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Problem Statement

Optimization on Manifolds with Structure:

min
x∈M

F (x) = f (x) + h(x),

M is a finite-dimensional Riemannian manifold;

f is smooth and may be nonconvex; and

h(x) is continuous and convex but may be nonsmooth;

M

R
f

Applications: sparse PCA [ZHT06], compressed model [OLCO13],
sparse partial least squares regression [CSG+18], sparse inverse
covariance estimation [BESS19], sparse blind deconvolution [ZLK+17],
and clustering [HWGVD22].
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Existing Nonsmooth Optimization on Manifolds

F :M→ R is Lipschitz continuous

Huang (2013), Gradient sampling method without convergence
analysis.

Grohs and Hosseini (2015), Two ε-subgradient-based optimization
methods using line search strategy and trust region strategy,
respectively. Any limit point is a critical point.

Hosseini and Uschmajew (2017), Gradient sampling method and any
limit point is a critical point.

Hosseini, Huang, and Yousefpour (2018), Merge ε-subgradient-based
and quasi-Newton ideas and show any limit point is a critical point.
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Existing Nonsmooth Optimization on Manifolds

F :M→ R is convex

Zhang and Sra (2016), subgradient-based method and function
value converges to the optimal O(1/

√
k).

Ferreira and Oliveira (2002) proximal point method, convergence
using convexity
Bento, da Cruz Neto and Oliveira (2011), convergence using
Kurdyka- Lojasiewicz (KL); and
Bento, Ferreira, and Melo (2017), function value converges to the
optimal O(1/k) on Hadamard manifold using convexity
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Existing Nonsmooth Optimization on Manifolds

F = f + g , where f is L-con, and g is non-smooth

Chen, Ma, So, and Zhang (2018), A proximal gradient method with
global convergence

Xiao, Liu, and Yuan (2021), Infeasible approach over the Stiefel
manifold

Zhou, Bao, and Ding (2022), An augmented Lagrangian method on
matrix manifolds

Huang and Wei (2021-2023), A Riemannian proximal gradient
method, an inexact Riemannian proximal gradient method, and a
modified FISTA on embedded manifolds

Wang and Yang (2023), A proximal quasi-Newton method on
manifolds on the Stiefel manifold

Huang, Meng, Gallivan, and Van Dooren (2023), An inexact
proximal gradient method on embedded submanifolds

Beck and Rosset (2023), A dynamic smoothing technique
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Content

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x).

Proximal gradient methods

Accelerated proximal gradient methods

A proximal Newton method

[HW2021]: W. Huang and K. Wei, Riemannian proximal gradient methods, Mathematics
Programming, 194, 371-413, 2022.

[HW2023]: An inexact Riemannian proximal gradient method, Computational Optimization and
Applications, 85, 1-32, 2023

[HWGV2023]: A Riemannian optimization approach to clustering problems, arxiv, 2023
[SAHJV2023]: A Riemannian proximal Newton method, SIAM Journal on Optimization, 34:1, pp.

654-681, 2024
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Euclidean Proximal gradient method
Riemannian Proximal Gradient Methods

Content

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x).

Proximal gradient methods

Euclidean version
Riemannian version in [CMSZ20]
Riemannian version in [HW21a]

Accelerated proximal gradient methods

A proximal Newton method
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Proximal Gradient Method
Euclidean version

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + h(x).

initial iterate:x0,{
dk = arg minp∈Rn 〈∇f (xk), p〉 + L

2‖p‖
2
F + h(xk + p), (Proximal mapping)

xk+1 = xk + dk . (Update iterates)

h = 0: reduce to steepest descent method;

L: greater than the Lipschitz constant of ∇f ;

Proximal mapping: easy to compute;

Any limit point is a critical point;

O
(

1
k

)
sublinear convergence rate for convex f and h;

Linear convergence rate for strongly convex f and convex h;

Local convergence rate by KL property;

1. The update rule: xk+1 = arg minx〈∇f (xk ), x − xk〉 + L
2 ‖x − xk‖2 + h(x).
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Proximal Gradient Method
Riemannian versions

Optimization with Structure: M

min
x∈M

F (x) = f (x) + h(x).

Euclidean proximal mapping

dk = arg min
p∈Rn
〈∇f (xk), p〉 +

L

2
‖p‖2

F + h(xk + p)

In the Riemannian setting:

How to define the proximal mapping?

Can be solved cheaply?

Share the same convergence rate?
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Proximal Gradient Method
Riemannian version in [CMSZ20]

A Riemannian proximal mapping [CMSZ20]

1 ηk = arg minη∈Txk
M 〈∇f (xk), η〉 + L

2‖η‖
2
F + h(xk + η);

2 xk+1 = Rxk (αkηk) with an appropriate step size αk ;

Only works for embedded submanifold;

Proximal mapping is defined in tangent space;

Convex programming;

Solved efficiently for the Stiefel manifold by a semi-smooth Newton
algorithm [XLWZ18];

Step size 1 is not necessary decreasing;

Convergence to a stationary point;

No convergence rate analysis;

[CMSZ18]: S. Chen, S. Ma, M. C. So, and T. Zhang, Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[XLWZ18]: X. Xiao, Y. Li, Z. Wen, and L. Zhang, A regularized semi-smooth Newton method with
projection steps for composite convex programs. Journal of Scientific Computing, 76(1):364-389,
2018.

M

x
η

TxM

Rx(η)
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Proximal Gradient Method
Riemannian version in [HW21a]

GOAL: Develop a Riemannian proximal gradient method with convergence
rate analysis and good numerical performance for some instances

A Riemannian Proximal Gradient Method (RPG)

Let `xk (η) = 〈∇f (xk), η〉xk +
L

2
‖η‖2

xk︸ ︷︷ ︸
Riemannian metric

+h( Rxk (η)︸ ︷︷ ︸
replace xk + η

);

1 ηk ∈ TxkM is a stationary point of `xk (η), and `xk (0) ≥ `k(ηk);

2 xk+1 = Rxk (ηk);

General framework for Riemannian optimization;

Step size can be fixed to be 1;

Convergence rate results;

Wen Huang Difficulties from Euclidean to Riemannian
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Step size can be fixed to be 1;

Convergence rate results;
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

This assumption hold if, for example, F is continuous and M is compact.

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,

Wen Huang Difficulties from Euclidean to Riemannian
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

Definition

A function h :M→ R is called L-retraction-smooth with respect to a
retraction R in N ⊆M if for any x ∈ N and any Sx ⊆ TxM such that
Rx(Sx) ⊆ N , we have that

h(Rx(η)) ≤ h(x) + 〈grad h(x), η〉x +
L

2
‖η‖2

x , ∀η ∈ Sx .
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

If the following conditions hold, then f is L-retraction-smooth with respect
to the retraction R in the manifold M [BAC18, Lemma 2.7]

M is a compact Riemannian submanifold of a Euclidean space Rn;

the retraction R is globally defined;

f : Rn → R is L-smooth in the convex hull of M;

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

Theoretical results:

For any accumulation point x∗ of {xk}, x∗ is a stationary point, i.e.,
0 ∈ ∂F (x∗).

Wen Huang Difficulties from Euclidean to Riemannian
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Proximal Gradient Method
Riemannian version in [HW21a]

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Definition

A function h :M→ R is called retraction-convex with respect to a
retraction R in N ⊆M if for any x ∈ N and any Sx ⊆ TxM such that
Rx(Sx) ⊆ N , there exists a tangent vector ζ ∈ TxM such that qx = h ◦ Rx

satisfies
qx(η) ≥ qx(ξ) + 〈ζ, η − ξ〉x ∀η, ξ ∈ Sx . (1)

Note that ζ = grad qx(ξ) if h is differentiable; otherwise, ζ is any
subgradient of qx at ξ.
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Riemannian version in [HW21a]

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Lemma

Given x ∈M and a twice continuously differentiable function h :M→ R,
if one of the following conditions holds:

Hess h is positive definite at x, and the retraction is second order;

The manifold M is an embedded submanifold of Rn endowed with the
Euclidean metric; W is an open subset of Rn; x ∈ W;
h :W ⊂ Rn → R is a µ-strongly convex function in the Euclidean
setting for a sufficient large µ; the retraction is second order;

then there exists a neighborhood of x, denoted by Nx , such that the
function h :M→ R is retraction-convex in Nx .

Wen Huang Difficulties from Euclidean to Riemannian



13/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Euclidean Proximal gradient method
Riemannian Proximal Gradient Methods

Proximal Gradient Method
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Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Nonsmooth? Example: h(x) = ‖x‖1 with exponential mapping

unit sphere: {x ∈ Rn | xT x = 1}, n = 100

Poincaré ball model [GBH18]: {x ∈ Rn | xT x < 1}, n = 100

h(Expx(tηx)) versus t
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Poincare ball

[GBH18] Ganea et al., Hyperbolic entailment cones for learning hierarchical embedding,

ICML, 2018. Wen Huang Difficulties from Euclidean to Riemannian
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Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Retraction approximately satisfies the triangle relation in Ω: for all
x , y , z ∈ Ω,∣∣‖ξx − ηx‖2

x − ‖ζy‖2
y

∣∣ ≤κ‖ηx‖2
x , for a constant κ

where ηx = R−1
x (y), ξx = R−1

x (z), ζy = R−1
y (z).

In the Euclidean setting: ηx = R−1
x (y) = y − x , ξx = R−1

x (z) = z − x ,
ζy = R−1

y (z) = z − y :

ξx − ηx = (z − x)− (y − x) = z − y = ζy .

Holds for compact set Ω with the exponential mapping;
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Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Retraction approximately satisfies the triangle relation in Ω: for all
x , y , z ∈ Ω,∣∣‖ξx − ηx‖2

x − ‖ζy‖2
y

∣∣ ≤κ‖ηx‖2
x , for a constant κ

where ηx = R−1
x (y), ξx = R−1

x (z), ζy = R−1
y (z).

Theoretical results:

Convergence rate O(1/k):

F (xk)− F (x∗) ≤
1

k

(
L

2
‖R−1

x0
(x∗)‖2

x0
+

LκC

2
(F (x0)− F (x∗))

)
.
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,
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Riemannian version in [HW21a]

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

Definition ( [AMS08, 7.4.3])

A function f on M is Lipschitz continuously differentiable if it is
differentiable and if there exists β1 such that, for all x , y in M with
dist(x , y) < i(M), it holds that

‖P0←1
γ grad f (y)− grad f (x)‖x ≤ β1 dist(x , y),

where γ is the unique minimizing geodesic with γ(0) = x and γ(1) = y .

Wen Huang Difficulties from Euclidean to Riemannian
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

If f is smooth and the manifold M is compact, then the function f is
Lipschitz continuously differentiable. [AMS08, Proposition 7.4.5 and
Corollary 7.4.6].

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,

Wen Huang Difficulties from Euclidean to Riemannian
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Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

Definition

A continuous function f :M→ R is said to have the Riemannian KL property at x ∈ M if and only
if there exists ε ∈ (0,∞], a neighborhood U ⊂M of x , and a continuous concave function
ς : [0, ε]→ [0,∞) such that

ς(0) = 0, ς is C 1 on (0, ε), and ς′ > 0 on (0, η),

For every y ∈ U with f (x) < f (y) < f (x) + ε, we have

ς
′(f (y)− f (x)) dist(0, ∂f (y)) ≥ 1,

where dist(0, ∂f (y)) = inf{‖v‖y : v ∈ ∂f (y)} and ∂ denotes the Riemannian generalized
subdifferential. The function ς is called the desingularising function.
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Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

Theoretical results:

it holds that

∞∑
k=0

dist(xk , xk+1) <∞.

Therefore, there exists only a unique accumulation point.
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Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

Theoretical results:

If the desingularising function has the form ς(t) = C
θ t
θ for C > 0 and

θ ∈ (0, 1] for all x ∈ Ωx0 , then

if θ = 1, then the Riemannian proximal gradient method terminates in
finite steps;
if θ ∈ [0.5, 1), then ‖xk − x∗‖ < C1d

k for C1 > 0 and d ∈ (0, 1);

if θ ∈ (0, 0.5), then ‖xk − x∗‖ < C2k
−1

1−2θ for C2 > 0;
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Proximal Gradient Method
Numerical experiments

Sparse PCA problem

min
X∈St(p,n)

− trace(XTATAX ) + λ‖X‖1,

where A ∈ Rm×n is a data matrix.
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Numerical experiments
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Figure: Two typical runs of ManPG, RPG, A-ManPG, and A-RPG for the
Sparse PCA problem. n = 1024, p = 4, λ = 2, m = 20.
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Summary of RPG

Generalizing the proximal mapping to manifolds is nontrivial

Multiple Riemannian proximal mapping

Theoretical results

Numerical experiments

W. Huang and K. Wei, Riemannian proximal gradient methods,
Mathematics Programming, 194, 371-413, 2022.
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Summary of RPG

[BJJP25]: Given x0, Let Hxk (x) = h(x) + 1
2λd

2 (x ,Rxk (−λgradf (xk)));
xk+1 is a stationary point of Hxk (x);
and Hxk (xk) ≥ Hxk (xk+1);

xk+1 can be viewed as a Riemannian proximal point of h on manifold;

Any limit point is a critical point by Exponential map;

[BJJP25] R. Bergmann, H. Jasa, P. John, M. Pfeffer. The intrinsic Riemannian proximal gradient
method for nonconvex optimization. arXiv:2506.09775, 2025.
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Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Work
A Riemannian Accelerated Proximal Gradient Method

Content

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x).

Proximal gradient methods

Accelerated proximal gradient methods

Accelerated version of ManPG [HW21b];
Accelerated version of RPG [HW21a];
Accelerated version with theoretical guarantee [FJHY25];

A proximal Newton method
[HW21a] W. Huang and K. Wei. An extension of fast iterative shrinkage-thresholding algorithm to

Riemannian optimization for sparse principal component analysis. Numerical Linear Algebra with
Applications, 29(1): e2409, 2022.

[HW21b] W. Huang and K. Wei. Riemannian proximal gradient methods. Mathematical
Programming, 194(1-2):371-413,2022.

[FJHY25] S. Feng, Y. Jiang, W. Huang, and S. Ying. A Riemannian Accelerated Proximal Gradient
Method, 2025.
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Related Work
A Riemannian Accelerated Proximal Gradient Method

Related Work
Euclidean Setting

A proximal gradient method, initial iterate x0:{
dk = arg minp 〈∇f (xk), p〉 + L

2‖p‖
2
F + h(xk + p) (Proximal mapping)

xk+1 = xk + dk (Update iterates)

FISTA in convex [BT09]:

Given x0, let y0 = x0, t0 = 1;
dyk = argminp〈∇f (yk), p〉+ L

2
‖p‖2

F + h(yk + p)
xk+1 = yk + dyk

tk+1 =

√
4t2

k
+1+1

2

yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk).

Based on the Nesterov momentum technique;

Two-point iterative sequence: xk and yk ;

O
(

1
k2

)
sublinear convergence rate for convex f and h;

1. The update rule: xk+1 = arg minx f (xk ) + 〈∇f (xk ), x − xk〉 + L
2 ‖x − xk‖2 + h(x).Wen Huang Difficulties from Euclidean to Riemannian
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Related Work
A Riemannian Accelerated Proximal Gradient Method

Related Work
Euclidean Setting

FISTA in strongly convex [dST+21]:

Given x0, let z0 = x0,A0 = 0, q =
µ

L
(µ ≥ 0);

Ak+1 =
2Ak+1+

√
4Ak+4qA2

k
+1

2(1−q)

τk =
(Ak+1−Ak )(1+qAk )

Ak+1+2qAkAk+1−qA2
k
, γk =

Ak+1−Ak

1+qAk+1

yk = xk + τk(zk − xk)
dyk = argminp〈∇f (yk), p〉+ L

2
‖p‖2

F + h(yk + p)
xk+1 = yk + dyk
zk+1 = (1− qγk)zk + qγkyk + γkdk .

Three-point iterative sequence: xk , yk and zk ;

min{O
(

1
k2

)
, O

(
1−√q

)k} convergence rate for strongly convex f and
convex h;

A unified accelerated method;

[dST+21] A. d’Aspremont, D. Scieur and A. Taylor. Acceleration methods. Foundations and Trends
in Optimization, 5(1-2): 1–245, 2021.
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1
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)
, O
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1−√q

)k} convergence rate for strongly convex f and
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Related Work
A Riemannian Accelerated Proximal Gradient Method

Riemannian Version of FISTA
Euclidean version:

[BT09] convex: Given x0, let y0 = x0, t0 = 1;
dyk = argminp〈∇f (yk), p〉+ L

2
‖p‖2

F + h(yk + p)
xk+1 = yk + dyk

tk+1 =

√
4t2

k
+1+1

2

yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk).

Riemannian version 1

Riemannian version 2

[HW21b], AManPG: Given x0, let y0 = x0, t0 = 1;
ηyk = arg minη∈Tyk

M 〈∇f (yk), η〉 + L
2
‖η‖2

F + h(yk + η)

xk+1 = Ryk (ηyk )

tk+1 =

√
4t2

k
+1+1

2

yk+1 = Rxk+1

(
1−tk
tk+1

R−1
xk+1

(xk)
)
.

Observe acceleration empirically;

No theoretical guarantee for acceleration;

[HW22a] W. Huang and K. Wei. An extension of fast iterative shrinkage-thresholding algorithm to
Riemannian optimization for sparse principal component analysis. Numerical Linear Algebra with
Applications, 29(1): e2409, 2022.

[HW22b] W. Huang and K. Wei. Riemannian proximal gradient methods. Mathematical Programming,
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Related Work
Riemannian Setting

min
x∈M

F (x) = f (x) + h(x),

In smooth case: h = 0, Riemannian Accelerated Gradient Methods

[LSC+17] [ZS18] [AS20] [JS22] [AOBL21] [MR22] [KY22] [MRP23]

[KY22] Given x0, let z0 = x0;
yk = Expxk

(
τkExp

−1
xk

(zk)
)

xk+1 = Expyk
(−αk grad f (yk))

vyk = βkExp
−1
yk

(zk)− γk grad f (yk)

zk+1 = Expxk+1

(
Γ
xk+1
yk

(
vyk − Exp−1

yk
(xk+1)

))
.

Accelerated convergence rates for geodesically convex f and geodesically
strongly convex f , respectively;

No unified parameters for accelerated gradient methods that works for both
geodesically convex and geodesically strongly convex functions;

[KY22] J. Kim and I. Yang. Accelerated gradient methods for geodesically convex optimization:
tractable algorithms and convergence analysis. PMLR, 162: 11255–11282, 2022.

Wen Huang Difficulties from Euclidean to Riemannian
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Related Work
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The Proposed Approach

Riemannian accelerated proximal gradient method (RAPG)

Riemannian proximal mapping [HW21a];

Nesterov’s acceleration;

A three-point iterative method;
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A Riemannian Accelerated Proximal Gradient Method

The Proposed Approach

Riemannian accelerated proximal gradient method (RAPG)
Initial iterate x0, let z0 = x0;

1 yk = Expxk

(
τkExp

−1
xk

(zk)
)
;

2 ηyk is a stationary point of `yk (η) on TykM with `yk (0) > `yk (ηyk ), where
`yk (η) = 〈grad f (yk) , η〉+ θL

2
‖η‖2

yk + h
(
Expyk

(η)
)
;

3 xk+1 = Expyk
(ηyk );

4 vyk = βkExp
−1
yk

(zk) + γkηyk , zk+1 = Expxk+1

(
Γ
xk+1
yk (vyk − ηyk )

)
;
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1 Step 1: compute yk ; note that xk , yk and zk are on a
geodesic;

2 Step 2: compute a Riemannian proximal gradient
direction ηyk ;

3 Step 3: update xk+1 by exponential map;

4 Step 4: update zk+1 by exponential map and parallel
transport;
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Next, we will show:

1 Assumptions on Manifolds and functions;

2 Parameter expressions for τk , βk , γk ;

3 Convergence rate of RAPG;
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Assumptions on Manifolds and Functions

Assumption on Manifold:

1 Let Ω be a geodesically uniquely convex subset of M. The diameter of
Ω satisfies diam(Ω) 6 D <∞;

2 The sectional curvature of Ω is bounded below by κmin and above by
κmax. If κmax > 0, it is additionally assumed that D < π√

κmax
;

For the eigenvalues of the Hessian matrix of the squared distance function
1
2d

2(·, p) on Ω ⊂M, where p ∈ Ω:

the upper bound:

ζ =

{ √
−κminD coth (

√
−κminD) , if κmin < 0

1, if κmin > 0

the lower bound:

δ =

{
1, if κmax 6 0√
κmaxD cot

(√
κmaxD

)
, if κmax > 0

Choose ξ > ζ.

Assumption on functions:

1 The function f is geodesically L-smooth and geodesically µ-strongly
convex (µ > 0) in Ω;

2 The function h is ρ-retraction-convex with respect to the exponential
map in Ω;

Wen Huang Difficulties from Euclidean to Riemannian
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Assumptions on Manifold and Functions

ρ-retraction-convex:

h̃x(η) = h(Rx(η)) + ρ
2‖η‖

2 is convex in tangent space.

ρ > 0, h is said to be ρ-weakly retraction-convex with respect to R;

ρ = 0, h is said to be retraction-convex with respect to R;

ρ < 0, h is said to be ρ-strongly retraction-convex with respect to R.

Weakly Retraction-Convex: A Necessary Assumption

e.g. ‖x‖1 is locally weakly retraction-convex on the embedded submanifold
of Rn.

Wen Huang Difficulties from Euclidean to Riemannian



27/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Work
A Riemannian Accelerated Proximal Gradient Method

Assumptions on Manifold and Functions

ρ-retraction-convex:

h̃x(η) = h(Rx(η)) + ρ
2‖η‖

2 is convex in tangent space.

ρ > 0, h is said to be ρ-weakly retraction-convex with respect to R;

ρ = 0, h is said to be retraction-convex with respect to R;

ρ < 0, h is said to be ρ-strongly retraction-convex with respect to R.

Weakly Retraction-Convex: A Necessary Assumption

e.g. ‖x‖1 is locally weakly retraction-convex on the embedded submanifold
of Rn.

Wen Huang Difficulties from Euclidean to Riemannian



28/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Work
A Riemannian Accelerated Proximal Gradient Method

Parameter Expressions for βk , γk , τk

Under assumptions on manifold and functions:

Ak+1 =
ξ + 2ξAk +

√
ξ2 + 4ξ2Ak + 4 µ−ρ

θL−ρ
ξA2

k

2
(
ξ − µ−ρ

θL−ρ

) ,

βk =
ξ(θL− ρ) + (µ− ρ)Ak

ξ(θL− ρ) + (µ− ρ)Ak+1
, γk =

(θL− ρ)(Ak+1 − Ak)

ξ(θL− ρ) + (µ− ρ)Ak+1
, τk =

βkAk+1

γkAk + βkAk+1
;

Reduce to Euclidean space:

if ξ = 1, ρ = 0, RAPG is FISTA in strongly convex [dST+21];

otherwise, it is new as far as we known;

On manifold:

Our parameter settings apply to both convex and strongly convex
cases on manifold, leading to a unified accelerated algorithm.
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Convergence Rate of RAPG

Under assumptions on manifold and functions:

Sublinear convergence for µ > ρ: O
(

1
k2

)
;

Linear convergence for µ > ρ:

min

{(
1−

√
µ− ρ

(θL− ρ)ξ

)k

C1,
2(

k + 2
√
A0

)2 C2

}
.

Assumption on functions:

1 The function f is geodesically L-smooth and geodesically µ-strongly convex
(µ > 0) in Ω;

2 The function h is ρ-retraction-convex with respect to the exponential map in
Ω;

F (x) = f (x) + h(x)
Wen Huang Difficulties from Euclidean to Riemannian



30/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Work
A Riemannian Accelerated Proximal Gradient Method

Convergence Rate of RAPG

Sketch of the analysis

The core of our analysis is the construction of a potential function (or
Lyapunov function) Φk that combines:

1 the function value gap;

2 the distance from the iterate to the optimal point; and

3 distortion error from curvature;

Φk = Ak(F (xk)− F (x∗))

+
ξ(θL− ρ) + (µ− ρ)Ak

2

(∥∥Exp−1
xk (zk)− Exp−1

xk (x∗)
∥∥2

+ (ξ − 1)
∥∥Exp−1

xk (zk)
∥∥2
)

A convergence rate of O(1/Ak) is achieved if Φk+1 6 Φk is satisfied.
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The limit of RAPG:

RAPG is theoretically supported only under the convexity of both f
and h on manifolds;

What happens in the nonconvex case?

We develop an improved version of the method.
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Adaptive Restart for RAPG

Adaptive Restart for Riemannian Accelerated Proximal Gradient Method
(AR-RAPG)

1: Set z0 = x0, x̃0 = x0, θ > 1, L = Linit, i = 0, and j = N0;
2: for k = 0, 1, 2, · · · do
3: if k == j then

4: [x̃i+1, xk , zk ,Ak ,Ni+1, L] = Safeguard(x̃i , xk , zk ,Ak ,Ni , L);
5: Set j = j + Ni+1 and i = i + 1;
6: end if
7: (Ak+1, βk , γk , τk) are derived from the same formulas as in RAPG;
8: Compute yk , xk+1, zk+1 as in RAPG;
9: end for

Safeguard strategy from [HW21a];

The functions f and h are not required to be convex on manifold;

If the convexity of the functions is not known, we simply set µ = 0 and
ρ = 0;

[HW22b] W. Huang and K. Wei. Riemannian proximal gradient methods. Mathematical
Programming, 194(1-2):371-413,2022.
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Adaptive Restart for RAPG
Safeguard

Require: (x̃i , xk , zk ,Ak ,Ni , L);
Ensure: [x̃i+1, xk , zk ,Ak ,Ni+1, L];

1: ηx̃i is a stationary point of `x̃i (η) on Txi
M with `x̃i (0) > `x̃i

(
ηx̃i
)

;
2: Set αi = 1, ils = 0;
3: while F (Expx̃i

(αiηx̃i )) > F (x̃i )− σαi‖ηx̃i ‖
2 and ils < Nls do

4: αi = ραi , ils = ils + 1;
5: end while
6: if ils == Nls then

7: L = τL and go to Step 1; The estimation of L is too small
8: end if
9: if F (Expx̃i

(αiηx̃i ) < F (xk ) then

10: Safeguard takes effect
11: if Ni 6= Nmax then
12: L = τL;
13: end if
14: xk = Expx̃i

(αiηx̃i ), zk = xk , Ak = A0; {Restart}
15: Ni+1 = max{Ni − 1,Nmin};
16: else
17: xk , zk , and Ak keep unchanged; No restart
18: Ni+1 = min{Ni + 1,Nmax};
19: end if
20: x̃i+1 = xk .

Adaptively update the
smoothness parameter L;

Guarantee a decrease in
the function value after
a finite number of
iterations;
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Adaptive Restart for RAPG

Theorem (Convergence)

Under assumptions of Manifolds, if

1 Ω is compact;

2 all iterates remian in Ω;

3 f is smooth, h is locally Lipschitz continuous,

then any accumulation point x̃∗ of the sequence {x̃i} generated by
AR-RAPG is a stationary point.
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Numerical Experiments
Convergence rate verification of RAPG and RPG

min
x∈Sn−1

F (x) = −xTATAx︸ ︷︷ ︸
f1(x)

+λ‖x‖1︸ ︷︷ ︸
h(x)

,

A = USV T + e;

S ∈ Rm×n: first m columns are diag(m + c ,m,m − 1, · · · , 2) with c
varying from 0.01 to 1, and the remaining columns are zero;

e is a small noise;
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Numerical Experiments
Convergence rate verification of RAPG and RPG
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Figure: Empirical relationship between κ and 1
1−es

for RAPG and RPG.

m = 20, n = 1000, λ = 10−4.

Wen Huang Difficulties from Euclidean to Riemannian



37/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Work
A Riemannian Accelerated Proximal Gradient Method

Numerical Experiments
Effectiveness of the safeguard in AR-RAPG

min
X∈OB(p,n)

F (X ) = ‖XTATAX − D2‖2
F︸ ︷︷ ︸

f2(X )

+λ‖X‖1︸ ︷︷ ︸
h(X )

Oblique manifold:
OB(p, n) = {X ∈ Rn×p | xTi xi = 1, i = 1, · · · , p};
Entries of A: standard normal distribution N (0, 1);

Each column of A: zero mean and unit 2-norm;
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Numerical Experiments
Effectiveness of the safeguard in AR-RAPG
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Figure: Comparison of RPG, RAPG, and AR-RAPG for the SPCA problem on
oblique manifold. λ = 1, m = 20, n = 200, p = 4. Left: L = 2‖D2‖2

F ; Right:
L = 1.2‖D2‖2

F .
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Numerical Experiments

Sparse PCA problem:

min
X∈OB(p,n)

‖XTATAX − D2‖2
F + λ‖X‖1,

OB(p, n) = {X ∈ Rn×p | xTi xi = 1, i = 1, . . . , p} denotes the
oblique manifold;

xi being the i-th column of X ;

A ∈ Rm×n is the data matrix and p ≤ m;

D is a diagonal matrix with the dominant singular values of A on the
diagonal;

Compared with:

ManPG, ManPG-Ada: in [CMSZ20];

RPG: in [HW21a];

Wen Huang Difficulties from Euclidean to Riemannian



40/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Work
A Riemannian Accelerated Proximal Gradient Method

Numerical Experiments

Left: the norm of search direction;
Right: function value.
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Figure: SPCA problem on oblique manifold. n = 200, m = 20, p = 4.
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Numerical Experiments

For m = 20, p = 4, n = {32, 64, 128, 256}.
Left: number of iterations;
Right: CPU time.
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Numerical Experiments

For m = 20, n = 128, p = {1, 2, 3, 4}.
Left: number of iterations;
Right: CPU time.
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Related Proximal Newton Methods
A Riemannian Proximal Newton Method

Content

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x).

Proximal gradient methods

Inexact proximal gradient methods

A proximal Newton method

Related proximal Newton methods
A Riemannian proximal Newton method
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Related Proximal Newton Methods
Euclidean version

Given x0;{
dk = argminp〈∇f (xk), p〉+ 1

2 〈p,Hkp〉 + h(xk + p)
xk+1 = xk + tkdk , for a step size tk

Hk is Hessian or a positive definite approximation to
Hessian [LSS14, MYZZ22];

tk is one for sufficiently large k;

Quadratic/Superlinear convergence rate for strongly convex f and
convex h;

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[MYZZ22] Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally
convergent proximal newton-type method in nonsmooth convex optimization. Mathematical
Programming, pages 1-38, 2022.
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Related Proximal Newton Methods
A Riemannian Proximal Newton Method

Related Proximal Newton Methods
Riemannian version: a naive generalization

Focus on embedded submanifolds
Euclidean version:{

dk = argminp〈∇f (xk), p〉+ 1
2 〈p,∇

2f (xk)p〉 + h(xk + p)
xk+1 = xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:{

ηk = arg minη∈Txk
M 〈grad f (xk), η〉 + 1

2 〈η,Hess f (xk)η〉 + h(xk + η)

xk+1 = Rxk (ηk)

Does it converge superlinearly locally?

Not necessarily!
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Related Proximal Newton Methods
A Riemannian Proximal Newton Method

Related Proximal Newton Methods
Riemannian version: a naive generalization

Consider the Sparse PCA over sphere:

min
x∈Sn−1

−xTATAx + µ‖x‖1,

where f (x) = −xTATAx , h(x) = µ‖x‖1.
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Figure: Comparisons of native generalization (RPN-N) and the proximal
gradient method (ManPG) in [CMSZ20].
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Related Proximal Newton Methods
Riemannian version: a naive generalization

Euclidean version:{
dk = argminp〈∇f (xk), p〉+ 1

2 〈p,∇
2f (xk)p〉 + h(xk + p)

xk+1 = xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:{

ηk = arg minη∈Txk
M 〈grad f (xk ), η〉 + 1

2
〈η,Hess f (xk )η〉 + h(xk + η)

xk+1 = Rxk (ηk )

{
ηk = arg minη∈Txk

M 〈grad f (xk ), η〉 + 1
2
〈η,Hess f (xk )η〉 + h(xk + η + 1

2
Π(η, η))

xk+1 = Rxk (ηk )

xk + η in h is only a first order approximation;

If an second order approximation is used, then the subproblem is
difficult to solve;
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Related Proximal Newton Methods
Riemannian version: a naive generalization
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A Riemannian Proximal Newton Method
Riemannian version

A Riemannian proximal Newton method (RPN)

1 Compute

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));
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A Riemannian Proximal Newton Method
Riemannian version

A Riemannian proximal Newton method (RPN)

1 Compute

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));

1 Step 1: compute a Riemannian proximal gradient direction (ManPG)

2 Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);

3 Step 3: Update iterate by a retraction;
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A Riemannian proximal Newton method (RPN)

1 Compute

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));

Next, we will show:

1 G-semismoothness of v(xk) and its generalized Jacobi;

2 Superlinear convergence rate;
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A Riemannian Proximal Newton Method
Riemannian version

Definition (G-Semismoothness [Gow04])

Let F : D → Rm where D ⊂ Rn be an open set, K : D ⇒ Rm×n be a
nonempty set-valued mapping. We say that F is G-semismooth at x ∈ D
with respect to K if for any J ∈ K(x + d),

F (x + d)− F (x)− Jd = o(‖d‖) as d → 0.

If F is G-semismooth at any x ∈ D with respect to K, then F is called a
G-semismooth function with respect to K.

The standard definition of semismoothness additional requires:

K is compact valued, upper semicontinuous set-valued mapping;

F is a locally Lipschitz continuous function;

F is directionally differentiable at x ;
[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and

semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.
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A Riemannian Proximal Newton Method
Riemannian version

v(x) (dropping the subscript for simplicity)

v(x) = argmin
v∈TxM

f (x) + 〈∇f (x), v〉 +
1

2t
‖v‖2

F + h(x + v);

Above problem can be rewritten as

arg min
BT
x v=0

〈ξx , v〉 +
1

2t
‖v‖2

F + h(x + v)

where BT
x v = (〈b1, v〉, 〈b2, v〉, . . . , 〈bm, v〉)T , and {b1, . . . , bm} forms an

orthonormal basis of T⊥x M.
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A Riemannian Proximal Newton Method
Riemannian version

The Lagrangian function:

L(v , λ) = 〈ξx , v〉+
1

2t
〈v , v〉+ h(X + v)− 〈λ,BT

x v〉.

Therefore

KKT:

{
∂vL(v , λ) = 0

BT
x v = 0

=⇒
{

v = Proxth (x − t(ξx − Bxλ))− x
BT
x v = 0

where Proxtg (z) = argminv∈Rn×p
1
2‖v − z‖2

F + th(v).

Define

F : Rn×Rn+d 7→ Rn+d : (x ; v , λ) 7→
(
v + x − Proxth

(
x − t[∇f (x) + Bxλ]

)
BT
x v

)
.

v(x) is the solution of the system F(x , v(x), λ(x)) = 0;
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Riemannian version

Define

F : Rn×Rn+d 7→ Rn+d : (x ; v , λ) 7→
(
v + x − Proxth

(
x − t[∇f (x) + Bxλ]

)
BT
x v

)
.

F is semismooth;

v(x) is G-semismooth by the G-semismooth Implicit Function
Theorem in [Gow04, PSS03];

[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and
semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.

[PSS03] Jong-Shi Pang, Defeng Sun, and Jie Sun. Semismo oth homeomorphisms and strong
stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research,
28(1):39-63, 2003.
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A Riemannian Proximal Newton Method
Riemannian version

Lemma (Semismooth Implicit Function Theorem)

Suppose that F : Rn × Rm → Rm is a semismooth function with respect
to ∂BF in an open neighborhood of (x0, y0) with F (x0, y0) = 0. Let
H(y) = F (x0, y), if every matrix in ∂CH(y0) is nonsingular, then there
exists an open set V ⊂ Rn containing x0, a set-valued fucntion
K : V → Rm×n, and a G-semismooth function f : V → Rm with respect
to K satisfying f (x0) = y0, for every x ∈ V,

F (x , f (x)) = 0,

and the set-valued function K is

K : x 7→ {−(Ay )−1Ax : [Ax Ay ] ∈ ∂BF
(
x , f (x)

)
},

where the map x 7→ K(x) is compact valued and upper semicontinuous.

Not new but an arrangement of existing results.
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A Riemannian Proximal Newton Method
Riemannian version

Without loss of generality, we assume that the nonzero entries of x∗ are
in the first part, i.e., x∗ = [x̄T∗ , 0

T ]T

Assumption

Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank.

v(x) is a G-semismooth function of x in a neighborhood of x∗

Under the above Assumption, there exists a neighborhood U of x∗ such
that v : U → Rn : x 7→ v(x) is a G-semismooth function with respect to
Kv , where

Kv : x 7→
{
−[In, 0]B−1A : [A B] ∈ ∂BF

(
x , v(x), λ(x)

)}
.

For x ∈ U , any element of Kv (x) is called a generalized Jacobi of v at x .

Here, the semismooth implicit function theorem is used
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A Riemannian Proximal Newton Method
Riemannian version

Without loss of generality, we assume that the nonzero entries of x∗ are
in the first part, i.e., x∗ = [x̄T∗ , 0

T ]T

Assumption

Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank.

v(x) is a G-semismooth function of x in a neighborhood of x∗

Under the above Assumption, there exists a neighborhood U of x∗ such
that v : U → Rn : x 7→ v(x) is a G-semismooth function with respect to
Kv , where

Kv : x 7→
{
−[In, 0]B−1A : [A B] ∈ ∂BF

(
x , v(x), λ(x)

)}
.

For x ∈ U , any element of Kv (x) is called a generalized Jacobi of v at x .

Here, the semismooth implicit function theorem is used
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Riemannian version

The generalized Jacobi of v at x is{
Jx |Jx [ω] = −

[
In−Λx + tΛx(∇2f (x)− Lx)

]
ω −MxBxHx(DBT

x [ω])v ,∀ω

Mx ∈ ∂Cproxth(x)
}
,

where Λx = Mx −MxBxHxB
T
x Mk , Hx =

(
BT
x MxBx

)−1
,

Lx(·) =Wx(·,Bxλ(x)), and Wx denotes the Weingarten map;

v(x∗) = 0;

Set J(x) = In−Λx + tΛx(∇2f (x)− Lx);

The Riemannian proximal Newton direction: J(x)u(x) = −v(x);

Let u(x) = (ū(x); û(x)), then

û(x) = v̂ and J̄(x)ū(x) = −v̄(x)

Wen Huang Difficulties from Euclidean to Riemannian



56/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Proximal Newton Methods
A Riemannian Proximal Newton Method

A Riemannian Proximal Newton Method
Riemannian version

Assumption:

1 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.

Wen Huang Difficulties from Euclidean to Riemannian



56/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Proximal Newton Methods
A Riemannian Proximal Newton Method

A Riemannian Proximal Newton Method
Riemannian version

Assumption:

1 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.

v(x) = argmin
v∈TxM

f (x) + 〈∇f (x), v〉 +
1

2t
‖v‖2

F + h(x + v)
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Riemannian version

Assumption:

1 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.

Theorem

Suppose that x∗ be a local optimal minimizer. Under the above
Assumptions, assume that J(x∗) is nonsingular. Then there exists a
neighborhood U of x∗ on M such that for any x0 ∈ U , RPN Algorithm
generates the sequence {xk} converging quadratically to x∗.

If the intersection of manifold and sparsity constraints forms an embedded
manifold around x∗, then ¯∇2f (x∗)− L̄ � 0. If ¯∇2f (x∗)− L̄ � 0, then J(x∗)
is nonsingular.
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Riemannian version
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A Riemannian Proximal Newton Method
Riemannian version

Smooth case: min
x∈M

f (x)

KKT conditions:

∇f (x) +
1

t
v + Bxλ = 0, and BT

x v = 0;

Closed form solutions:

λ(x) = −BT
x ∇f (x), v = −t grad f (x);

Action of J(x): for ω ∈ TxM

J(x)[ω] =− tPTxM(∇2f (x)− Lx)PTxMω = −t Hess f (x)[ω]

J(x)u(x) = −v(x) =⇒ Hess f (x)[u(x)] = − grad f (x);

It is the Riemannian Newton method;
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A Riemannian Proximal Newton Method
Numerical Experiments

Sparse PCA problem

min
X∈St(r ,n)

− trace(XTATAX ) + µ‖X‖1,

where A ∈ Rm×n is a data matrix and
St(r , n) = {X ∈ Rn×r | XTX = Ir} is the compact Stiefel manifold.

Rx(ηx) = (x + ηx)(I + ηTx ηx)−1/2;

t = 1/(2‖A‖2
2);

Run ManPG until ‖v‖ reaches 10−4, i.e., it reduces by a factor
of 103. The resulting x as the input of RPN;
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A Riemannian Proximal Newton Method
Numerical Experiments
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Figure: Random data. Left: different n = {100, 200, 300, 400} with r = 5 and
µ = 0.6; Right: different r = {2, 4, 6, 8} with n = 300 and µ = 0.8
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Summary

Review Euclidean proximal Newton methods;

Riemannian proximal Newton method;

Convergence analysis;

Numerical experiments;

W. Si, P.-A. Absil, W. Huang, R. Jiang, S. Vary, A Riemannian Proximal
Newton Method, SIAM Journal on Optimization, 34:1, pp. 654-681,
2024.
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Thank you

Thank you!

Wen Huang Difficulties from Euclidean to Riemannian



62/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Proximal Newton Methods
A Riemannian Proximal Newton Method

References I

P.-A. Absil, R. Mahony, and R. Sepulchre.

Optimization algorithms on matrix manifolds.
Princeton University Press, Princeton, NJ, 2008.

Foivos Alimisis, Antonio Orvieto, Gary Becigneul, and Aurelien Lucchi.

Momentum improves optimization on Riemannian manifolds.
In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of
Machine Learning Research, pages 1351–1359, 2021.

Kwangjun Ahn and Suvrit Sra.

From Nesterov’s estimate sequence to Riemannian acceleration.
In Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages
84–118, 2020.

Nicolas Boumal, P-A Absil, and Coralia Cartis.

Global rates of convergence for nonconvex optimization on manifolds.
IMA Journal of Numerical Analysis, 39(1):1–33, 02 2018.

G. C. Bento, J. X. de Cruz Neto, and P. R. Oliveira.

Convergence of inexact descent methods for nonconvex optimization on Riemannian manifold.
arXiv preprint arXiv:1103.4828, 2011.

Matthias Bollh ofer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk.

Large-scale sparse inverse covariance matrix estimation.
SIAM Journal on Scientific Computing, 41(1):A380–A401, 2019.

A. Beck and M. Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, January 2009.
doi:10.1137/080716542.

Wen Huang Difficulties from Euclidean to Riemannian



63/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Proximal Newton Methods
A Riemannian Proximal Newton Method

References II

Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, and Tong Zhang.

Proximal gradient method for nonsmooth optimization over the Stiefel manifold.
SIAM Journal on Optimization, 30(1):210–239, 2020.

Haoran Chen, Yanfeng Sun, Junbin Gao, Yongli Hu, and Baocai Yin.

Fast optimization algorithm on riemannian manifolds and its application in low-rank learning.
Neurocomputing, 291:59 – 70, 2018.

Alexandre d’Aspremont, Damien Scieur, Adrien Taylor, et al.

Acceleration methods.
Foundations and Trends R© in Optimization, 5(1-2):1–245, 2021.

Octavian Eugen Ganea, Gary Becigneul, and Thomas Hofmann.

Hyperbolic entailment cones for learning hierarchical embeddings.
35th International Conference on Machine Learning, ICML 2018, 4:2661–2673, 2018.

M Seetharama Gowda.

Inverse and implicit function theorems for h-differentiable and semismooth functions.
Optimization Methods and Software, 19(5):443–461, 2004.

W. Huang and K. Wei.

Riemannian proximal gradient methods.
Mathematical Programming, 2021.
published online, DOI:10.1007/s10107-021-01632-3.

Wen Huang and Ke Wei.

An extension of fast iterative shrinkage-thresholding algorithm to Riemannian optimization for sparse principal component
analysis.
Numerical Linear Algebra with Applications, page e2409, 2021.

Wen Huang Difficulties from Euclidean to Riemannian



64/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Proximal Newton Methods
A Riemannian Proximal Newton Method

References III

Wen Huang, Meng Wei, Kyle A. Gallivan, and Paul Van Dooren.

A Riemannian Optimization Approach to Clustering Problems, 2022.

Jikai Jin and Suvrit Sra.

Understanding Riemannian acceleration via a proximal extragradient framework.
In Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pages
2924–2962, 2022.

Jungbin Kim and Insoon Yang.

Accelerated gradient methods for geodesically convex optimization: tractable algorithms and convergence analysis.
In Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 11255–11282, 2022.

Yuan Yuan Liu, Fan Hua Shang, James Cheng, Hong Cheng, and Licheng Jiao.

Accelerated first-order methods for geodesically convex optimization on Riemannian manifolds.
In Advances in Neural Information Processing Systems, pages 4868–4877, 2017.

Jason D Lee, Yuekai Sun, and Michael A Saunders.

Proximal newton-type methods for minimizing composite functions.
SIAM Journal on Optimization, 24(3):1420–1443, 2014.

David Mart́ınez-Rubio.

Global Riemannian acceleration in hyperbolic and spherical spaces.
In Proceedings of the 33rd International Conference on Algorithmic Learning Theory, volume 167 of Proceedings of Machine
Learning Research, pages 768–826, 2022.

David Mart́ınez-Rubio and Sebastian Pokutta.

Accelerated Riemannian optimization: Handling constraints with a prox to bound geometric penalties.
In Proceedings of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning Research, pages
359–393, 2023.

Wen Huang Difficulties from Euclidean to Riemannian



65/65

Proximal Gradient Methods
Accelerated Proximal Gradient Methods
Riemannian Proximal-Newton Methods

Related Proximal Newton Methods
A Riemannian Proximal Newton Method

References IV

Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang.

A globally convergent proximal newton-type method in nonsmooth convex optimization.
Mathematical Programming, pages 1–38, 2022.
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