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Principal Components Analysis (PCA)

Goal of PCA: Reducing high dimensional data to a lower dimension for
visualization purpose or to reveal hidden patterns

Express the data X 2 Rn⇥p in a new space: Y = XA

– linear combinations of the p variables of X

– orthogonal loadings (A)

– uncorrelated components (Y)
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Principal Components Analysis (PCA)

Goal of PCA: Reducing high dimensional data to a lower dimension for
visualization purpose or to reveal hidden patterns

Express the data X 2 Rn⇥p in a new space: Y = XA

– linear combinations of all the p variables of X

– orthogonal loadings (A)

– uncorrelated components (Y)

) Di�culty to interpret the results
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Motivations for sparse PCA

Gene expression analysis
20000 genes, ⇠ 200 samples
The components can have a biological interpretation

Financial applications
To manage the stocks e�ciently
Every non-zero loading has a cost (e.g., a transaction cost)

) trade-o↵ between statistical fidelity (i.e., variance explained) and
interpretability/utility (i.e., number of variables used)

How to reduce the number of variables used for each component?

) How to achieve sparseness?

Other applications
Image processing, multiscale data processing etc.
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Problem formulation

Classic PCA problem:
maximize
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Sparse optimizers a of f (a) with `1 norm:

Weighted form: min f (a) + ⌧kak1, for some ⌧ > 0

`1-constrained form: min f (a) subject to kak1  ⌧

Function-constrained form: min kak1 subject to f (a)  f̄

Trendafilov (2014)
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Problem formulation

Optimization on the oblique manifold OB(p, r):
min

OB(p,r)
kAk1 + µkA>RA� D2k2

F

Make the problem smooth:
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X
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At the minimum:

A>RA ⇡ D, then A>A ⇡ I

Final cost function:
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Tests

Dataset
Real DNA methylation dataset available online on the NCBI website
2000 genes randomly selected and ⇠ 150 samples

Tests with 10 components

Measures of interest

Variance explained

Correlation of the Components

Orthogonality of the loadings

Comparison to the method of Journée et al. (2010) with both `0 and `1
norms
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Sparseness

Drawback: Not exactly zero values

October 30, 2015 7 / 12



Sparseness

Drawback: Not exactly zero values

October 30, 2015 7 / 12



Naive variance explained

tr(A>X>XA)
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Correlation

k A>XX>A� diag(A>XX>A) k
F
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Adjusted variance explained

Zou et al. 2006

Orthogonal loadings: tr(A>X>XA)

Non-orthogonal loadings
For component i : Remove variance already explained by components
1, . . . (i � 1)

Project component i on the space spanning by components 1, . . . (i � 1)
! QR decomposition: Y = QR , with Y = XA

Residual variance after adjustment: tr(R2)
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Adjusted variance explained

Zou et al. 2006
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Orthogonality

k A>A� diag(A>A) k
F
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Take-Home message & further work

Motivation
With larger and larger datasets collected, sparseness in PCA is more and
more needed

Results
Our method

can explain a large part of the variance in the data

outperforms Journée’s method for the uncorrelation between the
components

outperforms Journée’s method for the orthogonality of the loadings

Further work
Tests at a larger-scale are needed and comparison with more methods are
needed
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