

Weakly Correlated Sparse Components with Nearly Orthonormal Loadings

GSI 2015

Matthieu Genicot Wen Huang Nickolay T. Trendafilov

Université Catholique de Louvain Université Catholique de Louvain Open University

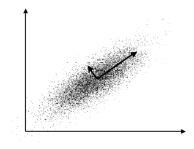
(日) (同) (三) (三)

October 30, 2015

1 / 12

Principal Components Analysis (PCA)

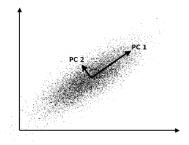
Goal of PCA: Reducing high dimensional data to a lower dimension for visualization purpose or to reveal hidden patterns



• • • • • • • • •

Principal Components Analysis (PCA)

Goal of PCA: Reducing high dimensional data to a lower dimension for visualization purpose or to reveal hidden patterns

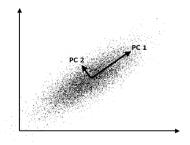


Express the data $X \in \mathbb{R}^{n \times p}$ in a new space: Y = XA

- linear combinations of all the p variables of X
- orthogonal loadings (A)
- uncorrelated components (Y)

Principal Components Analysis (PCA)

Goal of PCA: Reducing high dimensional data to a lower dimension for visualization purpose or to reveal hidden patterns



Express the data $X \in \mathbb{R}^{n \times p}$ in a new space: Y = XA

- linear combinations of **all** the p variables of X

 \Rightarrow Difficulty to interpret the results

Motivations for sparse PCA

Gene expression analysis

20000 genes, \sim 200 samples The components can have a biological interpretation

Financial applications

To manage the stocks efficiently Every non-zero loading has a cost (e.g., a transaction cost)

イロト 不得下 イヨト イヨト

Motivations for sparse PCA

Gene expression analysis

20000 genes, \sim 200 samples The components can have a biological interpretation

Financial applications

To manage the stocks efficiently Every non-zero loading has a cost (e.g., a transaction cost)

 \Rightarrow trade-off between statistical fidelity (i.e., variance explained) and interpretability/utility (i.e., number of variables used)

How to reduce the number of variables used for each component?

 \Rightarrow How to achieve sparseness?

イロト 不得 トイヨト イヨト 二日

Motivations for sparse PCA

Gene expression analysis

20000 genes, \sim 200 samples The components can have a biological interpretation

Financial applications

To manage the stocks efficiently Every non-zero loading has a cost (e.g., a transaction cost)

 \Rightarrow trade-off between statistical fidelity (i.e., variance explained) and interpretability/utility (i.e., number of variables used)

How to reduce the number of variables used for each component?

 \Rightarrow How to achieve sparseness?

Other applications

Image processing, multiscale data processing etc.

= > = ∽ar

Sparse optimizers a of f(a) with ℓ_1 norm:

- Weighted form: $\min f(a) + \tau ||a||_1$, for some $\tau > 0$
- ℓ_1 -constrained form: min f(a) subject to $||a||_1 \leq \tau$
- Function-constrained form: min $||a||_1$ subject to $f(a) \leq \overline{f}$

イロト 不得下 イヨト イヨト

Classic PCA problem:

$$\begin{array}{ll} \underset{a_i}{\text{maximize}} & f(a_i) = a_i^\top \mathbf{R} a_i \\ \text{subject to} & a_i^\top a_i = 1 \\ & a_i^\top a_j = 0, \ i \neq j \end{array}$$

Sparse optimizers a of f(a) with ℓ_1 norm:

- Weighted form: $\min f(a) + \tau ||a||_1$, for some $\tau > 0$
- ℓ_1 -constrained form: min f(a) subject to $||a||_1 \leq \tau$
- Function-constrained form: min $||a||_1$ subject to $f(a) \leq \overline{f}$

イロト 不得下 イヨト イヨト

Classic PCA problem:

$$\begin{array}{ll} \underset{a_i}{\text{maximize}} & f(a_i) = a_i^\top \text{R} a_i \\ \text{subject to} & a_i^\top a_i = 1 \\ & a_i^\top a_j = 0, \ i \neq j \end{array}$$

Sparse optimizers a of f(a) with ℓ_1 norm for sparse PCA:

- Weighted form: $\max a^{\top} Ra + \tau \|a\|_1$, for some $\tau > 0$
- ℓ_1 -constrained form: min f(a) subject to $||a||_1 \leq \tau$
- Function-constrained form: min $||a||_1$ subject to $f(a) \leq \overline{f}$

(日) (四) (日) (日) (日)

Classic PCA problem:

$$\begin{array}{ll} \underset{a_i}{\text{maximize}} & f(a_i) = a_i^\top \text{R}a_i \\ \text{subject to} & a_i^\top a_i = 1 \\ & a_i^\top a_j = 0, \ i \neq j \end{array}$$

Sparse optimizers a of f(a) with ℓ_1 norm for sparse PCA:

- Weighted form: $\max a^{\top} Ra + \tau \|a\|_1$, for some $\tau > 0$
- ℓ_1 -constrained form: max $a^{\top} Ra$ subject to $||a||_1 \leq \tau$
- Function-constrained form: min $||a||_1$ subject to $f(a) \leq \overline{f}$

(日) (四) (日) (日) (日)

Classic PCA problem:

$$\begin{array}{ll} \underset{a_i}{\text{maximize}} & f(a_i) = a_i^\top \text{R} a_i \\ \text{subject to} & a_i^\top a_i = 1 \\ & a_i^\top a_j = 0, \ i \neq j \end{array}$$

Sparse optimizers a of f(a) with ℓ_1 norm for sparse PCA:

- Weighted form: $\max a^{\top} Ra + \tau \|a\|_1$, for some $\tau > 0$
- ℓ_1 -constrained form: max $a^{\top} Ra$ subject to $||a||_1 \leq \tau$
- Function-constrained form: min $||a||_1$ subject to $a^{\top} Ra \ge \lambda_{max} \epsilon$

Trendafilov (2014)

(日) (四) (日) (日) (日)

Optimization on the oblique manifold OB(p, r):

$$\min_{\mathcal{OB}(p,r)} \|A\|_1 + \mu \|A^\top RA - D^2\|_F^2$$

Make the problem smooth:

$$\|A\|_1 pprox \sum_{ij} \left(\sqrt{A_{ij}^2 + \epsilon^2} - \epsilon\right)$$

At the minimum:

$$A^{\top}RA \approx D$$
, then $A^{\top}A \approx I$

Final cost function:

$$\min_{\mathcal{OB}(\rho,r)} \sum_{ij} \left(\sqrt{A_{ij}^2 + \epsilon^2} - \epsilon \right) + \mu \| A^\top R A - D^2 \|_F \ ,$$

3

(日) (同) (三) (三)

Tests

Dataset

Real DNA methylation dataset available online on the NCBI website 2000 genes randomly selected and \sim 150 samples

Tests with 10 components

Measures of interest

- Variance explained
- Correlation of the Components
- Orthogonality of the loadings

Comparison to the method of Journée et al. (2010) with both ℓ_0 and ℓ_1 norms

(日) (同) (三) (三)

Sparseness

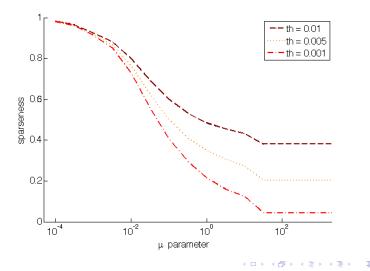
Drawback: Not exactly zero values

- 2

<ロ> (日) (日) (日) (日) (日)

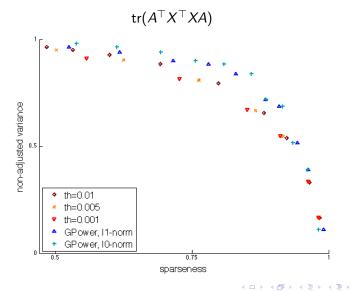
Sparseness

Drawback: Not exactly zero values



October 30, 2015 7 / 12

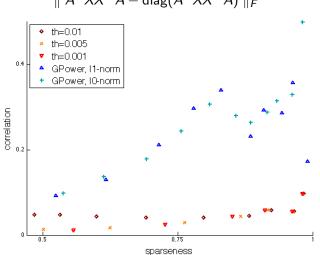
Naive variance explained



October 30, 2015 8 / 12

3

Correlation



 $|| A^{\top}XX^{\top}A - diag(A^{\top}XX^{\top}A) ||_F$

∃ → October 30, 2015 9 / 12

3

・ロト ・ 日 ト ・ 田 ト ・

Adjusted variance explained

Zou et al. 2006

Orthogonal loadings: tr($A^{\top}X^{\top}XA$)

Non-orthogonal loadings

For component *i*: Remove variance already explained by components $1, \ldots (i-1)$

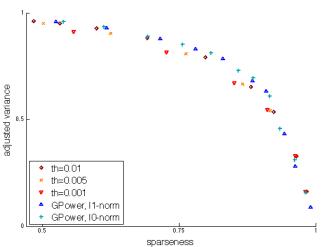
Project component *i* on the space spanning by components $1, \ldots (i-1)$ \rightarrow QR decomposition: Y = QR, with Y = XA

> October 30, 2015

10 / 12

Residual variance after adjustment: $tr(R^2)$

Adjusted variance explained

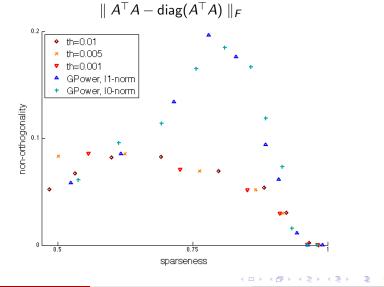


Zou et al. 2006

- ∢ ⊢⊒ →

э

Orthogonality



October 30, 2015 11 / 12

Take-Home message & further work

Motivation

With larger and larger datasets collected, sparseness in PCA is more and more needed

Results

Our method

- can explain a large part of the variance in the data
- outperforms Journée's method for the uncorrelation between the components
- outperforms Journée's method for the orthogonality of the loadings

Further work

Tests at a larger-scale are needed and comparison with more methods are needed

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの