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Principal Components Analysis (PCA)

Goal of PCA:  Reducing high dimensional data to a lower dimension for
visualization purpose or to reveal hidden patterns
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|
Principal Components Analysis (PCA)

Goal of PCA:  Reducing high dimensional data to a lower dimension for
visualization purpose or to reveal hidden patterns

Express the data X € R"*P in a new space: Y = XA

— linear combinations of all the p variables of X
— orthogonal loadings (A)

— uncorrelated components (Y)

. enbr e T 2 1



|
Principal Components Analysis (PCA)

Goal of PCA:  Reducing high dimensional data to a lower dimension for
visualization purpose or to reveal hidden patterns

Express the data X € R"*P in a new space: Y = XA

— linear combinations of all the p variables of X

= Difficulty to interpret the results

. enbr e T 2 1



|
Motivations for sparse PCA

Gene expression analysis
20000 genes, ~ 200 samples
The components can have a biological interpretation

Financial applications
To manage the stocks efficiently
Every non-zero loading has a cost (e.g., a transaction cost)
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Motivations for sparse PCA

Gene expression analysis
20000 genes, ~ 200 samples
The components can have a biological interpretation

Financial applications
To manage the stocks efficiently

Every non-zero loading has a cost (e.g., a transaction cost)

= trade-off between statistical fidelity (i.e., variance explained) and
interpretability /utility (i.e., number of variables used)

How to reduce the number of variables used for each component?

= How to achieve sparseness?
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Motivations for sparse PCA

Gene expression analysis
20000 genes, ~ 200 samples
The components can have a biological interpretation

Financial applications
To manage the stocks efficiently
Every non-zero loading has a cost (e.g., a transaction cost)

= trade-off between statistical fidelity (i.e., variance explained) and
interpretability /utility (i.e., number of variables used)

How to reduce the number of variables used for each component?
= How to achieve sparseness?
Other applications

Image processing, multiscale data processing etc.
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Problem formulation

Sparse optimizers a of f(a) with ¢; norm:
e Weighted form: min f(a) + 7||a||1, for some 7 >0
@ /1-constrained form: min f(a) subject to ||a|l1 <7

o Function-constrained form: min||a||; subject to f(a) < f
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Problem formulation

Classic PCA problem: -
maximize f(a;) = a; Ra;

aj
subject to a,-Ta,- =1

22 =0, i #]

Sparse optimizers a of f(a) with ¢; norm:
e Weighted form: min f(a) + 7||a||1, for some 7 >0
@ (1-constrained form: minf(a) subject to ||a|l1 < T
o Function-constrained form: min||a||; subject to f(a) < f
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Problem formulation

Classic PCA problem:
maximize f(a;) = a; Ra;
aj

subject to a; a; =1

Sparse optimizers a of f(a) with ¢; norm for sparse PCA:
o Weighted form: maxa' Ra+ 7|al|;, for some 7 > 0
@ (1-constrained form: minf(a) subject to ||a|l1 < T
o Function-constrained form: min||a||; subject to f(a) < f
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Problem formulation

Classic PCA problem: -
maximize f(a;) = a; Ra;
aj

T
1

:Taj—o [ #J

subject to a; a; =1

a

Sparse optimizers a of f(a) with ¢1 norm for sparse PCA:
o Weighted form: maxa' Ra+ 7lal|1, for some 7 > 0
o /1-constrained form: maxa' Ra subject to ||a]j; < T

o Function-constrained form: min||a||; subject to f(a) < f
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Problem formulation

Classic PCA problem: -
maximize f(a;) = a; Ra;
aj

subject to a,Ta, =1

alaj=0,i#]

Sparse optimizers a of f(a) with ¢1 norm for sparse PCA

o Weighted form: maxa' Ra+ 7| a||1, for some 7 > 0

o /1-constrained form: maxa' Ra subject to ||alj; < T
o Function-constrained form: min ||a||; subject to a' Ra > Apmax — ¢

Trendafilov (2014)
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Problem formulation
Optimization on the oblique manifold OB(p, r):

in ||A ATRA — D?||2
Olrg(llgr)H |1 4wl i3

Make the problem smooth:

JAl ~ > (/A3 +e2 )

i
At the minimum:
ATRA=~ D, then ATA~ |

Final cost function:

i \JAZ e — ATRA — D?
OB(pr) & ( e 6>+MH I

)
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Tests

Dataset
Real DNA methylation dataset available online on the NCBI website
2000 genes randomly selected and ~ 150 samples

Tests with 10 components

Measures of interest
@ Variance explained
@ Correlation of the Components

@ Orthogonality of the loadings

Comparison to the method of Journée et al. (2010) with both ¢y and /1
norms
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Sparseness

Drawback: Not exactly zero values
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Sparseness

Drawback: Not exactly zero values
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Naive variance explained

tr(ATXT XA)
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non-adjusted variance
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Correlation

correlation
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Adjusted variance explained

Zou et al. 2006
Orthogonal loadings: tr(AT X T XA)

Non-orthogonal loadings

For component i: Remove variance already explained by components
1,...(i—1)

Project component i on the space spanning by components 1,... (i — 1)
— QR decomposition: Y = QR, with Y = XA

Residual variance after adjustment: tr(R?)
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Adjusted variance explained

adjusted variance

Zou et al. 2006
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Orthogonality

non-crthogonality
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Take-Home message & further work

Motivation
With larger and larger datasets collected, sparseness in PCA is more and
more needed

Results
Our method

@ can explain a large part of the variance in the data

@ outperforms Journée's method for the uncorrelation between the
components

@ outperforms Journée's method for the orthogonality of the loadings

Further work
Tests at a larger-scale are needed and comparison with more methods are
needed
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