS, and trust
region Newton methods [JVV12]

Limited-memory Riemannian BFGS method [YHAG19]

Riemannian gradient is used in all the above methods!

The LRBFGS in [YHAG19] is preferred.
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Conditioning of the Objective Function

Hemstitching phenomenon
for steepest descent

well-conditioned Hessian ill-conditioned Hessian

Small condition number ⇒ fast convergence

Large condition number ⇒ slow convergence
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Conditioning of the Karcher Mean Objective Function

Riemannian metric:

gX (ξ, η) = trace(ξX−1ηX−1)

Euclidean metric:

gX (ξ, η) = trace(ξη)

Condition number κ of Hessian at the minimizer µ:

Hessian of Riemannian metric:

- κ(HR) ≤ 1 +
ln(maxκi )

2
, where κi = κ(µ−1/2Aiµ

−1/2)

- κ(HR) ≤ 20 if max(κi ) = 1016

Hessian of Euclidean metric:

-
κ2(µ)

κ(HR)
≤ κ(HE) ≤ κ(HR)κ2(µ)

- κ(HE ) ≥ κ2(µ)/20
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Smooth Optimization Framework
Riemannian Metric

M

Riemannian metric g1

M

Riemannian metric g2

Figure: Changing metric may influence the difficulty of a problem.

Riemannian metric influences

Riemannian gradient

Riemannian Hessian
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BFGS: from Euclidean to Riemannian

replace by Rxk (ηk)

Update formula:

y

xk+1 = xk + αkηk

Search direction:
ηk = −B−1

k grad f (xk)

Bk update:

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bksk
+

yky
T
k

yT
k sk

,

forspace
where sk = xk+1 − xk , and yk = grad f (xk+1)− grad f (xk)

x x
replaced by R−1

xk (xk+1) on different tangent spaces
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BFGS: from Euclidean to Riemannian

A vector transport: T : TM× TM→ TM : (ηx , ξx) 7→ Tηx ξx :

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Euclidean: yk = grad f (xk+1)− grad f (xk)

Riemannian: yk = grad f (xk+1)− Tαkηk grad f (xk)
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BFGS: from Euclidean to Riemannian

Update formula: xk+1 = Rxk (αkηk)

Search direction:
ηk = −B−1

k grad f (xk)

Bk update:

B̃k =Tαkηk ◦ Bk ◦ T −1
αkηk

,

← matrix matrix multiplication

Bk+1 =B̃k −
B̃ksks

[
k B̃k

s[k B̃ksk
+

yky
[
k

y [k sk
,

where sk = Tαkηk (αkηk), and yk = grad f (xk+1)− Tαkηk grad f (xk);

x

x

matrix vector multiplication matrix vector multiplication

Extra cost on vector transports!
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Limited-memory RBFGS (LRBFGS)

Riemannian BFGS:

Let Hk+1 = B−1
k+1

Hk+1 = (id− ρkyks[k)H̃k(id− ρkyks[k) + ρksks
[
k

where sk = Tαkηkαkηk , yk = grad f (xk+1)− Tαkηk grad f (xk),

ρk = 1/g(yk , sk) and H̃k = Tαkηk ◦ Hk ◦ T −1
αkηk

Limited-memory Riemannian BFGS:

Stores only the m most recent sk and yk

Transports these vectors to the new tangent space rather than Hk

Computational and storage complexity depends upon m
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Implementations

Retraction

Exponential mapping: ExpX (ξ) = X 1/2 exp(X−1/2ξX−1/2)X 1/2

Second order approximation retraction [JVV12]:

RX (ξ) = X +ξ+
1

2
ξX−1ξ = 1

2
(ξX−1/2 +X 1/2)(ξX−1/2 +X 1/2)T + 1

2
X

Vector transport

Parallel translation: Tpη (ξ) = QξQT , with Q = X
1
2 exp(

X−
1
2 ηX−

1
2

2
)X−

1
2

Vector transport by parallelization [HAG17] : essentially an identity
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Implementation
Vector Transport by Parallelization

Vector transport by parallelization:

Tηx ξx = ByB
†
x ξx ;

where y = Rx(ηx) and † denotes pseudo-inverse, has identity
implementation [HAG17]:

Tη̃x ξ̃x = ξ̃x .

Example:
Extrinsic:

ζ = Tηξ = ByB
†
x ξ

Intrinsic:
ζ̃ =T̃ηξ

=B†yByB
†
xBx ξ̃

=ξ̃

M

x
ξ1

TxM

y

ζ1

ξ2

ζ2

TyM

Bx =
[
ξ1 ξ2

]

By =
[
ζ1 ζ2

]

ξx = aξ1 + bξ2

ζy = aζ1 + bζ2
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Implementations

Cholesky Xk = LkL
T
k assumed to be computed on each step

BX of TX Sn++, the orthonormal basis of TX Sn++

BX = {LeieTi LT : i = 1, . . . , n} ∪ { 1√
2
L(eie

T
j + eje

T
i )LT ,

i < j , i = 1, . . . , n, j = 1, . . . , n},

where {ei , . . . , en} is the standard basis of n-dimensional Euclidean
space.

orthonormal under gX (ξX , ηX ).

ξX = BX ξ̂X ↔ ξX = LSLT , where S is symmetric and constains
scale coefficients.

intrinsic representation of tangent vectors is easily maintained.
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Numerical Results: K = 100, size = 3× 3, d = 6

1 ≤ κ(Ai ) ≤ 200
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Numerical Results: K = 30, size = 100× 100, d = 5050

1 ≤ κ(Ai ) ≤ 20
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Numerical Results: Riemannian vs. Euclidean Metrics

K = 100, n = 3, and 1 ≤ κ(Ai ) ≤ 106.
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K = 30, n = 100, and 1 ≤ κ(Ai ) ≤ 105.
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Summary of SPD Mean

Non-Euclidean metric helps!

Covariance matrices classification

A geometric mean of SPD matrices

Conditioner number of the Hessian

Limited-memory Riemannian BFGS

Numerical experiments

X. Yuan, W. Huang, P.-A. Absil, K. A. Gallivan. Computing the matrix
geometric mean: Riemannian vs Euclidean conditioning, implementation
techniques, and a Riemannian BFGS method, Numerical Linear Algebra
with Applications, 27:5, 1-23, 2020
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Discussions

About non-Euclidean metric

Questions: Riemannian algorithms versus preconditioned algorithms

A special case that may cause confusion:

Riemannian SD:

Open submanifold of L;

Metric: 〈u, v〉x = uTGxv

Riemannian gradient:

grad f (x) = G−1
x ∇f (x);

Riemannian SD:

xk+1 = Rxk (−αk grad f (xk))
= Rxk (−αkG

−1
xk ∇f (xk));

Preconditioned SD:

Metric: 〈u, v〉x = uT v

Eucldean gradient ∇f (x);

Preconditioner Px ≈ ∇2f (x);

Preconditioned SD:

xk+1 = xk − αkP
−1
xk ∇f (xk);

Same updates
Wen Huang Influence of Metrics
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Discussions

About non-Euclidean metric

Questions: Riemannian algorithms versus preconditioned algorithms

Differences:

Very special case (open submanifold of L);

Retraction preferences;

Riemannian conjugate gradient, Newton, quasi-Newton,
preconditioned method, etc;
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Discussions

Open submanifold of L
Manifold has nice property, the metric is used for the landscape of the
objective function;

Nonlinear manifold
The objective function has nice property and the metric is used for the
nonlinearity of the manifold;

Example: signal recovery problems
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Content

1 Geometric Mean of SPD Matrices

Motivations;
Averaging on a Riemannian manifold;
Algorithms and manifold geometry;

2 Signal Recovery on Low-rank Matrices

Motivations;
Problem formulations;
Algorithms and manifold geometry;

3 Rank Overestimation (Hermitian PSD low-rank Constraints);

Problem formulation;
Riemannian metrics;
Condition number for nearly low-rank solutions;
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Signal Recovery on Low-rank Matrices

Observation y is a linear transformation of unknown signal x up to a
noise, i.e., y = A(x) + e;

Matrix completion;

Phase retrieval (The phase is also unknown);

Blind deconvolution;

etc;
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Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their
convolution.
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Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals w ∈ CL and
x ∈ CL from their convolution y = w ∗ x ∈ CL.

We only consider circular convolution:
y1

y2

y3

...
yL

 =


w1 wL wL−1 . . . w2

w2 w1 wL . . . w3

w3 w2 w1 . . . w4

...
...

...
. . .

...
wL wL−1 wL−2 . . . w1




x1

x2

x3

...
xL


Let y = Fy, w = Fw, and x = Fx, where F is the DFT matrix;

y = w � x , where � is the Hadamard product, i.e., yi = wixi .

Equivalent question: Given y , find w and x .
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Problem Statement

Problem: Given y ∈ CL, find w , x ∈ CL so that y = w � x .

An ill-posed problem. Infinite solutions exist;

Assumption: w and x are in known subspaces, i.e., w = Bh and
x = Cm, B ∈ CL×K and C ∈ CL×N ;

Reasonable in various applications;

Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem under the assumption

Given y ∈ CL, B ∈ CL×K and C ∈ CL×N , find h ∈ CK and m ∈ CN so
that

y = Bh � Cm = diag(Bhm∗C∗).
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Related work

Ahmed et al. [ARR14]2

Convex problem:

min
X∈CK×N

‖X‖n, s. t. y = diag(BXC∗),

where ‖ · ‖n denotes the nuclear norm, and X = hm∗;

(Theoretical result): the unique minimizer
high probability

============= the true
solution;

The convex problem is expensive to solve;

2A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Wen Huang Influence of Metrics

Find h,m, s. t. y = diag(Bhm∗C∗);
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Related work

Li et al. [LLSW18]3

Nonconvex problem4:

min
(h,m)∈CK×CN

‖y − diag(Bhm∗C∗)‖2
2;

(Theoretical result):

A good initialization

(Wirtinger flow method + a good initialization)
high probability

============⇒
the true solution;

Lower successful recovery probability than alternating minimization
algorithm empirically.

3X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016

4The penalty in the cost function is not added for simplicity
Wen Huang Influence of Metrics

Find h,m, s. t. y = diag(Bhm∗C∗);
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Manifold Approach

The problem is defined on the set of rank-one matrices (denoted by
CK×N

1 ), neither CK×N nor CK × CN ; Why not work on the manifold
directly?

A representative Riemannian method: Riemannian steepest descent
method (RSD)

A good initialization

(RSD + the good initialization)
high probability

============⇒ the true solution;

The Riemannian Hessian at the true solution is well-conditioned;

Wen Huang Influence of Metrics

Find h,m, s. t. y = diag(Bhm∗C∗);
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Manifold Approach

The problem is defined on the set of rank-one matrices (denoted by
CK×N

1 ), neither CK×N nor CK × CN ; Why not work on the manifold
directly?

Optimization on manifolds: A Riemannian steepest descent method;

Representation of CK×N
1 ;

Representation of directions (tangent vectors);

Riemannian metric;

Riemannian gradient;

Wen Huang Influence of Metrics

Find h,m, s. t. y = diag(Bhm∗C∗);
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A Representation of CK×N
1 : CK

∗ × CN
∗ /C∗

Given X ∈ CK×N
1 , there exists (h,m), h 6= 0 and m 6= 0 such that

X = hm∗;

(h,m) is not unique;

The equivalent class: [(h,m)] = {(ha,ma−∗) | a 6= 0};

Quotient manifold: CK
∗ × CN

∗ /C∗ = {[(h,m)] | (h,m) ∈ CK
∗ × CN

∗ }

M = CK
∗ × CN

∗

(h,m)

E = CK × CN

M = CK
∗ × CN

∗ /C∗

[(h,m)]

CK
∗ × CN

∗ /C∗ ' CK×N
1
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A Representation of CK×N
1 : CK

∗ × CN
∗ /C∗

Cost function5

Riemannian approach:

f : CK
∗ × CN

∗ /C∗ → R : [(h,m)] 7→ ‖y − diag(Bhm∗C∗)‖2
2.

Approach in [LLSW18]:

f : CK × CN → R : (h,m) 7→ ‖y − diag(Bhm∗C∗)‖2
2.

M = CK
∗ × CN

∗

(h,m)

E = CK × CN

M = CK
∗ × CN

∗ /C∗

[(h,m)]

5The penalty in the cost function is not added for simplicity.
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Representation of directions on CK
∗ × CN

∗ /C∗

M

x

ξx

η↑x

TxME = CK × CN

M

[x ]

y

z

[y ]

[z ]

η[x ]

x denotes (h,m);

Green line: the tangent space of [x ];

Red line (horizontal space at x): orthogonal to the green line;

Horizontal space at x : a representation of the tangent space of M at [x ];
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Retraction

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk (αkηk)

Retraction: R : TM→M

R(0[x]) = [x ]

dR(tη[x])

dt |t=0 = η[x];

Retraction on CK
∗ ×CN

∗ /C∗:

R[(h,m)](η[(h,m)]) = [(h + ηh,m + ηm)] .

M

x
η

TxM

Rx(η)R̃x(η)

Two retractions:R and R̃
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A Riemannian metric

Riemannian metric:

Inner product on tangent spaces

Define angles and lengths

M

Riemannian metric g1

M

Riemannian metric g2

Figure: Changing metric may influence the difficulty of a problem.
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A Riemannian metric

Idea for choosing a Riemannian metric

The block diagonal terms in the Euclidean Hessian are used to choose
the Riemannian metric.

Let 〈u, v〉2 = Re(trace(u∗v)):

1

2
〈ηh,Hessh f [ξh]〉2 = 〈diag(Bηhm

∗C∗), diag(Bξhm
∗C∗)〉2 ≈ 〈ηhm∗, ξhm∗〉2

1

2
〈ηm,Hessm f [ξm]〉2 = 〈diag(Bhη∗mC

∗), diag(Bhξ∗mC
∗)〉2 ≈ 〈hη∗m, hξ∗m〉2,

where ≈ can be derived from some assumptions;

The Riemannian metric:

g
(
η[x], ξ[x]

)
= 〈ηh, ξhm∗m〉2 + 〈η∗m, ξ∗mh∗h〉2;

Wen Huang Influence of Metrics

min[(h,m)] ‖y − diag(Bhm∗C∗)‖2
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A Riemannian metric

RIP

Restricted Isometry Property for a linear operator A holds uniformly for
all X satisfying rank(X ) ≤ 2 if

3

4
‖X‖2

F ≤ ‖A(X )‖2
2 ≤

5

4
‖X‖2

F .

In BD problem, we have A(Z ) = diag(BZC∗).

This is a nice property of the objective function around the minimizer.

Wen Huang Influence of Metrics
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A Riemannian metric
Discussions

〈(ηh, ηm),Hess f ([(h,m)])[(ηh, ηm)]〉[(h,m)]

= ‖A(hη∗m + ηhm
∗)‖2

2︸ ︷︷ ︸
well conditioned by RIP

+ 〈hη∗m + ηhm
∗,P(ηh,ηm)P

⊥
NA∗(A(hm∗)− y)〉2︸ ︷︷ ︸

Geometry

≈‖hη∗m + ηhm
∗‖2

2 + geometry

= 〈ηh, ηhm∗m〉2 + 〈ηm, ηmh∗h〉2︸ ︷︷ ︸
metric

+2〈hη∗m, ηhm∗〉2 + geometry

Note that the left hand side is independent of Riemannian metric and
geometry.
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Riemannian gradient

Riemannian gradient

A tangent vector: grad f([x ]) ∈ T[x]M;

Satisfies: Df ([x ])[η[x]] = g(grad f ([x ]), η[x]), ∀η[x] ∈ T[x]M;

Represented by a vector in a horizontal space;

Riemannian gradient:

(grad f ([(h,m)]))↑(h,m)
=
(
∇hf (h,m)(m∗m)−1,∇mf (h,m)(h∗h)−1

)
;

Wen Huang Influence of Metrics
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A Riemannian steepest descent method (RSD)

An implementation of a Riemannian steepest descent method6

0 Given (h0,m0), step size α > 0, and set k = 0

1 dk = ‖hk‖2‖mk‖2, hk ←
√
dk

hk
‖hk‖2

; mk ←
√
dk

mk

‖mk‖2
;

2 (hk+1,mk+1) = (hk ,mk)− α
(
∇hk

f (hk ,mk )

dk
,
∇mk

f (hk ,mk )

dk

)
;

3 If not converge, goto Step 2.

Wirtinger flow Method in [LLSW18]

0 Given (h0,m0), step size α > 0, and set k = 0

1 (hk+1,mk+1) = (hk ,mk)− α (∇hk f (hk ,mk),∇mk
f (hk ,mk));

2 If not converge, goto Step 2.

6The penalty in the cost function is not added for simplicity
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Penalty

Penalty term for (i) Riemannian method, (ii) Wirtinger flow [LLSW18]

(i): ρ
L∑

i=1

G0

(
L|b∗i h|2‖m‖2

2

8d2µ2

)

(ii): ρ

[
G0

(
‖h‖2

2

2d

)
+ G0

(
‖m‖2

2

2d

)
+

L∑
i=1

G0

(
L|b∗i h|2

8dµ2

)]
,

where G0(t) = max(t − 1, 0)2, [b1b2 . . . bL]∗ = B.

The first two terms in (ii) penalize large values of ‖h‖2 and ‖m‖2;

The other terms promote a small coherence;

The one in (i) is defined in the quotient space whereas the one in
(ii) is not.
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Penalty/Coherence

Coherence is defined as

µ2
h =

L‖Bh‖2
∞

‖h‖2
2

=
Lmax

(
|b∗1h|2, |b∗2h|2, . . . , |b∗Lh|2

)
‖h‖2

2

;

Coherence at the true solution [(h],m])]

influences the probability of recovery

Small coherence is preferred

Wen Huang Influence of Metrics



52/86

Geometric Mean of SPD Matrices
Signal Recovery on Low-rank Matrices

Rank Overestimation

Motivations
Problem formulations
Algorithms and manifold geometry

Penalty

Promote low coherence:

ρ
L∑

i=1

G0

(
L|b∗i h|2‖m‖2

2

8d2µ2

)
,

where G0(t) = max(t − 1, 0)2;

‖y − diag(Bhm ∗ C∗)‖2
2 ‖y − diag(Bhm ∗ C∗)‖2

2 + penalty

Initial point
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Initialization

Initialization method [LLSW18]

(d , h̃0, m̃0): SVD of B∗ diag(y)C ;

h0 = argminz ‖z −
√
dh̃0‖2

2, subject to
√
L‖Bz‖∞ ≤ 2

√
dµ;

m0 =
√
dm̃0;

Initial iterate [(h0,m0)];
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Numerical Results

Synthetic tests

Efficiency

Probability of successful recovery

Image deblurring

Kernels with known supports

Motion kernel with inexact supports
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Efficiency

Table: Comparisons of efficiency

L = 400,K = N = 50 L = 600,K = N = 50
Algorithms [LLSW18] [LWB18] R-SD [LLSW18] [LWB18] R-SD
nBh/nCm 351 718 208 162 294 122
nFFT 870 1436 518 401 588 303
RMSE 2.22−8 3.67−8 2.20−8 1.48−8 2.34−8 1.42−8

An average of 100 random runs

nBh/nCm: the numbers of Bh and Cm multiplication operations respectively

nFFT: the number of Fourier transform

RMSE: the relative error
‖hm∗−h]m

∗
] ‖F

‖h]‖2‖m]‖2

[LLSW18]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933,
2016

[LWB18]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization
preprint arXiv:1312.0525, 2013
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Probability of successful recovery

Success if
‖hm∗−h]m∗] ‖F
‖h]‖2‖m]‖2

≤ 10−2
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Figure: Empirical phase transition curves for 1000 random runs.

[LLSW18]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933,
2016

[LWB18]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization
preprint arXiv:1312.0525, 2013

Wen Huang Influence of Metrics



57/86

Geometric Mean of SPD Matrices
Signal Recovery on Low-rank Matrices

Rank Overestimation

Motivations
Problem formulations
Algorithms and manifold geometry

Image deblurring

Image [WBX+07]: 1024-by-1024 pixels
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Image deblurring with various kernels

Figure: Left: Motion kernel by Matlab function “fspecial(’motion’, 50, 45)”;
Middle: Kernel like function “sin”; Right: Gaussian kernel with covariance
[1, 0.8; 0.8, 1];
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Image deblurring with various kernels

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis vectors: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the supports of the blurring kernels
are known: B.

L = 1048576, N = 20000, Kmotion = 109,
Ksin = 153, KGaussian = 181;

Wen Huang Influence of Metrics

min ‖y − diag(Bhm∗C∗)‖2
2



59/86

Geometric Mean of SPD Matrices
Signal Recovery on Low-rank Matrices

Rank Overestimation

Motivations
Problem formulations
Algorithms and manifold geometry

Image deblurring with various kernels

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis vectors: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the supports of the blurring kernels
are known: B.

L = 1048576, N = 20000, Kmotion = 109,
Ksin = 153, KGaussian = 181;

Wen Huang Influence of Metrics

min ‖y − diag(Bhm∗C∗)‖2
2



59/86

Geometric Mean of SPD Matrices
Signal Recovery on Low-rank Matrices

Rank Overestimation

Motivations
Problem formulations
Algorithms and manifold geometry

Image deblurring with various kernels

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis vectors: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the supports of the blurring kernels
are known: B.

L = 1048576, N = 20000, Kmotion = 109,
Ksin = 153, KGaussian = 181;

Wen Huang Influence of Metrics

min ‖y − diag(Bhm∗C∗)‖2
2



59/86

Geometric Mean of SPD Matrices
Signal Recovery on Low-rank Matrices

Rank Overestimation

Motivations
Problem formulations
Algorithms and manifold geometry

Image deblurring with various kernels

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis vectors: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the supports of the blurring kernels
are known: B.

L = 1048576, N = 20000, Kmotion = 109,
Ksin = 153, KGaussian = 181;

Wen Huang Influence of Metrics

min ‖y − diag(Bhm∗C∗)‖2
2



60/86

Geometric Mean of SPD Matrices
Signal Recovery on Low-rank Matrices

Rank Overestimation

Motivations
Problem formulations
Algorithms and manifold geometry

Image deblurring with various kernels

Figure: The number of iterations is 80; Computational times are about 48s;

Relative errors
∥∥∥ŷ − ‖y‖

‖yf ‖
yf

∥∥∥ /‖ŷ‖ are 0.038, 0.040, and 0.089 from left to right.
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Image deblurring with unknown supports

Figure: Top: reconstructed image using the exact support; Bottom: estimated
supports with the numbers of nonzero entries: K1 = 183, K2 = 265, K3 = 351,
and K4 = 441;
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Image deblurring with inexact supports

Figure: Relative errors
∥∥∥ŷ − ‖y‖

‖yf ‖
yf

∥∥∥ /‖ŷ‖ are 0.044, 0.048, 0.052, and 0.067

from left to right.
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Summary of BD

Introduce rectraction and transport-based Riemannian optimization

RSD has efficient implementation for solving blind deconvolution
problem

RSD method has recovery guarantee

RSD is faster and has higher probability of successful recovery
compared to the alternating minimization method and the approach
in [LLSW18]

RSD method works well for the tested imaging debluring problems

W. Huang, P. Hand. Blind Deconvolution by a Steepest Descent
Algorithm on a Quotient Manifold, SIAM Journal on Imaging Sciences,
11:4, pp. 2757-2785, 2018.
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Discussions

RIP also appears in Phase Retrieval;

Preconditioned the manifold (use a non-Euclidean space) has been
proposed for many problems on the fixed-rank manifold;

Fixed rank manifold has multiple representation, which yields
different metrics;

Preferred retraction;
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Content

1 Geometric Mean of SPD Matrices

Motivations;
Averaging on a Riemannian manifold;
Algorithms and manifold geometry;

2 Signal Recovery on Low-rank Matrices

Motivations;
Problem formulations;
Algorithms and manifold geometry;

3 Rank Overestimation (Hermitian PSD low-rank Constraints);

Problem formulation;
Riemannian metrics;
Condition number for nearly low-rank solutions;
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Problem of interest:

minimize
X

f (X ) = 1
2‖A(X )− b‖2

F

subject to X ∈ Hn,p
+

,

where Hn,p
+ denotes the set of n-by-n Hermitian PSD matrices of fixed

rank p � n.

Approximating solutions to a minimization with a convex PSD constraint:

minimize
X∈Cn×n

f (X ) = 1
2‖A(X )− b‖2

F

subject to X < 0
. (2)

Applications: Phase retrieval by PhaseLift [HGZ17], interferometry
recovery problem, etc.
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Problem formulation

minimize
X

f (X ) = 1
2‖A(X )− b‖2

F

subject to X ∈ Hn,p
+

,

Multiple approaches:

Burer-Monteiro method: minY∈Cn×p F (Y ) := f (YY ∗).

Regard Hn,p
+ as an embedded submanifold of Cn×n;

Consider the quotient manifold Cn×p
∗ /Op.

Which approach is preferred when p is

greater than the rank of the true solution?
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Problem formulation

Why using p greater than the rank of the true solution?

Theorem

Suppose Y = KsQ
∗ is a rank deficient minimizer of F , where Ks ∈ Cn×s∗

with s < p and Q ∈ St(s, p). Then grad f (YpY
∗
p ) is a positive

semidefinite matrix and, therefore, X = YY ∗ is a stationary point of f . If
furthermore f is convex, then X is a global minimizer.
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Problem formulation

Multiple approaches:

Burer-Monteiro method: minY∈Cn×p F (Y ) := f (YY ∗).

Regard Hn,p
+ as an embedded submanifold of Cn×n;

Consider the quotient manifold Cn×p
∗ /Op.

The three approaches can be equivalently reformulated into quotient
manifold with different Riemannian metric on Cn×p

∗ :

g1
Y (A,B) = 〈A,B〉Cn×p = <(tr(A∗B)) (Bures-Wasserstein metric)

g2
Y (A,B) = 〈AY ∗,BY ∗〉Cn×n = <(tr((Y ∗Y )A∗B))

g3
Y (A,B) = 〈YA∗ + AY ∗,YB∗ + BY ∗〉Cn×n

+
〈
Y Skew

(
(Y ∗Y )−1Y ∗A

)
Y ∗,Y Skew

(
(Y ∗Y )−1Y ∗B

)
Y ∗
〉
Cn×n ,

where Skew(X ) = (X − X ∗)/2.
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The gradient descent (GD) and nonlinear conjugate gradient (CG)
applied to Burer–Monteiro form are equivalent to Riemannian GD and
Riemannian CG on quotient manifold (Cn×p

∗ /Op, g
1), which is counter

intuitive because they look quite different.

Theorem

There exists a retraction and a vector transport such that when the
Bures-Wasserstein metric g1 is used, the Riemannian conjugate gradient
algorithm is equivalent to the Euclidean conjugate gradient method in
the sense that they produce exactly the same iterates if started from the
same initial point.
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Riemannian GD and Riemannian CG on the embedded manifold Hn,p
+ are

exactly equivalent to Riemannian GD and Riemannian CG on quotient
manifold (Cn×p

∗ /Op, g
3).

Theorem

Let RE and T E denote any retraction and vector transport used in Algorithms
with embedded geometry Hn,p

+ . Using the diffeomorphism β̃ between Cn×p
∗ /Op

and Hn,p
+ and isomorphism Lπ(Y ) between Tπ(Y )Cn×p

∗ /Op and TYY∗Hn,p
+ , define

the retraction RQ and vector transport T Q on the quotient manifold

(Cn×p
∗ /Op, g

3) as RQ
π(Y )(ξπ(Y )) := β̃−1

(
RE
β̃(π(Y ))

(
L(ξπ(Y ))

))
, and

T Q
ηπ(Y )

(ξπ(Y )) := L−1
π(Y2)

(
T E
L(ηπ(Y ))

(
L(ξπ(Y ))

))
, where π(Y2) is in Cn×p

∗ /Op such

that β̃(π(Y2)) denotes the foot of the tangent vector T E
L(ηπ(Y ))

(
L(ξπ(Y ))

)
.

Using RQ and T Q as the retraction and vector transport in Algorithm with
quotient geometry and g 3, and assume the initial step tk is be chosen to be the
same, then Algorithm with quotient geometry and g 3 is equivalent to
Algorithm with embedded geometry in the sense that they produce exactly the
same iterates if started from the same initial point.
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Main results: Conditioning of Riemannian Hessians

The Rayleigh quotient of the Riemannian Hessian of h on (Cn×p
∗ /Op, g

i )
is defined by

ρi (π(Y ), ξπ(Y )) =
g i
π(Y )

(
Hess h(π(Y ))[ξπ(Y )], ξπ(Y )

)
g i
π(Y )(ξπ(Y ), ξπ(Y ))

,

∀ξπ(Y ) ∈ Tπ(Y )Cn×p
∗ /Op.

If the Rayleigh quotient has a low bound µ and an upper bound L, then
L/µ is an upper bound of the condition number of the Riemannian
Hessian.
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Main results: Conditioning of Riemannian Hessians

Assumption

Let X̂ be the global minimizer of f . For a fixed ε > 0, there exist
constants A > 0 and B > 0 such that for all X with ‖X − X̂‖F < ε, the
following inequality holds,

A‖ζX‖2
F ≤

〈
∇2f (X )[ζX ], ζX

〉
Cn×n ≤ B‖ζX‖2

F , ∀ζX ∈ TXHn,p
+ .
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Theorem

Let X̂ = Ŷ Ŷ ∗ be the global minimizer of (2) with rank r = p. For

X = YY ∗ = UΣU∗ with singular values σi , Y ∈ Cn×p
∗ , and X near X̂ ,

under the above Assumption, for any arbitrary tangent vectors ζX and
ξπ(Y ), the following hold:

1 A− 2
σp
‖∇f (X )‖ ≤ ρE (X , ζX ) ≤ B + 2

σp
‖∇f (X )‖ ,

2 2Aσp − 2 ‖∇f (YY ∗)‖ ≤ ρ1(π(Y ), ξπ(Y )) ≤ B · D1
π(Y ) + 2 ‖∇f (YY ∗)‖ ,

3 2A− 4(
√

p+1)

σp
‖∇f (YY ∗)‖ ≤ ρ2(π(Y ), ξπ(Y )) ≤ 4B +

4(
√

p+1)

σp
‖∇f (YY ∗)‖ ,

4 A− 1
σp
‖∇f (YY ∗)‖ ≤ ρ3(π(Y ), ξπ(Y )) ≤ B + 1

σp
‖∇f (YY ∗)‖ ,

where D1
π(Y ) satisfies 2σ1 ≤ D1

π(Y ) ≤ 2
(
σ2

1

σp
+ σ1

)
.
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Theorem (Continue)

In particular, if X̂ = Ŷ Ŷ ∗ has rank p, we have the following limits, where

X → X̂ and π(Y )→ π(Ŷ ) are taken in the sense of
∥∥∥X − X̂

∥∥∥
F
→ 0 and∥∥∥YY ∗ − Ŷ Ŷ ∗

∥∥∥
F
→ 0:

1 A− 2
σ̂p

∥∥∥∇f (X̂ )
∥∥∥ ≤ limX→X̂ ρ

E (X , ξX ) ≤ B + 2
σ̂p

∥∥∥∇f (X̂ )
∥∥∥ ,

2 2Aσ̂p − 2
∥∥∥∇f (X̂ )

∥∥∥ ≤ limπ(Y )→π(Ŷ ) ρ
1(π(Y ), ξπ(Y )) ≤

B · D1
π(Ŷ )

+ 2
∥∥∥∇f (X̂ )

∥∥∥ ,
3 2A− 4(

√
p+1)

σ̂p

∥∥∥∇f (X̂ )
∥∥∥ ≤ limπ(Y )→π(Ŷ ) ρ

2(π(Y ), ξπ(Y )) ≤

4B +
4(
√
p+1)

σ̂p

∥∥∥∇f (X̂ )
∥∥∥ ,

4 A− 1
σ̂p

∥∥∥∇f (X̂ )
∥∥∥ ≤ limπ(Y )→π(Ŷ ) ρ

3(π(Y ), ξπ(Y )) ≤ B + 1
σ̂p

∥∥∥∇f (X̂ )
∥∥∥ ,

where D1
π(Ŷ )

satisfies 2σ̂1 ≤ D1
π(Ŷ )
≤ 2

(
σ̂2

1
σ̂p

+ σ̂1

)
.
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Assumption

For a sequence {Xk} with Xk ∈ Hn,p
+ (or π(Yk) ∈ Cn×p

∗ /Op ) that

converges to the minimizer X̂ (or π(Ŷ )), let (σp)k be the smallest
nonzero singular value of Xk = YkY

∗
k , assume the following limits hold.

1 For the embedded manifold, limk→∞
2

(σp)k
‖∇f (Xk)‖ ≤ A

2 .

2 For the quotient manifold with metric g1,
limk→∞

1
(σp)k

‖∇f (YkY
∗
k )‖ ≤ A

2 .

3 For the quotient manifold with metric g2,

limk→∞
4(
√
p+1)

(σp)k
‖∇f (YkY

∗
k )‖ ≤ A.

4 For the quotient manifold with metric g3,
limk→∞

1
(σp)k

‖∇f (YkY
∗
k )‖ ≤ A

2 .
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If X̂ has rank r < p and {Xk} is a sequence that satisfies Assumption on
the previous page, then Theorem implies

1 For the embedded manifold we have
A
2 ≤ limk→∞ ρE (Xk , ξXk

) ≤ B + A
2 .

2 A ≤ limk→∞
ρ1(π(Yk ),ξπ(Yk ))

(σp)k
≤ B limk→∞

D1
π(Yk )

(σp)k
+ 2A,

3 A ≤ limk→∞ ρ2(π(Yk), ξπ(Yk )) ≤ 4B + A,

4 A
2 ≤ limk→∞ ρ3(π(Yk), ξπ(Yk )) ≤ B + A

2 ,

where lim
k→∞

D1
π(Yk )

(σp)k
≥ lim

k→∞
2(σ1)k
(σp)k

= +∞ since σp → σ̂p = 0.
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Numerical Experiments

Phase retrieval problem

f (X ) =
1

2
‖A(X )− b‖2

,

where X = xx∗ is a rank-one matrix and x represents an image, and
A : Cn×n → Rmn×1, X 7→ [diag(Z 1XZ 1∗), · · · ,diag(ZmXZm∗)]T with
given Z i ∈ Cn×n, see [CSV13].
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Numerical Experiments
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(a) The algorithms are solved on the rank
3 manifold
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(b) The algorithms are solved on the rank
1 manifold

Figure: Phase retrieval of a 256-by-256 image with 6 Gaussian masks. A

comparison of relative residue
‖A(YkY

∗
k )−b‖
‖b‖ versus iteration number k when

using L-BFGS approach, quotient CG method with metric g i , i = 1, 2, 3 and
embedded CG method. When the minimizer is rank deficient (the case in
8(a)), L-BFGS approach and CG method with metric g 1 is significantly slower.
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Numerical Experiments
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Figure: Numerical examination of Assumption 3.2 for the phase retrieval
problem of a 256-by-256 image with 6 Gaussian masks solved on the rank 3
manifold (same setup as the numerical test shown in Fig 8(a)). Plots show the

ratio term
‖∇f (YkY

∗
k )‖

F
(σp)k

in the Assumption 3.2 versus the iteration number k for

L-BFGS approach, quotient CG method with metric g i , i = 1, 2, 3 and
embedded CG method.
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Summary of Rank Overestimation

Optimization over Hermitian PSD matrices of fixed rank;

Multiple geometries to quotient geometry with multiple metrics;

Rank overestimation accelerates convergence;

Bures-Wasserstein metric is worse than the other two when
minimizer is (almost) rank deficient.

S. Zheng, W. Huang, B. Vandereycken, and X. Zhang. Riemannian
optimization using three different metrics for Hermitian PSD fixed-rank
constraints, 91, 1135-1184, 2025.
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Thank you

Thank you!
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