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Problem Statement

Optimization on Manifolds with Structure:

min
x∈M

F (x) = f (x) + h(x),

M is a finite-dimensional Riemannian manifold;

f is smooth and may be nonconvex; and

h(x) is continuous and convex but may be nonsmooth;

M

R
f

Applications: sparse PCA [ZHT06], compressed model [OLCO13],
sparse partial least squares regression [CSG+18], sparse inverse
covariance estimation [BESS19], sparse blind deconvolution [ZLK+17],
and clustering [HWGVD22].
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Existing Nonsmooth Optimization on Manifolds

F :M→ R is Lipschitz continuous

Huang (2013), Gradient sampling method without convergence
analysis.

Grohs and Hosseini (2015), Two ε-subgradient-based optimization
methods using line search strategy and trust region strategy,
respectively. Any limit point is a critical point.

Hosseini and Uschmajew (2017), Gradient sampling method and any
limit point is a critical point.

Hosseini, Huang, and Yousefpour (2018), Merge ε-subgradient-based
and quasi-Newton ideas and show any limit point is a critical point.

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Existing Nonsmooth Optimization on Manifolds

F :M→ R is convex

Zhang and Sra (2016), subgradient-based method and function
value converges to the optimal O(1/

√
k).

Ferreira and Oliveira (2002) proximal point method, convergence
using convexity
Bento, da Cruz Neto and Oliveira (2011), convergence using
Kurdyka- Lojasiewicz (KL); and
Bento, Ferreira, and Melo (2017), function value converges to the
optimal O(1/k) on Hadamard manifold using convexity

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Existing Nonsmooth Optimization on Manifolds

F = f + g , where f is L-con, and g is non-smooth

Chen, Ma, So, and Zhang (2018), A proximal gradient method with
global convergence

Xiao, Liu, and Yuan (2021), Infeasible approach over the Stiefel
manifold

Zhou, Bao, and Ding (2022), An augmented Lagrangian method on
matrix manifolds

Huang and Wei (2021-2023), A Riemannian proximal gradient
method, an inexact Riemannian proximal gradient method, and a
modified FISTA on embedded manifolds

Wang and Yang (2023), A proximal quasi-Newton method on
manifolds on the Stiefel manifold

Huang, Meng, Gallivan, and Van Dooren (2023), An inexact
proximal gradient method on embedded submanifolds

Beck and Rosset (2023), A dynamic smoothing technique

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Outline

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x).

Proximal gradient methods

Inexact proximal gradient methods

A proximal Newton method

[HW2021]: W. Huang and K. Wei, Riemannian proximal gradient methods, Mathematics
Programming, 194, 371-413, 2022.

[HW2023]: An inexact Riemannian proximal gradient method, Computational Optimization and
Applications, 85, 1-32, 2023

[HWGV2023]: A Riemannian optimization approach to clustering problems, arxiv, 2023
[SAHJV2023]: A Riemannian proximal Newton method, arxiv, 2023

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Outline

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x).

Proximal gradient methods

Euclidean version
Riemannian version in [CMSZ20]
Riemannian version in [HW21a]

Inexact proximal gradient methods

A proximal Newton method

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Proximal Gradient Method
Euclidean version

Optimization with Structure: M = Rn

min
x∈Rn

F (x) = f (x) + h(x).

initial iterate:x0,{
dk = arg minp∈Rn 〈∇f (xk), p〉 + L

2‖p‖
2
F + h(xk + p), (Proximal mapping)

xk+1 = xk + dk . (Update iterates)

h = 0: reduce to steepest descent method;

L: greater than the Lipschitz constant of ∇f ;

Proximal mapping: easy to compute;

Any limit point is a critical point;

O
(

1
k

)
sublinear convergence rate for convex f and h;

Linear convergence rate for strongly convex f and convex h;

Local convergence rate by KL property;

1. The update rule: xk+1 = arg minx〈∇f (xk ), x − xk〉 + L
2 ‖x − xk‖2 + h(x).

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Proximal Gradient Method
Riemannian versions

Optimization with Structure: M

min
x∈M

F (x) = f (x) + h(x).

Euclidean proximal mapping

dk = arg min
p∈Rn
〈∇f (xk), p〉 +

L

2
‖p‖2

F + h(xk + p)

In the Riemannian setting:

How to define the proximal mapping?

Can be solved cheaply?

Share the same convergence rate?
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Proximal Gradient Method
Riemannian version in [CMSZ20]

A Riemannian proximal mapping [CMSZ20]

1 ηk = arg minη∈Txk
M 〈∇f (xk), η〉 + L

2‖η‖
2
F + h(xk + η);

2 xk+1 = Rxk (αkηk) with an appropriate step size αk ;

Only works for embedded submanifold;

Proximal mapping is defined in tangent space;

Convex programming;

Solved efficiently for the Stiefel manifold by a semi-smooth Newton
algorithm [XLWZ18];

Step size 1 is not necessary decreasing;

Convergence to a stationary point;

No convergence rate analysis;

[CMSZ18]: S. Chen, S. Ma, M. C. So, and T. Zhang, Proximal gradient method for nonsmooth
optimization over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210-239, 2020.

[XLWZ18]: X. Xiao, Y. Li, Z. Wen, and L. Zhang, A regularized semi-smooth Newton method with
projection steps for composite convex programs. Journal of Scientific Computing, 76(1):364-389,
2018.

M

x
η

TxM

Rx(η)
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Proximal Gradient Method
Riemannian version in [HW21a]

GOAL: Develop a Riemannian proximal gradient method with convergence
rate analysis and good numerical performance for some instances

A Riemannian Proximal Gradient Method (RPG)

Let `xk (η) = 〈∇f (xk), η〉xk +
L

2
‖η‖2

xk︸ ︷︷ ︸
Riemannian metric

+h( Rxk (η)︸ ︷︷ ︸
replace xk + η

);

1 ηk ∈ TxkM is a stationary point of `xk (η), and `xk (0) ≥ `k(ηk);

2 xk+1 = Rxk (ηk);

General framework for Riemannian optimization;

Step size can be fixed to be 1;

Convergence rate results;

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

This assumption hold if, for example, F is continuous and M is compact.

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

Definition

A function h :M→ R is called L-retraction-smooth with respect to a
retraction R in N ⊆M if for any x ∈ N and any Sx ⊆ TxM such that
Rx(Sx) ⊆ N , we have that

h(Rx(η)) ≤ h(x) + 〈grad h(x), η〉x +
L

2
‖η‖2

x , ∀η ∈ Sx .
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

Theoretical results:

For any accumulation point x∗ of {xk}, x∗ is a stationary point, i.e.,
0 ∈ ∂F (x∗).

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Proximal Gradient Method
Riemannian version in [HW21a]

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Definition

A function h :M→ R is called retraction-convex with respect to a
retraction R in N ⊆M if for any x ∈ N and any Sx ⊆ TxM such that
Rx(Sx) ⊆ N , there exists a tangent vector ζ ∈ TxM such that qx = h ◦ Rx

satisfies
qx(η) ≥ qx(ξ) + 〈ζ, η − ξ〉x ∀η, ξ ∈ Sx . (1)

Note that ζ = grad qx(ξ) if h is differentiable; otherwise, ζ is any
subgradient of qx at ξ.
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Proximal Gradient Method
Riemannian version in [HW21a]

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Lemma

Given x ∈M and a twice continuously differentiable function h :M→ R,
if one of the following conditions holds:

Hess h is positive definite at x, and the retraction is second order;

The manifold M is an embedded submanifold of Rn endowed with the
Euclidean metric; W is an open subset of Rn; x ∈ W;
h :W ⊂ Rn → R is a µ-strongly convex function in the Euclidean
setting for a sufficient large µ; the retraction is second order;

then there exists a neighborhood of x, denoted by Nx , such that the
function h :M→ R is retraction-convex in Nx .
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13/57

Proximal Gradient Method
Riemannian version in [HW21a]

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Nonsmooth? Example: h(x) = ‖x‖1 with exponential mapping

unit sphere: {x ∈ Rn | xT x = 1}, n = 100

Poincaré ball model [GBH18]: {x ∈ Rn | xT x < 1}, n = 100

h(Expx(tηx)) versus t

-0.01 -0.005 0 0.005 0.01

t

7.865
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7.867

7.868

g
(E

x
p
(t

 e
ta

))

Unit sphere

-0.01 -0.005 0 0.005 0.01

t

4.8175

4.818

4.8185

4.819

4.8195

g
(E

x
p
(t

 e
ta

))

Poincare ball

[GBH18] Ganea et al., Hyperbolic entailment cones for learning hierarchical embedding,

ICML, 2018.
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Proximal Gradient Method
Riemannian version in [HW21a]

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Retraction approximately satisfies the triangle relation in Ω: for all
x , y , z ∈ Ω,∣∣‖ξx − ηx‖2

x − ‖ζy‖2
y

∣∣ ≤κ‖ηx‖2
x , for a constant κ

where ηx = R−1
x (y), ξx = R−1

x (z), ζy = R−1
y (z).

In the Euclidean setting: ηx = R−1
x (y) = y − x , ξx = R−1

x (z) = z − x ,
ζy = R−1

y (z) = z − y :

ξx − ηx = (z − x)− (y − x) = z − y = ζy .

Holds for compact set Ω with the exponential mapping;
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Proximal Gradient Method
Riemannian version in [HW21a]

Additional Assumptions:

f and g are retraction-convex in Ω ⊇ Ωx0 ;

Retraction approximately satisfies the triangle relation in Ω: for all
x , y , z ∈ Ω,∣∣‖ξx − ηx‖2

x − ‖ζy‖2
y

∣∣ ≤κ‖ηx‖2
x , for a constant κ

where ηx = R−1
x (y), ξx = R−1

x (z), ζy = R−1
y (z).

Theoretical results:

Convergence rate O(1/k):

F (xk)− F (x∗) ≤
1

k

(
L

2
‖R−1

x0
(x∗)‖2

x0
+

LκC

2
(F (x0)− F (x∗))

)
.
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

Definition ( [AMS08, 7.4.3])

A function f on M is Lipschitz continuously differentiable if it is
differentiable and if there exists β1 such that, for all x , y in M with
dist(x , y) < i(M), it holds that

‖P0←1
γ grad f (y)− grad f (x)‖x ≤ β1 dist(x , y),

where γ is the unique minimizing geodesic with γ(0) = x and γ(1) = y .
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

If f is smooth and the manifold M is compact, then the function f is
Lipschitz continuously differentiable. [AMS08, Proposition 7.4.5 and
Corollary 7.4.6].

min
X∈St(p,n)

−trace(XTATAX ) + λ‖X‖1,
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

Definition

A continuous function f :M→ R is said to have the Riemannian KL property at x ∈ M if and only
if there exists ε ∈ (0,∞], a neighborhood U ⊂M of x , and a continuous concave function
ς : [0, ε]→ [0,∞) such that

ς(0) = 0, ς is C 1 on (0, ε), and ς′ > 0 on (0, η),

For every y ∈ U with f (x) < f (y) < f (x) + ε, we have

ς
′(f (y)− f (x)) dist(0, ∂f (y)) ≥ 1,

where dist(0, ∂f (y)) = inf{‖v‖y : v ∈ ∂f (y)} and ∂ denotes the Riemannian generalized
subdifferential. The function ς is called the desingularising function.
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

Theoretical results:

it holds that

∞∑
k=0

dist(xk , xk+1) <∞.

Therefore, there exists only a unique accumulation point.
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Proximal Gradient Method
Riemannian version in [HW21a]

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property [BdCNO11]

Theoretical results:

If the desingularising function has the form ς(t) = C
θ t
θ for C > 0 and

θ ∈ (0, 1] for all x ∈ Ωx0 , then

if θ = 1, then the Riemannian proximal gradient method terminates in
finite steps;
if θ ∈ [0.5, 1), then ‖xk − x∗‖ < C1d

k for C1 > 0 and d ∈ (0, 1);

if θ ∈ (0, 0.5), then ‖xk − x∗‖ < C2k
−1

1−2θ for C2 > 0;
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Proximal Gradient Method
Numerical experiments

Sparse PCA problem

min
X∈St(p,n)

− trace(XTATAX ) + λ‖X‖1,

where A ∈ Rm×n is a data matrix.

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Proximal Gradient Method
Numerical experiments

0 20 40 60 80 100

iteration

-76
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-74

-73

-72

-71

F
(X

)

ManPG

RPG

0 20 40 60 80 100

iteration

-78.5

-78

-77.5

-77

-76.5

-76

F
(X

)

ManPG

RPG

Figure: Two typical runs of ManPG, RPG, A-ManPG, and A-RPG for the
Sparse PCA problem. n = 1024, p = 4, λ = 2, m = 20.
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Outline

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x).

Proximal gradient methods

Inexact proximal gradient methods

Inexact version of RPG [HW21a]
Inexact version of ManPG [HWGVD22]

A proximal Newton method

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method

Both ManPG and RPG require the Riemannian proximal
mapping to be solved exactly

Theoretically, but not practical numerically

Can we relax this requirement and still preserve desired convergence
properties?

Inexact RPG

Inexact ManPG

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact RPG

Inexact RPG (IRPG)

Let `xk (η) = 〈gradf (xk), η〉xk + L̃
2‖η‖

2
xk + h(Rxk (η));

1 Find η̂k ∈ TxM such that

‖η̂xk − η∗xk‖ ≤ q(εk , ‖η̂xk‖) and `xk (0) ≥ `xk (η̂xk ),

where εk > 0, and q : R2 → R is a continuous function;

2 xk+1 = Rxk (η̂k);
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Inexact Proximal Gradient Method
Inexact RPG

Inexact RPG (IRPG)

Let `xk (η) = 〈gradf (xk), η〉xk + L̃
2‖η‖

2
xk + h(Rxk (η));

1 Find η̂k ∈ TxM such that

‖η̂xk − η∗xk‖ ≤ q(εk , ‖η̂xk‖) and `xk (0) ≥ `xk (η̂xk ),

where εk > 0, and q : R2 → R is a continuous function;

2 xk+1 = Rxk (η̂k);

Four choices of q lead to different convergence results:

1) Global q(εk , ‖η̂xk‖) = εk with εk → 0;

2) Global q(εk , ‖η̂xk‖) = q̃(‖η̂xk‖) with q̃ : R→ [0,∞) a continuous
function satisfying q̃(0) = 0;

3) Unique q(εk , ‖η̂xk‖) = ε2
k , with

∑∞
k=0 εk <∞; and

4) Rate q(εk , ‖η̂xk‖) = min(ε2
k , δq‖η̂xk‖2) with a constant δq > 0 and∑∞

k=0 εk <∞.
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Inexact Proximal Gradient Method
Inexact RPG

Inexact RPG (IRPG)

Let `xk (η) = 〈gradf (xk), η〉xk + L̃
2‖η‖

2
xk + h(Rxk (η));

1 Find η̂k ∈ TxM such that

‖η̂xk − η∗xk‖ ≤ q(εk , ‖η̂xk‖) and `xk (0) ≥ `xk (η̂xk ),

where εk > 0, and q : R2 → R is a continuous function;

2 xk+1 = Rxk (η̂k);

Not a Riemannian generalization of any of the existing
Euclidean inexact proximal gradient methods
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Inexact Proximal Gradient Method
Inexact RPG

Inexact proximal gradient methods in the Euclidean setting:
[Com04, FP11, SRB11, VSBV13, BPR20]

z = Proxλg (y) = argminx Φλ(x) := λh(x) + 1
2‖x − y‖2;

z satisfies

(y − z)/λ ∈ ∂Eh(z) and dist(0, ∂EΦλ(z)) = 0.

Approximation ẑ satisfies any one of the following conditions:

dist(0, ∂EΦλ(ẑ)) ≤ ε

λ
, Φλ(ẑ) ≤ min Φλ+

ε2

2λ
, and

y − ẑ

λ
∈ ∂Eε2

2λ

h(ẑ),

Algorithms based on strong convexity of the Euclidean proximal
mapping

Riemannian: may not be convex

`xk (η) = 〈gradf (xk), η〉xk +
L

2
‖η‖2

xk + h(Rxk (η))

[Com04]: Patrick L. Combettes. Solving monotone inclusions via compositions of
nonexpansive averaged operators.Optimization, 53(5-6):475–504, 2004.
[FP11]: J. M. Fadili, and G. Peyre, Total variation projection with first order schemes.
IEEE Transactions on Image Processing, 20(3), 657-669, 2001.
[SRB11]: M. Schmidt, N. Roux, and F. Bach. Convergence rates of inexact
proximal-gradient methods for convex optimization. NIPS, 2001.
[VSBV13]: S. Villa, S. Salzo, L. Baldassarre, and A. Verri. Accelerated and inexact
forward-backward algorithms. SIAM Journal on Optimization, 23(3),1607-1633, 2013
[BPR20]: S. Bonettini, M. Prato, and S. Rebegoldi. Convergence of inexact
forward–backward algorithms using the forward–backward envelope. SIAM Journal on
Optimization, 30(4), 3069-3097, 2020

Speaker: Wen Huang Riemannian proximal gradient methods and variants



20/57

Inexact Proximal Gradient Method
Inexact RPG

Inexact proximal gradient methods in the Euclidean setting:
[Com04, FP11, SRB11, VSBV13, BPR20]

z = Proxλg (y) = argminx Φλ(x) := λh(x) + 1
2‖x − y‖2;

z satisfies

(y − z)/λ ∈ ∂Eh(z) and dist(0, ∂EΦλ(z)) = 0.

Approximation ẑ satisfies any one of the following conditions:

dist(0, ∂EΦλ(ẑ)) ≤ ε

λ
, Φλ(ẑ) ≤ min Φλ+

ε2

2λ
, and

y − ẑ

λ
∈ ∂Eε2

2λ

h(ẑ),

Algorithms based on strong convexity of the Euclidean proximal
mapping

Riemannian: may not be convex

`xk (η) = 〈gradf (xk), η〉xk +
L

2
‖η‖2

xk + h(Rxk (η))
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Inexact Proximal Gradient Method
Inexact RPG

Inexact proximal gradient methods in the Euclidean setting:
[Com04, FP11, SRB11, VSBV13, BPR20]

z = Proxλg (y) = argminx Φλ(x) := λh(x) + 1
2‖x − y‖2;

z satisfies

(y − z)/λ ∈ ∂Eh(z) and dist(0, ∂EΦλ(z)) = 0.

Approximation ẑ satisfies any one of the following conditions:
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, Φλ(ẑ) ≤ min Φλ+

ε2

2λ
, and
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h(ẑ),
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2
‖η‖2
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Inexact Proximal Gradient Method
Inexact RPG

Assumption (same as the RPG):

1 The function F is bounded from below and the sublevel set
Ωx0 = {x ∈M | F (x) ≤ F (x0)} is compact;

2 The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Ωx0 .

Theoretical results:

Suppose limk→∞ q(εk , ‖η̂xk‖) = 0, then for any accumulation point x∗
of {xk}, x∗ is a stationary point, i.e., 0 ∈ ∂F (x∗).
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Inexact Proximal Gradient Method
Inexact RPG

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property

4 F is locally Lipschitz continuous with respect to the retraction R
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Inexact Proximal Gradient Method
Inexact RPG

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property

4 F is locally Lipschitz continuous with respect to the retraction R

Definition

A function h :M→ R is called locally Lipschitz continuous with respect to
a retraction R if for any compact subset N of M, there exists a constant
Lh such that for any x ∈ N and ξx , ηx ∈ TxM satisfying Rx(ξx) ∈ N and
Rx(ηx) ∈ N , it holds that |h ◦ R(ξx)− h ◦ R(ηx)| ≤ Lh‖ξx − ηx‖.
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Inexact Proximal Gradient Method
Inexact RPG

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property

4 F is locally Lipschitz continuous with respect to the retraction R

If the manifold M is an embedded submanifold and function F is locally
Lipschitz in the embedding space, then the function is locally Lipschitz
continuous with respect to any global defined retraction R.
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Inexact Proximal Gradient Method
Inexact RPG

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property

4 F is locally Lipschitz continuous with respect to the retraction R

Theoretical results:

If ‖η̂xk − η∗xk‖ ≤ ε
2
k for

∑∞
k=0 εk <∞ and εk > 0, then it holds that

∞∑
k=0

dist(xk , xk+1) <∞.

Therefore, there exists only a unique accumulation point.
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Inexact Proximal Gradient Method
Inexact RPG

Assumption:

1 Assumptions for the global convergence

2 f is locally Lipschitz continuously differentiable

3 F satisfies the Riemannian KL property

4 F is locally Lipschitz continuous with respect to the retraction R

Theoretical results:

If ‖η̂xk − η∗xk‖ ≤ min
(
ε2
k ,

β
2LF
‖η̂xk‖2

)
for
∑∞

k=0 εk <∞ and εk > 0,

and if the desingularising function has the form ς(t) = C
θ t
θ for C > 0

and θ ∈ (0, 1] for all x ∈ Ωx0 , then

if θ = 1, then the Riemannian proximal gradient method terminates in
finite steps;
if θ ∈ [0.5, 1), then ‖xk − x∗‖ < C1d

k for C1 > 0 and d ∈ (0, 1);

if θ ∈ (0, 0.5), then ‖xk − x∗‖ < C2k
−1

1−2θ for C2 > 0;

Speaker: Wen Huang Riemannian proximal gradient methods and variants



23/57

Inexact Proximal Gradient Method
Inexact RPG

IRPG

Let `xk (η) = 〈gradf (xk), η〉xk + L̃
2‖η‖

2
xk + h(Rxk (η));

1 Find η̂k ∈ TxM such that

‖η̂xk − η∗xk‖ ≤ q(εk , ‖η̂xk‖) and `xk (0) ≥ `xk (η̂xk ),

where εk > 0, and q : R2 → R is a continuous function;

How to find η̂k for different q?

Only consider manifolds with a linear ambient space;

Use the semi-smooth Newton method iteratively;

For sufficiently large L̃, ηk from ManPG guarantees global
convergence;
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Inexact RPG

IRPG
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Use the semi-smooth Newton method iteratively;

For sufficiently large L̃, ηk from ManPG guarantees global
convergence;

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact RPG

ManPG [CMSZ20]

ηk = arg min
η∈Txk

M
〈∇f (xk), η〉 +

L

2
‖η‖2

F + h(xk + η)

Above problem can be rewritten as

arg min
BT
x η=0

〈ξx , η〉 +
1

2µ
‖η‖2

F + h(x + η)

where BT
x η = (〈b1, η〉, 〈b2, η〉, . . . , 〈bm, η〉)T , and {b1, . . . , bm} forms an

orthonormal basis of NxM.

Speaker: Wen Huang Riemannian proximal gradient methods and variants



25/57

Inexact Proximal Gradient Method
Inexact RPG

The Lagrangian function:

L(η,Λ) = 〈ξx , η〉+
1

2µ
〈η, η〉+ h(X + η)− 〈Λ,BT

x η〉.

Therefore

KKT:

{
∂ηL(η,Λ) = 0

BT
x η = 0

=⇒
{
η = Proxµg (x − µ(ξx − BxΛ))− x

BT
x η = 0

where Proxµg (z) = argminv∈Rn×p
1
2‖v − z‖2

F + µh(v).

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact RPG

Semi-smooth Newton method finds the Λ such that

Ψ(Λ) := BT
x (Proxµg (x − µ(ξx − BxΛ))− x) = 0

η∗ = Proxµg (x − µ(ξx − BxΛ))− x

Ψ is not differentiable everywhere but semi-smooth for h(·) = ‖ · ‖1;

Semi-smooth Newton:
1 JΨ(Λk)[d ] = −Ψ(Λk), where JΨ is the generalized Jacobian of Ψ;
2 Λk+1 = Λk + dk

Solving the equation inexactly

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact RPG

If Ψ(Λ) = ε,

η∗ = Proxµg (x − µ(ξx − BxΛ))− x is not even in the tangent space
TxM in this case

Use η̂x := v̂(Λ) = PTxM(Proxµg (x − µ(ξx − BxΛ))− x) instead

How small does ε need to be?

‖ε‖ ≤ min(φ(v̂(Λ)), 0.5),

with φ(0) = 0 and φ is nondecreasing.

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact RPG

The function q is:

q(εk , ‖η̂xk‖) =

2Lhκ2

L̃− 2Lhκ2

‖η̂xk‖+

√
4Lhκ2 − 4L2

hκ2
2

(L̃− 2Lhκ)2
‖η̂xk‖2 +

4ϑ

L̃− 2Lhκ2

min(φ(‖η̂xk‖), 0.5)

ManPG can be viewed as an inexact RPG for sufficiently large L̃;

This q may not guarantee local convergence results;

Improving accuracy is needed;

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact RPG

ηx = arg min
η∈TxM

`x(η) := 〈∇f (x), η〉x +
L

2
‖η‖2

x + h(Rx(η))

Solving the Riemannian Proximal Mapping [HW21a]

initial iterate: η0 ∈ TxM, σ ∈ (0, 1), k = 0;

1 yk = Rx(ηk);

2 Compute

ξ∗k≈ arg min
ξ∈Tyk

M
〈T −]Rηk

(grad f (x) + L̃ηk), ξ〉x +
L̃

4
‖ξ‖2

F + h(yk + ξ);

3 Find α > 0 such that `x(ηk + αT −1
Rηk

ξ∗k ) < `x(ηk)− σα‖ξ∗k‖2
x ;

4 ηk+1 = ηk + αT −1
Rηk

ξ∗k ;

5 If ‖ξ∗k‖ is sufficiently small, then stop;

6 k ← k + 1 and goto Step 1;

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact ManPG

Inexact RPG for global convergence (IRPG)

1 Approximately solve

min
η∈Txk

M
〈grad f (xk), η〉 +

L̃

2
‖η‖2

F + h(xk + η)

such that ‖Ψk(Λ)‖F ≤ min(φ(v̂(Λ)), 0.5);

2 Let ηk = v̂(Λ);

3 xk+1 = Rxk (ηk);

Global convergence requires a sufficient large of L̃;

Step size one is used;

Is η̂x a descent direction for any positive L̃?

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact ManPG

Algorithm 1 ManPG without solving the subproblem exactly

1: Given x0, ν ∈ (0, 1), σ ∈ (0, 1/(8µ)), µ > 0;
2: for k = 0, 1, . . . do
3: Approximately solve

min
η∈Txk

M
〈grad f (xk), η〉 +

1

2µ
‖η‖2

F + h(xk + η)

such that ‖Ψk(Λ)‖F ≤
√

4µ2L2
h + ‖v̂k(Λ)‖2

F/2− 2µLh;
4: Set ηk = v̂k(Λ) and set α = 1;
5: while F (Rxk (αηxk )) > F (xk)− σα‖ηxk‖2

F do
6: α = να;
7: end while
8: xk+1 = Rxk (αηxk );
9: end for

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact ManPG

Assumption

The function f is Lipschitz continuously differentiable on M and h is
Lipschitz continuous with constant Lh.

Theorem

Suppose the assumption holds. Then for any µ > 0, there exists a
constant ᾱ ∈ (0, 1] such that for any 0 < α < ᾱ, the sequence {xk}
generated by Algorithm 1 satisfies

F (Rxk (αηxk ))− F (xk) ≤ − α

8µ
‖ηxk‖2

F .

Moreover, the step size α > ρᾱ for all k.

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Inexact ManPG

Assumption

The function f is Lipschitz continuously differentiable on M and h is
Lipschitz continuous with constant Lh.

Theorem

Suppose the assumption holds. Then any accumulation point of the
sequence {xk} generated by Algorithm 1 is a stationary point, i.e., if x∗ is
an accumulation point of the above sequence, then 0 ∈ PTx∗M∂F (x∗).

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Numerical experiments

Sparse PCA problem

min
X∈St(p,n)

− trace(XTATAX ) + λ‖X‖1,

where A ∈ Rm×n is a data matrix.

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Numerical experiments
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Figure: Average of 10 random runs, p = 4, m = 20, λ = 2;

IRPG-G: an inexact version of ManPG

IRPG-U: ψ = ε2
k

IRPG-L: ψ = min(ε2
k , %‖η̂xk‖2)
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Inexact Proximal Gradient Method
Numerical experiments

Community detection:

min
X∈F1n

−trace(XTMX ) + λ‖X‖1,

where F1n = {X ∈ Rn×k : XTX = Ik , 1n ∈ span(X )}

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Gradient Method
Numerical experiments

Comparing efficiency of I-AManPG and E-AManPG

I-A E-A I-A E-A I-A E-A I-A E-A
(n, q) (5000, 10) (5000, 20) (10000, 10) (10000, 20)

iter 63 58 47 50 55 55 73 51
SSNiter 34 311 32 381 52 330 146 376

nf 140 128 105 112 123 122 161 113
ng 81 72 60 62 71 68 92 64
nR 139 127 104 111 122 121 160 112

nSG 4 13 2 5 3 10 3 13
F −2.842 −2.842 −6.552 −6.562 −2.512 −2.512 −6.112 −6.142
‖ηzk ‖
‖ηz0
‖ 6.31−4 5.82−4 5.32−4 7.54−4 5.22−4 6.86−4 4.02−4 6.60−4

time 0.84 3.04 1.51 9.81 1.54 5.19 9.48 19.21

AManPG: add acceleration [HW21b]

I-AManPG: Inexact version

E-AManPG: Exact version, i.e., ε = 10−10

An average of 10 random runs
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Inexact Proximal Gradient Method
Numerical experiments

Comparing efficiency of I-AManPG and E-AManPG

I-A E-A I-A E-A I-A E-A I-A E-A
(n, q) (5000, 10) (5000, 20) (10000, 10) (10000, 20)

iter 63 58 47 50 55 55 73 51
SSNiter 34 311 32 381 52 330 146 376

nf 140 128 105 112 123 122 161 113
ng 81 72 60 62 71 68 92 64
nR 139 127 104 111 122 121 160 112

nSG 4 13 2 5 3 10 3 13
F −2.842 −2.842 −6.552 −6.562 −2.512 −2.512 −6.112 −6.142
‖ηzk ‖
‖ηz0
‖ 6.31−4 5.82−4 5.32−4 7.54−4 5.22−4 6.86−4 4.02−4 6.60−4

time 0.84 3.04 1.51 9.81 1.54 5.19 9.48 19.21

Less computational time, same effectiveness
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Outline

Optimization with Structure:

min
x∈M

F (x) = f (x) + h(x).

Proximal gradient methods

Inexact proximal gradient methods

A proximal Newton method

Euclidean inexact proximal Newton methods
A naive Riemannian proximal Newton method
A proposed Riemannian proximal Newton method

Speaker: Wen Huang Riemannian proximal gradient methods and variants



37/57

Inexact Proximal Newton Methods
Euclidean version

Given x0;{
dk = argminp〈∇f (xk), p〉+ 1

2 〈p,Hkp〉 + h(xk + p)
xk+1 = xk + tkdk , for a step size tk

Hk is Hessian or a positive definite approximation to
Hessian [LSS14, MYZZ22];

tk is one for sufficiently large k;

Quadratic/Superlinear convergence rate for strongly convex f and
convex h;

[LLS14] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.

[MYZZ22] Boris S Mordukhovich, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A globally
convergent proximal newton-type method in nonsmooth convex optimization. Mathematical
Programming, pages 1-38, 2022.

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Newton Methods
Riemannian version: a naive generalization

Focus on embedded submanifolds
Euclidean version:{

dk = argminp〈∇f (xk), p〉+ 1
2 〈p,∇

2f (xk)p〉 + h(xk + p)
xk+1 = xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:{

ηk = arg minη∈Txk
M 〈grad f (xk), η〉 + 1

2 〈η,Hess f (xk)η〉 + h(xk + η)

xk+1 = Rxk (ηk)

Does it converge superlinearly locally?

Not necessarily!
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Inexact Proximal Newton Methods
Riemannian version: a naive generalization

Consider the Sparse PCA over sphere:

min
x∈Sn−1

−xTATAx + µ‖x‖1,

where f (x) = −xTATAx , h(x) = µ‖x‖1.
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Figure: Comparisons of native generalization (RPN-N) and the proximal
gradient method (ManPG) in [CMSZ20].
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Inexact Proximal Newton Methods
Riemannian version: a naive generalization

Euclidean version:{
dk = argminp〈∇f (xk), p〉+ 1

2 〈p,∇
2f (xk)p〉 + h(xk + p)

xk+1 = xk + dk

A native generalization by replacing the Euclidean gradient and Hessian
by the Riemannian gradient and Hessian:{

ηk = arg minη∈Txk
M 〈grad f (xk ), η〉 + 1

2
〈η,Hess f (xk )η〉 + h(xk + η)

xk+1 = Rxk (ηk )

{
ηk = arg minη∈Txk

M 〈grad f (xk ), η〉 + 1
2
〈η,Hess f (xk )η〉 + h(xk + η + 1

2
Π(η, η))

xk+1 = Rxk (ηk )

xk + η in h is only a first order approximation;

If an second order approximation is used, then the subproblem is
difficult to solve;

Speaker: Wen Huang Riemannian proximal gradient methods and variants
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Inexact Proximal Newton Methods
Riemannian version

A Riemannian proximal Newton method (RPN)

1 Compute

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));
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where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));

1 Step 1: compute a Riemannian proximal gradient direction (ManPG)

2 Step 2: compute the Riemannian proximal Newton direction, where
J(xk) is from a generalized Jacobi of v(xk);

3 Step 3: Update iterate by a retraction;
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Inexact Proximal Newton Methods
Riemannian version

A Riemannian proximal Newton method (RPN)

1 Compute

v(xk) = argminv∈Txk
M f (xk) + 〈∇f (xk), v〉 + 1

2t ‖v‖
2
F + h(xk + v);

2 Find u(xk) ∈ TxkM by solving
J(xk)[u(xk)] = −v(xk),

where J(xk) = −
[
In−Λxk + tΛxk (∇2f (xk)− Lxk )

]
, Λxk and Lxk are

defined later ;

3 xk+1 = Rxk (u(xk));

Next, we will show:

1 G-semismoothness of v(xk) and its generalized Jacobi;

2 Superlinear convergence rate;
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Inexact Proximal Newton Methods
Riemannian version

Definition (G-Semismoothness [Gow04])

Let F : D → Rm where D ⊂ Rn be an open set, K : D ⇒ Rm×n be a
nonempty set-valued mapping. We say that F is G-semismooth at x ∈ D
with respect to K if for any J ∈ K(x + d),

F (x + d)− F (x)− Jd = o(‖d‖) as d → 0.

If F is G-semismooth at any x ∈ D with respect to K, then F is called a
G-semismooth function with respect to K.

The standard definition of semismoothness additional requires:

K is compact valued, upper semicontinuous set-valued mapping;

F is a locally Lipschitz continuous function;

F is directionally differentiable at x ;
[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and

semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.
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Inexact Proximal Newton Methods
Riemannian version

v(x) (dropping the subscript for simplicity)

v(x) = argmin
v∈TxM

f (x) + 〈∇f (x), v〉 +
1

2t
‖v‖2

F + h(x + v);

Above problem can be rewritten as

arg min
BT
x v=0

〈ξx , v〉 +
1

2t
‖v‖2

F + h(x + v)

where BT
x v = (〈b1, v〉, 〈b2, v〉, . . . , 〈bm, v〉)T , and {b1, . . . , bm} forms an

orthonormal basis of T⊥x M.
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Inexact Proximal Newton Methods
Riemannian version

The Lagrangian function:

L(v , λ) = 〈ξx , v〉+
1

2t
〈v , v〉+ h(X + v)− 〈λ,BT

x v〉.

Therefore

KKT:

{
∂vL(v , λ) = 0

BT
x v = 0

=⇒
{

v = Proxth (x − t(ξx − Bxλ))− x
BT
x v = 0

where Proxtg (z) = argminv∈Rn×p
1
2‖v − z‖2

F + th(v).

Define

F : Rn×Rn+d 7→ Rn+d : (x ; v , λ) 7→
(
v + x − Proxth

(
x − t[∇f (x) + Bxλ]

)
BT
x v

)
.

v(x) is the solution of the system F(x , v(x), λ(x)) = 0;
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Inexact Proximal Newton Methods
Riemannian version

Define

F : Rn×Rn+d 7→ Rn+d : (x ; v , λ) 7→
(
v + x − Proxth

(
x − t[∇f (x) + Bxλ]

)
BT
x v

)
.

F is semismooth;

v(x) is G-semismooth by the G-semismooth Implicit Function
Theorem in [Gow04, PSS03];

[Gow04] M Seetharama Gowda. Inverse and implicit function theorems for h-differentiable and
semismooth functions. Optimization Methods and Software, 19(5):443-461, 2004.

[PSS03] Jong-Shi Pang, Defeng Sun, and Jie Sun. Semismo oth homeomorphisms and strong
stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research,
28(1):39-63, 2003.
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Inexact Proximal Newton Methods
Riemannian version

Lemma (Semismooth Implicit Function Theorem)

Suppose that F : Rn × Rm → Rm is a semismooth function with respect
to ∂BF in an open neighborhood of (x0, y0) with F (x0, y0) = 0. Let
H(y) = F (x0, y), if every matrix in ∂CH(y0) is nonsingular, then there
exists an open set V ⊂ Rn containing x0, a set-valued fucntion
K : V → Rm×n, and a G-semismooth function f : V → Rm with respect
to K satisfying f (x0) = y0, for every x ∈ V,

F (x , f (x)) = 0,

and the set-valued function K is

K : x 7→ {−(Ay )−1Ax : [Ax Ay ] ∈ ∂BF
(
x , f (x)

)
},

where the map x 7→ K(x) is compact valued and upper semicontinuous.

Not new but an arrangement of existing results.
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Inexact Proximal Newton Methods
Riemannian version

Without loss of generality, we assume that the nonzero entries of x∗ are
in the first part, i.e., x∗ = [x̄T∗ , 0

T ]T

Assumption

Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank.

v(x) is a G-semismooth function of x in a neighborhood of x∗

Under the above Assumption, there exists a neighborhood U of x∗ such
that v : U → Rn : x 7→ v(x) is a G-semismooth function with respect to
Kv , where

Kv : x 7→
{
−[In, 0]B−1A : [A B] ∈ ∂BF

(
x , v(x), λ(x)

)}
.

For x ∈ U , any element of Kv (x) is called a generalized Jacobi of v at x .

Here, the semismooth implicit function theorem is used
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Inexact Proximal Newton Methods
Riemannian version

The generalized Jacobi of v at x is{
Jx |Jx [ω] = −

[
In−Λx + tΛx(∇2f (x)− Lx)

]
ω −MxBxHx(DBT

x [ω])v ,∀ω

Mx ∈ ∂Cproxth(x)
}
,

where Λx = Mx −MxBxHxB
T
x Mk , Hx =

(
BT
x MxBx

)−1
,

Lx(·) =Wx(·,Bxλ(x)), and Wx denotes the Weingarten map;

v(x∗) = 0;

Set J(x) = In−Λx + tΛx(∇2f (x)− Lx);

The Riemannian proximal Newton direction: J(x)u(x) = −v(x);

Let u(x) = (ū(x); û(x)), then

û(x) = v̂ and J̄(x)ū(x) = −v̄(x)
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Inexact Proximal Newton Methods
Riemannian version

Assumption:

1 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.
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Inexact Proximal Newton Methods
Riemannian version

Assumption:

1 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.

v(x) = argmin
v∈TxM

f (x) + 〈∇f (x), v〉 +
1

2t
‖v‖2

F + h(x + v)
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Inexact Proximal Newton Methods
Riemannian version

Assumption:

1 Let BT
x∗ = [B̄T

x∗ , B̂
T
x∗ ], where B̄x∗ ∈ Rj×d and and B̂x∗ ∈ R(n−j)×d . It is

assumed that j ≥ d and B̄x∗ is full column rank;

2 There exists a neighborhood U of x∗ = [x̄T∗ , 0
T ]T on M such that for

any x = [x̄T , x̃T ]T ∈ U , it holds that x̄ + v̄ 6= 0 and x̂ + v̂ = 0.

Theorem

Suppose that x∗ be a local optimal minimizer. Under the above
Assumptions, assume that J(x∗) is nonsingular. Then there exists a
neighborhood U of x∗ on M such that for any x0 ∈ U , RPN Algorithm
generates the sequence {xk} converging superlinearly to x∗.

If the intersection of manifold and sparsity constraints forms an embedded
manifold around x∗, then ¯∇2f (x∗)− L̄ � 0. If ¯∇2f (x∗)− L̄ � 0, then J(x∗)
is nonsingular.
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Inexact Proximal Newton Methods
Riemannian version

Smooth case: min
x∈M

f (x)

KKT conditions:

∇f (x) +
1

t
v + Bxλ = 0, and BT

x v = 0;

Closed form solutions:

λ(x) = −BT
x ∇f (x), v = −t grad f (x);

Action of J(x): for ω ∈ TxM

J(x)[ω] =− tPTxM(∇2f (x)− Lx)PTxMω = −t Hess f (x)[ω]

J(x)u(x) = −v(x) =⇒ Hess f (x)[u(x)] = − grad f (x);

It is the Riemannian Newton method;
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Inexact Proximal Newton Methods
Numerical Experiments

Sparse PCA problem

min
X∈St(r ,n)

− trace(XTATAX ) + µ‖X‖1,

where A ∈ Rm×n is a data matrix and
St(r , n) = {X ∈ Rn×r | XTX = Ir} is the compact Stiefel manifold.

Rx(ηx) = (x + ηx)(I + ηTx ηx)−1/2;

t = 1/(2‖A‖2
2);

Run ManPG until ‖v‖ reaches 10−4, i.e., it reduces by a factor
of 103. The resulting x as the input of RPN;
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Inexact Proximal Newton Methods
Numerical Experiments
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Figure: Random data. Left: different n = {100, 200, 300, 400} with r = 5 and
µ = 0.6; Right: different r = {2, 4, 6, 8} with n = 300 and µ = 0.8
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Summary and Future Work

Summary:

A non-exhaustive review of nonsmooth optimization on manifolds;

Euclidean/Riemannian proximal gradient methods;

Inexact versions;

Euclidean/Riemannian proximal Newton methods;

Future work:

Accelerated version: O(1/k2) convergence rate analysis;

Globalization for Riemannian Newton method;

Design a Riemannian quasi-Newton method with superlinear local
convergence rate;

Generalize those methods to generic manifolds;
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Thank you

Thank you!
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