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Abstract The quasi-Newton methods on Riemannian manifolds proposed
thus far do not appear to lend themselves to satisfactory convergence anal-
yses unless they resort to an isometric vector transport. This prompts us to
propose a computationally tractable isometric vector transport on the Stiefel
manifold of orthonormal p-frames in Rn. Specifically, it requires O(np2) flops,
which is considerably less expensive than existing alternatives in the frequent-
ly encountered case where n � p. We then build on this result to also pro-
pose computationally tractable isometric vector transports on other manifolds,
namely the Grassmann manifold, the fixed-rank manifold, and the positive-
semidefinite fixed-rank manifold. In the process, we also propose a convenient
way to represent tangent vectors to these manifolds as elements of Rd, where
d is the dimension of the manifold. We call this an “intrinsic” representation,
as opposed to “extrinsic” representations as elements of Rw, where w is the
dimension of the embedding space. Finally, we demonstrate the performance
of the proposed isometric vector transport in the context of a Riemannian
quasi-Newton method applied to minimizing the Brockett cost function.
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1 Introduction

Riemannian optimization concerns solving the problem

min
x∈M

f(x),

whereM is a d-dimensional Riemannian manifold. It has been a topic of much
interest over the past few years due to many important applications that
include but are not limited to matrix completion problems [BA11,MMS11,
DKM12,Van13], image segmentation and recognition [RW12,TVSC11], matrix
mean computation [BI13,ATV13], blind source separation [KS12,SAGQ12],
finite-element discretization of Cosserat rods [San10], and elastic shape anal-
ysis of curves [HGSA15].

Various Riemannian optimization algorithms have been proposed, see e.g.,
[AMS08]. Among them, the trust-region Newton method [ABG07] is popular
due to its local quadratic convergence rate. However, the Newton method re-
quires the evaluation of the action of the Hessian, which may not be available
to users or may be expensive. Therefore, there is a growing interest for the
nonlinear conjugate gradient method and quasi-Newton methods since it is
well-known that in the Euclidean setting, those methods do not require the
action of Hessian, achieve faster local convergence rate, and can be faster than
Newton methods in many important applications. Recently, multiple Rieman-
nian versions of those methods have been proposed with convergence analyses,
e.g., [SI15,Sat15] for Riemannian nonlinear conjugate methods and [RW12,
HAG15,HGA15] for Riemannian quasi-Newton methods.

The nonlinear conjugate gradient method and quasi-Newton methods need
to combine information at different iterates. For example, the search direction
in a Euclidean quasi-Newton method is given by

ηk = −B−1
k grad f(xk), (1.1)

where the Hessian approximation Bk is a linear operator, which is updated
during iterations according to Bk+1 = κ(Bk, sk, yk), where sk = xk+1 − xk,
yk = grad f(xk+1) − grad f(xk), and the κ is a function defining the update,
e.g., [NW06, (6.13), (6.19), (6.24)]. We use the famous BFGS update, defined
in the Euclidean space Rn by

Bk+1 = κBFGS(Bk) = Bk −
BksksTkBk
sTkBksk

+
yky

T
k

yTk sk
, (1.2)

as an example to show the difficulties of Riemannian quasi-Newton methods.
In the Riemannian setting, it is known that grad f(xk) is in Txk

M and ηk
in (1.1) must be in Txk

M, where Txk
M denotes the tangent space at xk.

Therefore, the linear operator Bk is usually defined to be a mapping from
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Txk
M to Txk

M. Additionally, the sk and yk can be defined in Txk
M (see

details in [RW12,HGA15]), which implies that the Riemannian generalization
of (1.2)

κBFGS(Bk) = Bk −
Bksk(Bksk)[

(Bksk)[sk
+
yky

[
k

y[ksk

is a linear operator in Txk
M, where a[ represents the flat of a, i.e., a[ :

TxM → R : v 7→ g(a, v). However, we need Bk+1 to be a linear operator in
Txk+1

M, not in Txk
M. A solution is to resort to the notion of vector transport

or transporter defined in [ADM02,AMS08,HGA15] (or see Section 2 for the
definitions), which yields an adequate Riemannian generalization of (1.2):

Bk+1 = Tk ◦ κBFGS(Bk) ◦ T −1
k . (1.3)

The presence of the vector transport Tk in (1.3) usually requires extra matrix-
vector or matrix-matrix multiplications, which can be expensive and slow down
the entire method for some applications. For instance, if an application has
cheap cost function and gradient evaluations, then the cost of an inefficient
vector transport may dominate the method.

In [HAG15, Section 2.2], a d-dimensional representation of tangent vec-
tors has been proposed. Specifically, if the d-dimensional manifold M is ei-
ther a submanifold of a w-dimensional Euclidean space or a quotient mani-
fold whose total space is a submanifold of a w-dimensional Euclidean space,
then a tangent vector in the tangent space at x ∈ M can be represented
by a w-dimensional vector, called w-dimensional representation, or by a d-
dimensional vector which gathers the coefficients of the tangent vector in a
basis Bx of the tangent space at x, called d-dimensional representation. Us-
ing the d-dimensional representation brings many computational benefits (see
Section 3): (i) manipulating smaller dimensional vectors reduces time and s-
patial complexity; (ii) the d-dimensional representation of the vector transport
by parallelization [HAG15, Section 2.3.1] induced by the basis field B is the
identity, which is the cheapest one can expect; and (iii) if the basis Bx of
the tangent space at x is orthonormal, then the Riemannian metric at x re-
duces to the Euclidean metric in the d-dimensional representation, which is
cheap, and moreover the vector transport by parallelization becomes isometric.
However, [HAG15] did not propose ways to efficiently compute d-dimensional
representations. In particular, in [HAG15, Section 5], the proposed method to
compute a d-dimensional representation on the Stiefel manifold of orthonormal
p-frames in Rn requires building an orthogonal matrix

[
X X⊥

]
which takes

O(n3) flops1. This is why the experiments in [HAG15] were limited to fairly
low values of n.

In this paper, we give detailed implementations to compute d-dimensional
representation given w-dimensional representation and to compute w-dimensional
representation given d-dimensional representation for some commonly encoun-
tered matrix manifolds, i.e., the compact Stiefel manifold, the Grassmann

1 Throughout this paper, the computational complexity is measured by flop counts. A
flop is a floating point operation [GV96, Section 1.2.4].
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manifold, the fixed-rank manifold, and the manifold of positive semidefinite
matrices with rank fixed. The underlying strategy avoids constructing X⊥
explicitly; instead, X⊥ is constructed in factored form as a product of House-
holder matrices (in parameter form), and this form is exploited to design effi-
cient algorithms. While this strategy is natural in numerical linear algebra in
the context of QR factorization algorithms, we show in this paper that it has
far reaching consequences when it is exploited in the context of Riemannian
optimization. Indeed, on the Stiefel manifold, the resulting vector transport
by parallelization is isometric and requires only O(np2) flops, to be compared
with previous isometric vector transport solutions such as the one of [HAG15,
Section 5] which requires O(n3) flops. The proposed isometric vector transport
thus brings a significant speedup in the frequently encountered situation where
n� p. This improvement is especially welcome since the vector transport used
in several Riemannian optimization methods needs to be isometric in order to
allow for a suitable convergence analysis; see, e.g., [RW12,HAG15,HGA15].
We illustrate these beneficial consequences in the context of a Riemannian
BFGS method applied to the Brockett objective function on the Stiefel man-
ifold. We also point out in Section 5 that the proposed techniques can be
exploited on the other above-mentioned manifolds with similar benefits.

This paper is organized as follows. Section 2 presents the preliminaries and
notation of Riemannian manifolds. Section 3 describes computational benefit-
s of d-dimensional representation. Section 4 demonstrates the algorithms for
computing the d-dimensional representation from the w-dimensional represen-
tation and vice versa on the Stiefel manifold. Due to the availability of the
d-dimensional representation and w-dimensional representation on the Stiefel
manifold, the implementations of the conversions of the two representations
for the Grassmann manifold, the fixed-rank manifold and the manifold with
symmetric positive semidefinite matrices with rank fixed can be computed and
demonstrated in Section 5. By applying a Riemannian quasi-Newton method
for optimizing a function defined on the Stiefel manifold, Section 6 shows the
advantage of intrinsic representation and vector transport by parallelization.
Numerical experiments are reported in Section 7. Finally, the conclusion is
given in Section 8.

2 Preliminaries and notation

The Riemannian concepts follow from the literature, e.g., [Boo86,AMS08]. The
notation of this paper follows from [AMS08]. Let M denote a d-dimensional
Riemannian manifold with the Riemannian metric g : (ηx, ξx) 7→ gx(ηx, ξx) ∈
R, TxM denote the tangent space of M at x, and TM denote the tangent
bundle, i.e., the set of all tangent spaces.
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Fig. 1 Top: An embedded submanifold of a Euclidean space E. Bottom: Notation of objects
of a quotient manifold of M. The green line denotes the vertical space Vx at x and the red
line denotes the horizontal space Hx at x.

2.1 Riemannian submanifold and quotient manifold

In this paper, we only consider the following two kinds of manifolds M: (i)
M is an embedded submanifold of a w-dimensional Euclidean space E (see
Figure 1), and (ii) M is a quotient manifold M̄/G = {[x]|x ∈ M̄}, where M̄
is a submanifold of a w-dimensional Euclidean space E , G is a group acting
on M̄ (see details in [Lee11, Theorem 21.10]) and [x] = {gx|g ∈ G} (see
Figure 1). Every element of the quotient manifold M̄/G is a submanifold of
M̄. In practice, a point x in [x] is used to represent the submanifold [x]. The
tangent space Tx[x] is called the vertical space Vx at x. The horizontal space
is defined to be the perpendicular space of Vx, i.e., Hx ⊕ Vx = Tx M̄, where
the orthogonality is defined by the Riemannian metric of M̄. For any tangent
vector η[x] ∈ T[x]M, the unique representation in Hx is called the horizontal
lift of η[x] at x, denoted by η↑x .
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2.2 Retraction, vector transport, and transporter

The concepts of retraction and vector transport can be found in [AMS08]
or [QGA10]. A retraction R is a smooth mapping from the tangent bundle
TM onto M such that (i) R(0x) = x for all x ∈ M (where 0x denotes the
origin of TxM) and (ii) d

dtR(tξx)|t=0 = ξx for all ξx ∈ TxM. The restriction
of R to TxM is denoted by Rx.

A vector transport T : TM⊕ TM→ TM, (ηx, ξx) 7→ Tηxξx with associ-
ated retraction R is a smooth mapping such that, for all (x, ηx) in the domain
of R and all ξx, ζx ∈ TxM, it holds that (i) Tηxξx ∈ TR(ηx)M, (ii) T0xξx = ξx,
(iii) Tηx is a linear map. An isometric vector transport additionally satisfies
(iv)

gR(ηx)(Tηxξx, Tηxζx) = gx(ξx, ζx). (2.1)

The vector transport by differentiated retraction R is defined by

Tηxξx =
d

dt
Rx(ηx + tξx)|t=0, (2.2)

which is in general not isometric.
Note that a vector transport requires an associated retraction R. Recently,

a transporter L was defined in [HGA15] that does not require a retraction, i.e.,
L(x, y) is a linear operator from TxM to TyM whose dependence on x and y
is jointly smooth and such that L(x, x) is identity for all x. Given a retraction
R, it can be shown that T defined by

Tηxξx = L(x,Rx(ηx)) ξx (2.3)

is a vector transport with associated retraction R. Moreover, if L(x, y) is iso-
metric from TxM to TyM, then the vector transport (2.3) is isometric.

If M is an embedded submanifold of a w-dimensional Euclidean space E ,
then the transporter by projection [AMS08, Section 8.1.3] is defined by

LPj(x, y)ξx = Pyξx,

where Py denotes the orthogonal projection to TyM. The transporter by
parallelization [HGA15, Section 4.3] is defined by

LPl(x, y)ξx = ByB
†
xξx, (2.4)

where B : V → Rw×d : z 7→ Bz is a smooth tangent basis field defined on
an open set V of M, B†z denotes the pseudo-inverse of Bz, and B†xξx and
Byv denote matrix vector multiplications. Note that it may not be possible
to have V = M; for example, when M is an even-dimensional sphere, it
would contradict the hairy ball theorem [Lee11, 16-6]. However, given any
x ∈M, there always exists a basis field B which is smooth on a neighborhood
of x [HAG15]. It has been shown that if Bz forms an orthonormal basis of
TzM, then LPl(x, y) is isometric, which implies that the vector transport by
parallelization Tηxξx = BRx(ηx)B

†
xξx is isometric [HAG15, (6)].
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If M is a quotient manifold, then one can similarly define

LPj(x, y)ξx = Phy ξx and LPl(x, y)ξx = Bhy (Bhx)†ξx, (2.5)

where Phy denotes the projection to the horizontal space Hy and the columns

of Bhz form an orthonormal basis of Hz. If (2.5) is independent of the rep-
resentation chosen in [x] and [y], then they define transporters by projection
and by parallelization for the quotient manifold M. This is summarized in
Lemma 21.

Lemma 21 Let LM̄(x, y) denote a transporter on M̄. Recall the notation η↑x
for the horizontal lift at x of η[x] ∈ T[x]M. If LM̄(x1, y1)η↑x1

and LM̄(x2, y2)η↑x2

are horizontal lifts of a unique tangent vector in T[y]M for all x1, x2 ∈ [x],
y1, y2 ∈ [y], [x], [y] ∈M and η[x] ∈ T[x]M, then

(LM([x], [y])η[x])↑y = LM̄(x, y)η↑x

defines a transporter on M.

Proof This can be easily verified by the definition.

3 Intrinsic representation of tangent vectors and computational
benefits

Throughout this paper, d-dimensional and w-dimensional representation of a
tangent vector are also called intrinsic and extrinsic representation, respec-
tively. In this section, we present the potential computational benefits that
the intrinsic representation may bring. The potential benefits are then made
concrete in the following sections for several specific manifolds.

Let a tangent vector ηx in TxM be represented by a d-dimensional vector,
denoted by vx, of coordinates in a given basis Bx of TxM. Let functions

D2EMx : vx 7→ ηx = Bxvx and E2DMx : ηx 7→ vx = B†xηx

denote the maps converting from one representation to the other representa-
tion. The intrinsic representation E2DMy ◦LPl(x, y)◦D2EMx of the transporter
by parallelization is readily seen to be the identity; indeed

E2DMy ◦ LPl(x, y) ◦D2EMx vx = B†y(ByB
†
x(Bxvx)) = vx.

Moreover, if the columns of Bx form an orthonormal basis of TxM, then the
Riemannian metric reduces to the Euclidean metric for the intrinsic represen-
tations, i.e.,

g(ηx, ξx) = g(Bxvx, Bxux) = vTx ux,

where ηx = Bxvx and ξx = Bxux ∈ TxM.
If one can compute vx cheaply given ηx and vice versa, which is true for

the manifolds discussed later, then the operations on the tangent space only
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require manipulating d-dimensional vectors rather than w-dimensional vectors.
For example, solving a linear system Bη = − grad f or optimizing a local model
g(grad f, η)+ 1

2g(Bη, η) in quasi-Newton methods needs O(d3) flops rather than
O(w3) flops. Besides, the implementation of transporter by parallelization (2.4)
and Riemannian metric are simplified.

4 The compact Stiefel manifold

The compact Stiefel manifold or the Stiefel manifold for short is the set of
orthonormal matrices, i.e., St(p, n) = {X ∈ Rn×p|XTX = I}. The Stiefel

manifold can be viewed as a submanifold of Rn×p. Its dimension d is pn− p(p+1)
2

and the dimension w of the embedding space Rn×p is pn. The tangent space of
the Stiefel manifold is TX St(p, n) = {XΩ+X⊥K|Ω = −ΩT ,K ∈ R(n−p)×p}.
Throughout this paper, given M ∈ Rn×p, M⊥ denotes an n-by-(n− p) matrix
whose columns form an orthonormal basis of the orthogonal complement of
the column space of M . The proposed d-dimensional representation of XΩ +
X⊥K ∈ TX St(p, n) keeps the non-redundant information in Ω and K. The key
result, introduced next, is a conversion method in O(np2) flops between the d-
dimensional and w-dimensional representations that does not require choosing
and building the cumbersome n× (n− p) matrix X⊥. Due to this result, the
d-dimensional representation becomes tractable in the important case where
n� p. The d-dimensional representation proposed next is associated to a basis
field B that is orthonormal in the sense of the gc metric [EAS98, (2.22)], which
is one of the two “natural” metrics commonly used on the Stiefel manifolds.
Hence the vector transport by parallelization—which reduces to the identity
in the d-dimensional representation—is isometric in the sense of the gc metric.
As far as we are aware, no cheap O(np2) -flops isometric vector transport on
the Stiefel manifold has been proposed before. At the end of this section, we
will briefly comment on how the representation can be easily adapted to rely
on a basis field B that is orthonormal with respect to the ge metric [EAS98,
(2.2)], which is the other “natural” metric on the Stiefel manifold.

The proposed d-dimensional representation exploits the fact that any tan-
gent vector U ∈ TX St(p, n) can be written as

U = X


0 a12 a13 · · · a1p

−a12 0 a23 · · · a2p

−a13 −a23 0 · · · a3p

...
...

...
. . .

...
−a1p −a2p −a3p · · · 0

+X⊥


b11 b12 b13 · · · b1p
b21 b22 b23 · · · b2p
b31 b32 b33 · · · b3p
...

...
...

. . .
...

b(n−p)1 b(n−p)2 b(n−p)3 · · · b(n−p)p


(4.1)

One way to define a basis of TX St(p, n) is thus

{X(eie
T
j − ejeTi ) : i = 1, . . . , p, j = i+ 1, . . . , p}

⋃
{X⊥ẽieTj , i = 1, . . . , n− p, j = 1, . . . , p}, (4.2)
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where (e1, . . . , ep) is the canonical basis of Rp and (ẽ1, . . . , ẽn−p) is the canon-
ical basis of Rn−p. Proposition 41 shows an important property of the basis
(4.2).

Proposition 41 The basis of TX St(p, n) defined in (4.2) is orthonormal with
respect to the canonical metric [EAS98, (2.22)]

gc(U, V ) = trace(UT (In −
1

2
XXT )V ), (4.3)

where U, V ∈ TX St(p, n).

Proof This can be easily verified.

Using the basis defined in (4.2), the intrinsic representation of U is given
by

E2D
St(p,n)
X (U) =

(
a12, a13, a23, . . . , a1p, a2p, a3p, . . . , a(p−1)p,

b11, b21, . . . , b(n−p)1, . . . , b1p, . . . , b(n−p)p
)T
.

Proposition 41 implies that the vector transport by parallelization using the
basis (4.2) is isometric and the Riemannian metric (4.3) reduces to the Eu-
clidean metric using the intrinsic representation.

The functions E2D and D2E using basis (4.2) are summarized in Algo-
rithms 1 and 2 respectively. Ingredients of those algorithms are explained in
the paragraphs that follow.

Note that Step 2 of Algorithm 1 computes Ω by (Ω̃− Ω̃T )/2 to make sure
Ω is skew symmetric numerically even though Ω̃ is a skew symmetric matrix
theoretically.

The number of flops for each step is stated on the right of each algorithm.

Algorithm 1 Compute E2D
St(p,n)
X (U)

Require: X ∈ St(p, n), U ∈ TX St(p, n), a function αX : Rn×p → Rn×p : A 7→
[
X X⊥

]T
A

(see Algorithm 4).

1:

[
Ω̃
K

]
= αX(U), where Ω̃ ∈ Rp×p and K ∈ R(n−p)×p; . See flops in Algorithm 4

2: Set Ω = (Ω̃ − Ω̃T )/2 and k = 1; # 2p2

3: for j = 2, . . . , p, i = 1, . . . j − 1 do . # p(p− 1)
4: vX(k) = Ωij , where Ωij is the i-th row j-th column entry of Ω;
5: k ← k + 1;
6: end for
7: for i = 1, . . . , (n− p), j = 1, . . . , p do . # p(n− p)
8: vX(k) = Kij and k ← k + 1;
9: end for

10: return vector vX ∈ Rnp−p(p+1)/2;

Algorithms 1 and 2 rely on the functions α and β. Since we want the

transporter by parallelization—namely LPl(x, y) = D2E
St(p,n)
Y ◦ E2D

St(p,n)
X —

to be smooth, we need α and β to be smooth. One approach to construct
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Algorithm 2 Compute D2E
St(p,n)
X (vX)

Require: X ∈ St(p, n), vx ∈ Rnp−p(p+1)/2, a function βX : Rn×p → Rn×p : A 7→[
X X⊥

]
A (see Algorithm 5).

1: k = 1;;
2: for j = 2, . . . , p, i = 1, . . . j − 1 do . # p(p− 1)
3: Ωij = vX(k) and Ωji = −vX(k);
4: k ← k + 1;
5: end for
6: for i = 1, . . . , (n− p), j = 1, . . . , p do . # p(n− p)
7: Kij = vX(k) and k ← k + 1;
8: end for

9: return βX

[
Ω
K

]
; . # See flops in Algorithm 5;

smooth αX and βX is to compute X⊥ explicitly, e.g., as in [HAG15, Section
5]. However, the complexity of this approach is O(n(n − p)2) flops, which is
expensive especially when p � n. The suggested approach is stated in Algo-
rithm 4 for αX and Algorithm 5 for βX . They both rely on Algorithm 3 which
computes the QR decomposition for almost any matrix Z ∈ Rn×p by House-
holder transformations, which can be done efficiently by the linear algebra
package [ABB+99] function ?geqrf or ?geqp3, where the question mark stands
for different choices for precisions and number types, e.g., sgeqrf is for single
precision real number, dgeqrf is for double precision real number. Algorith-
m 3 uses the product of the Householder matrices defined by the unit vectors
(v1, . . . , vp) and sign scalars (s1, . . . , sp), to represent the orthonormal matrix[
X X⊥

]
. The details are given in Lemma 41. Note that it has been shown in

[Lee11, 16-6] that not all manifolds have a continuous non-vanishing vector
field globally. Therefore, we do not expect φ(Z) to be a continuous function
for all Z ∈ Rn×p. 2

Lemma 41 Let the function φ : Rn×p → Rn×n : Z 7→ φ(Z) be defined by

φ(Z) = Q1Q2 · · ·Qp diag(s1, s2, . . . , sp, In−p), (4.4)

where Qi is

[
Ii−1 0

0 In−i+1 − 2viv
T
i

]
, diag(a1, a2, . . . , at) denotes a block di-

agonal matrix whose diagonal blocks are a1, a2 and at, {v1, v2, . . . , vp} and
{s1, s2, . . . , sp} are given by Algorithm 3 with Z the input matrix. Then φ(Z)
is smooth at Z satisfying that z̃i1 in Step 2 of Algorithm 3 is nonzero for all
i. Moreover, if Z ∈ St(p, n), then φ(Z) =

[
Z Z⊥

]
.

Proof The first Householder matrix Q1 diag(s1, In−1) can be viewed as a func-
tion of Z, denoted by φ1(Z). By definition, φ1 is a smooth function of Z since
z̃11 is nonzero. Therefore, the matrix φ1(Z)TZ, denoted by R1, is also a smooth
function of Z.

2 It should be noted that for those Z such that φ(Z) is nonsmooth, there always exists a
permutation matrix P , which is usually obtained by row pivoting QR decomposition, such
that φ(PZ) is smooth. Therefore, one can define φ̃(Z) = PTφ(PZ), which is also smooth
and satisfies φ̃(Z) =

[
Z Z⊥

]
.
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Similarly, the second Householder matrix Q2 diag(1, s2, In−1) is a smooth
function ofR1, denoted by φ2(R1). We therefore have thatQ2 diag(1, s2, In−1) =
φ2(R1) = φ2(φ1(Z)TZ) is also a smooth function of Z.

By doing this repeatedly, we have Qi diag(Ii−1, si, In−i) is a smooth func-
tion of Z for all i = 1, . . . , p. Therefore, multiplying them together yields that
φ(Z) is a smooth function of Z.

By definition of φ(Z), we have Z = φ(Z)

[
R

0(n−p)×p

]
, and φT (Z)φ(Z) = In,

where R ∈ Rp×p is an upper triangular matrix with positive diagonal entries.
If Z ∈ St(p, n), then R = Ip. Therefore, φ(Z) =

[
Z Z⊥

]
.

With a slight abuse of notation, we use α(VX ,SX) and β(VX ,SX) to denote
Algorithms 4 and 5 with input VX = (v1, v2, . . . , vp) and SX = (s1, s2, . . . , sp),
which are from Algorithm 3 with input X. It follows from Lemma 41 that
α(VZ ,SZ)(A) and β(VZ ,SZ)(A) are φ(Z)TA and φ(Z)A respectively, which yield
Algorithms 4 and 5. Both Algorithms 4 and 5 have been efficiently implement-
ed in the linear algebra package [ABB+99] by function ?ormqr.

The actions of the Householder matrices or their inverses are only a few
rank one updates, which are cheap. The complexities of Algorithms 3, 4 and 5
are 2np2 − 2p3/3 flops, 4np2 − 2p3 flops and 4np2 − 2p3 flops respectively.
Note that Algorithm 3 does not necessarily require extra 2np2 − 2p3/3 flops.
The computations can be done in the evaluation of retraction. For instance,
the unit vectors (v1, v2, . . . , vp) and scalars (s1, s2, . . . , sp) can be obtained
without extra cost when Householder reflections are used to compute the qf
retraction [AMS08, (4.8)]

RX(U) = qf(X + U), (4.5)

where qf(A) denote the Q factor of the QR decomposition with nonnegative
elements on the diagonal of the upper triangle matrix. The details can be
found in Section 6.

Algorithm 3 Compute unit vectors in Householder matrices (v1, v2, . . . , vp)
and sign scalars (s1, s2, . . . , sp)

Require: Z =
[
z1 z2 . . . zp

]
∈ Rn×p;

1: for i = 1, . . . , p do . # 2np2 − 2p3/3
2: Let a denote − sgn(z̃i1)‖z̃i‖2 and define vi = (z̃i − ae1)/‖z̃i − ae1‖2 and si =
− sgn(z̃i1), where z̃i is the vector formed by last n − i + 1 entries of zi, z̃i1 is the first
entry of z̃i and e1 denotes the first canonical basis of Rn−i+1;

3: Z =
[
z1 z2 . . . zp

]
← QiZ, where Qi =

[
Ii−1 0

0 In−i+1 − 2viv
T
i

]
.

4: end for
5: return (v1, v2, . . . , vp) and (s1, s2, . . . , sp);
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Algorithm 4 Compute αX(A)

Require: A ∈ Rn×p, and VX = (v1, v2, . . . , vp) and SX = (s1, s2, . . . , sp) generated by
Algorithm 3 with input X;

1: for i = 1, . . . , p do . # 4np2 − 2p3

2: A← QiA, where Qi =

[
Ii−1 0

0 In−i+1 − 2viv
T
i

]
;

3: end for
4: return diag(s1, s2, . . . , sp, In−p)A; . # p2

Algorithm 5 Compute βX(A)

Require: A ∈ Rn×p, and VX = (v1, v2, . . . , vp) and SX = (s1, s2, . . . , sp) generated by
Algorithm 3 with input X;

1: A← diag(s1, s2, . . . , sp, In−p)A . # p2

2: for i = p, (p− 1) . . . , 1 do . # 4np2 − 2p3

3: A← QiA, where Qi =

[
Ii−1 0

0 In−i+1 − 2viv
T
i

]
.

4: end for
5: Return A;

Another basis of TX St(p, n) is

{ 1√
2
X(eie

T
j − ejeTi ) : i = 1, . . . , p, j = i+ 1, . . . , p}

⋃
{X⊥

ẽie
T
j , i = 1, . . . , n− p, j = 1, . . . , p} (4.6)

which can be shown to be an orthonormal basis with respect to the metric
ge(U, V ) := trace(UTV ) defined in [EAS98, (2.2)]. It follows that the intrinsic
representation of (4.1) is

E2D
St(p,n)
X (U) =

(√
2a12,

√
2a13,

√
2a23, . . . ,

√
2a1p,

√
2a2p,

√
2a3p, . . . ,

√
2a(p−1)p,

b11, b21, . . . , b(n−p)1, . . . , b1p, . . . , b(n−p)p

)T
.

Algorithms 1 and 2 therefore can be modified to match the bases (4.6), i.e.,
Step 4 of Algorithm 1 is replaced by vX(k) =

√
2Ωij and Step 3 of Algorithm 2

is replaced by Ωij = vX(k)/
√

2.

5 More matrix manifolds

In this section, the efficient implementations of D2E and E2D for the Grass-
mann manifold, the fixed-rank manifold, and the manifold of positive semidef-
inite matrices with rank fixed are given using the same idea presented in
Section 4. We propose a tangent basis field for each manifold. In addition, the
tangent basis Bx is orthonormal with respect to a Riemannian metric of each
manifold. Therefore, the vector transport by parallelization, which has iden-
tity implementation, is isometric for the Riemannian metric. We emphasize
that as far as we know, there is no cheap isometric vector transport proposed
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before for the fixed-rank manifold, and the manifold of positive semidefinite
matrices with rank fixed. As shown in Section 3, the considered Riemannian
metric reduces to the Euclidean metric when the intrinsic representation is
used.

5.1 The Grassmann manifold

The Grassmann Manifold Gr(p, n) is the set of all p dimensional linear sub-
spaces of an n dimensional linear space. In this paper, we consider the rep-
resentation Gr(p, n) = St(p, n)/Op, where Op denotes the p-by-p orthogo-
nal group. Specifically, an element in Gr(p, n) is an orbit in St(p, n), i.e.,
Gr(p, n) = {[X]|X ∈ St(p, n)}, where [X] = {XO|O ∈ Op}. This representa-
tion uses the set of orthonormal bases of a linear space as a representation of
the linear space. The detailed discussions can be found in e.g., [EAS98, Sec-
tion 2.5]. The metric of the Grassmann manifold considered in this paper is
endowed from the Euclidean space

g(U, V ) = trace(UTV ). (5.1)

The horizontal space at X is

HX = {X⊥K : K ∈ R(n−p)×p}.

An orthonormal basis of the horizontal space at X with respect to the met-
ric (5.1) is given by

{X⊥ẽieTj , i = 1, . . . , n− p, j = 1, . . . , p},

where (e1, . . . , ep) is the canonical basis of Rp and (ẽ1, . . . , ẽn−p) is the canon-
ical basis of Rn−p. This basis is the second half of the basis of TX St(p, n)

in (4.2). Therefore, E2DGr(p,n) and D2EGr(p,n) can be easily generated by us-
ing the ideas of Algorithm 1 and Algorithm 2.

5.2 The fixed-rank manifold

The fixed-rank manifold is the set of matrices with rank fixed, i.e., Mp =
{X ∈ Rm×n| rank(X) = p}, where p < min(m,n). The discussions about its
geometric structure can be found in e.g., [Van13] and [AO15]. Let X ∈ Mp

and X be represented by X = USV T , where U ∈ St(p,m), V ∈ St(p, n) and
S ∈ Rp×p∗ is not necessary diagonal. The tangent space of Mp at X is

TXMp =
{
UṠV T + U̇SV T + USV̇ T :

Ṡ ∈ Rp×p, U̇ ∈ Rm×p, UT U̇ = 0, V̇ ∈ Rn×p, V T V̇ = 0
}
,
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or equivalently

TXMp =
{
UṠV T + U⊥KV

T + UWTV T⊥ :

Ṡ ∈ Rp×p,K ∈ R(m−p)×p,W ∈ R(n−p)×p
}
.

The Euclidean metric is considered

g(ηX , ξX) = trace(ηTXξX), (5.2)

where ηX , ξX ∈ TXMp.

The tangent space TXMp can be written as

{[
U U⊥

] [ Ṡ WT

K 0

] [
V V⊥

]T | Ṡ ∈ Rp×p,K ∈ R(m−p)×p,W ∈ R(n−p)×p
}
.

Since the orthonormal matrices
[
U U⊥

]
and

[
V V⊥

]
cancel out in the met-

ric (5.2), an orthonormal basis is given by

{UeiejV T , i = 1, . . . p, j = 1, . . . , p} ∪ {U⊥ẽiejV T , i = 1, . . . ,m− p, j = 1, . . . , p}⋃
{UeiējV T⊥ , i = 1, . . . , p, j = 1, . . . , n− p},

where (e1, . . . , ep) is the canonical basis of Rp, (ẽ1, . . . , ẽm−p) is the canoni-
cal basis of Rm−p and (ē1, . . . , ēn−p) is the canonical basis of Rn−p. In prac-

tice, the extrinsic representation of a tangent vector ηX = UṠV T + U̇SV T +
USV̇ T TXMp ⊂ Rm×n is usually set to be (U̇ , Ṡ, V̇ ), see [AO15], which avoids
the dense m-by-n matrix and reduces the computational cost. The E2D and
D2E functions using representation (U̇ , Ṡ, V̇ ) are given in Algorithms 6 and 7
respectively.

Algorithm 6 Compute E2D
Mp

X (U)

Require: X = USV T ∈ Mp, Ẋ = UṠV T + U̇SV T + USV̇ T ∈ TXMp represented by

(U̇ , Ṡ, V̇ ), a function αU : Rm×p → Rm×p : A 7→
[
U U⊥

]T
A and a function αV :

Rn×p → Rn×p : A 7→
[
V V⊥

]T
A.

1: K = (αU (U̇S))(p+1:m,:) and W = αV (V̇ ST )(p+1:n,:), where M(a:b,:) denotes the sub-

matrix forming by a-th row to b-th row of the matrix M ; . # 2(m+ n)p2 and see flops
in Algorithm 4

2: Reshape Ṡ, K and W to be column vectors; Stack them to make a vector vX ∈
Rmp+np−p2

3: return vector vX ;
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Algorithm 7 Compute D2E
Mp

X (vX)

Require: X = USV T ∈ Mp, vX ∈ Rmp+np−p2 , a function βU : Rm×p → Rm×p : A 7→[
U U⊥

]
A and a function βV : Rn×p → Rn×p : A 7→

[
V V⊥

]
A;

1: Reshape the first p2 entries of vX to be Ṡ ∈ Rp×p, the second (m − p)p entries to be
K ∈ R(m−p)×p, and last (n− p)p entries to be W ∈ R(n−p)×p;

2: if m ≤ n then

3: Compute M1 = βU

[
Ṡ
K

]
and M2 = βV

[
0
W

]
; . See flops in Algorithm 5

4: U̇ = (M1 − UṠ)S−1, and V̇ = M2S−T ; . # 2(m+ n)p2 + 2mp2 + 2p3/3
5: else

6: Compute M1 = βU

[
0
K

]
and M2 = βV

[
ṠT

W

]
; . See flops in Algorithm 5

7: U̇ = M1S−1, and V̇ = (M2 − V ṠT )S−T ; . # 2(m+ n)p2 + 2np2 + 2p3/3
8: end if
9: return (U̇ , Ṡ, V̇ ) which represents Ẋ = UṠV T + U̇SV T + USV̇ T ;

5.3 The manifold of positive semidefinite matrices with rank fixed

Let S+(p, n) = {Y Y T : Y ∈ Rn×p∗ } denote the manifold of positive semidefinite
matrices with rank fixed, where Rn×p∗ denotes all full-rank real n×p matrices.
A discussion about this manifold can be found in e.g., [VAV09]. The tangent
space at X = Y Y T is given by

TY Y T S+(p, n) =

{[
Y Y⊥

] [2S KT

K 0

] [
Y T

Y T⊥

]
| S = ST ∈ Rp×p,K ∈ R(n−p)×p

}
,

or equivalently

TY Y T S+(p, n) =
{
Y Ẏ T + Ẏ Y T | Ẏ ∈ Rn×p, Ẏ = Y S + Y⊥K

}
The Riemannian metric endowed from Rn×n is

g(Z1, Z2) = trace(ZT1 Z2) = trace(Y TY (4S1Y
TY S2 + 2KT

1 K2)), (5.3)

where Z1, Z2 ∈ TX S+(p, n).

The tangent space can be expressed as

TY Y T S+(p, n) =

{[
Y L−T Y⊥

] [2LTSL LTKT

KL 0

] [
L−1Y T

Y T⊥

]
|

S = ST ∈ Rp×p,K ∈ R(n−p)×p
}
,

where Y TY = LLT is the Cholesky decomposition such that the diagonal
entries of L are positive. Since the matrix

[
Y L−T Y⊥

]
is an orthonormal ma-

trix, the orthogonality of tangent vectors depends on the middle term, i.e.,[
2LTSL LTKT

KL 0

]
. Thus, an orthonormal basis of TY Y T S+(p, n) with respect
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to the Euclidean metric (5.3) is given by

{Y L−T eieTi L−1Y T , i = 1, . . . p}
⋃

{ 1√
2
Y L−T (eie

T
j + eje

T
i )L−1Y T , i = 1, . . . p, j = i+ 1, . . . , p}

⋃
{ 1√

2
Y⊥ẽie

T
j L
−1Y T +

1√
2
Y L−T ej ẽ

T
i Y

T
⊥ , i = 1, . . . , n− p, j = 1, . . . , p}.

The E2D and D2E functions are given in Algorithms 8 and 9 respectively.
Both Algorithms use Ẏ for the extrinsic representation of the tangent vector
Y Ẏ T + Ẏ Y T at Y Y T ∈ S+(p, n).

Algorithm 8 Compute E2D
S+(p,n)
X (U)

Require: X = Y Y T ∈ S+(p, n), Ẋ = Y Ẏ T + Ẏ Y T ∈ TX S+(p, n) represented by Ẏ , a

function αY : Rn×p → R(n−p)×p : A 7→
[
Y L−T Y⊥

]T
A; . Note that Y L−T is an

orthonormal matrix.
1: Compute the Cholesky decomposition Y TY = LLT ; . # 2np2 + p3/3

2:

[
M
K

]
= αY (Ẏ ); . # See flops in Algorithm 4 and note that M = LTS

3: H = 2ML and W = KL and set k = 1; . # 2np2

4: for i = 1, . . . , p do . # p
5: vX(k) = Hii and k = k + 1;
6: end for
7: for i = 1, . . . , p, j = i+ 1, . . . , p do . # p(p− 1)/2
8: vX(k) = (Hij +Hji)/

√
2 and k = k + 1;

9: end for
10: for i = 1, . . . , n− p, j = 1, . . . , p do . # (n− p)p
11: vX(k) =

√
2Wij and k = k + 1;

12: end for
13: return vector vX ∈ Rnp−p(p−1)/2;

Algorithm 9 Compute D2E
S+(p,n)
X (vX)

Require: X = Y Y T ∈ S+(p, n), vX ∈ Rnp−p(p−1)/2, a function βY : Rn×p → Rn×p :
A 7→

[
Y L−T Y⊥

]
A;

1: Set k = 1;
2: for i = 1, . . . , p do . # p
3: Hii = vX(k) and k = k + 1;
4: end for
5: for i = 1, . . . , p, j = i+ 1, . . . , p do . # p(p− 1)/2
6: Hij = vX(k)/

√
2, Hji = Hij and k = k + 1;

7: end for
8: for i = 1, . . . , n− p, j = 1, . . . , p do . # (n− p)p
9: Wij = vX(k)/

√
2 and k = k + 1;

10: end for

11: Return Ẏ = βY

[
H/2
W

]
L−1; . # np2 plus flops in Algorithm 5 and note L has been

computed in Algorithm 8; 3
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6 Limited-memory Riemannian BFGS method for problems on the
Stiefel manifold

In this section, we use a limited-memory Riemannian BFGS method (LRBFGS)
as the representative algorithm to show the benefits of using the intrinsic rep-
resentation and the vector transport by parallelization for problems on the
Stiefel manifold. This idea can be easily generalized to other Riemannian op-
timization algorithms and problems on other manifolds. We exploit the version
of LRBFGS developed in [HGA15, Algorithm 2] and modified the version to
use an alternate update defined in [HAG16] which allows the line search using
the Wolfe conditions to be replaced by the Armijo line search.

Algorithms 10 and 11 state the LRBFGS for optimizing a function

f : St(p, n)→ R : X → f(X),

using extrinsic representation and intrinsic representation respectively. We
use the qf retraction (4.5) and Riemannian metric ge in Algorithms 10 and 11.
The number of flops for each step—except problem-related operations, i.e.,
function, gradient evaluations and line search—is given on the right-hand side
of the algorithms. By summing them up and noting that d = np− p(p+ 1)/2
and w = np, the known number of flops per iteration for Algorithms 10 and 11
are 8lnp + 10np2 − 8p3/3 + 2lλ + o(np2) + o(p3) and 8l(np − p(p + 1)/2) +
18np2 − 26p3/3 + o(np2) + o(p3) respectively, where λ denotes the flops in a
vector transport evaluation.

As far as we are aware, the cheapest vector transport on the Stiefel mani-
fold using extrinsic representation is the vector transport by projection, whose
cost is λ = 4np2. In this case, even when the limited-memory size l is chosen to
be the smallest positive integer 1, which punishes Algorithm 10 least, Algorith-
m 11 still shows the benefit that the number of flops required is smaller. The
advantage of Algorithm 11 is more significant when another vector transport
or a larger l is used. It can be seen that in this case, the computational effi-
ciency mainly comes from the identity implementation of the vector transport
by parallelization.

Moreover, it is pointed out that the existing convergence analyses for Rie-
mannian quasi-Newton methods given in e.g., [RW12,HAG15,HGA15,HAG16]
all rely on an isometric vector transport. Unlike the proposed vector transport
by parallelization, the vector transport by projection is not isometric, which
implies that the existing convergence analyses no longer apply.

3 For gradient based methods, E2D is always applied before D2E since the gradient at
a new iterate is computed almost immediately after the new iterate is obtained, and E2D
need be invoked to obtain the intrinsic representation of the gradient.
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Algorithm 10 LRBFGS for problems on the Stiefel manifold with extrinsic
representation and general vector transport
Require: Initial iterate x0 ∈M; an integer m > 0; line search constant δ ∈ (0, 1).
1: k = 0, γ0 = 1, l = 0.
2: Compute grad f̃(xk), where f̃ : Rn×p → R : X → f(X);
3: Compute the Riemannian gradient grad f(xk) = Pxk grad f̃(xk), where Pxk denotes the

orthogonal projection to Txk St(p, n); . # 4np2

4: Obtain ηk ∈ TxkM by the following algorithm, Step 5 to Step 15:
5: q ← grad f(xk)
6: for i = k − 1, k − 2, . . . , k − l do . # 4lw

7: ξi ← ρig(s
(k)
i , q);

8: q ← q − ξiy
(k)
i ;

9: end for
10: r ← γkq; . # w
11: for i = k − l, k − l + 1, . . . , k − 1 do . # 4lw

12: ω ← ρig(y
(k)
i , r);

13: r ← r + s
(k)
i (ξi − ω);

14: end for
15: set ηk = −r; . # w
16: find the largest αk ∈ {1, %, %2, . . .} satisfying

f(xk+1) ≤ f(xk) + δαkg(grad f(xk), ηk),

17: Apply Algorithm 3 with Z = xk + αkηk and obtain unit vectors V = {v1, v2, . . . , vp}
and sign scalars S = {s1, s2, . . . , sp}. . # 2np2 − 2p3/3

18: Set xk+1 = β(V,S)(Ip) by Algorithm 5; . # 4np2 − 2p3

19: Define s
(k+1)
k = Tαkηkαkηk and y

(k+1)
k = grad f(xk+1)− Tαkηk grad f(xk); . #

2λ+ 2w

20: Compute a = g(y
(k+1)
k , s

(k+1)
k ) and b = ‖s(k+1)

k ‖2; . # 4w

21: if a
b
≥ 10−4‖ grad f(xk)‖ then . # 2w

22: Compute c = ‖y(k+1)
k ‖2 and define ρk = 1/a and γk+1 = a/c; . # 2w

23: Add s
(k+1)
k , y

(k+1)
k and ρk into storage and if l ≥ m, then discard vec-

tor pair {s(k)k−l, y
(k)
k−l} and scalar ρk−l from storage, else l ← l + 1; Transport

s
(k)
k−l+1, s

(k)
k−l+2, . . . , s

(k)
k−1 and y

(k)
k−l+1, y

(k)
k−l+2, . . . , y

(k)
k−1 from TxkM to Txk+1M by

T , then get s
(k+1)
k−l+1, s

(k+1)
k−l+2, . . . , s

(k+1)
k−1 and y

(k+1)
k−l+1, y

(k+1)
k−l+2, . . . , y

(k+1)
k−1 ; . # 2(l − 1)λ

24: else
25: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l},
{s(k+1)
k , . . . , s

(k+1)
k−l+1} ← {Tαkηks

(k)
k−1, . . . , Tαkηks

(k)
k−l} and {y(k+1)

k , . . . , y
(k+1)
k−l+1} ←

{Tαkηky
(k)
k−1, . . . , Tαkηky

(k)
k−l}; . # 2lλ

26: end if
27: k = k + 1, goto Step 4.

7 Experiments

To compare the performance of Algorithm 10 and 11, we consider the Brockett
cost function

f : St(p, n)→ R : X 7→ trace(XTAXN),

where N = diag(µ1, µ2, . . . , µp) with µ1 > · · · > µp > 0, A ∈ Rn×n and
A = AT . It is shown in [AMS08, §4.8] that the columns of any global minimizer,
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Algorithm 11 LRBFGS for problems on the Stiefel manifold using intrinsic
representation and vector transport by parallelization
Require: Initial iterate x0 ∈M; an integer m > 0; line search constant δ ∈ (0, 1).
1: k = 0, γ0 = 1, l = 0.
2: Compute grad f̃(xk), where f̃ : Rn×p → R : X → f(X);
3: Compute the intrinsic representation gfdk of grad f(xk) by Algorithm 1; . #

4np2 − 2p3; 4

4: Obtain ηk ∈ Rd, intrinsic representation of a vector ηw ∈ TxkM, by the following
algorithm, Step 5 to Step 15:

5: q ← gfdk;
6: for i = k − 1, k − 2, . . . , k − l do . # 4ld
7: ξi ← ρiq

T si;
8: q ← q − ξiyi;
9: end for

10: r ← γkq; . # d
11: for i = k − l, k − l + 1, . . . , k − 1 do . # 4ld
12: ω ← ρir

T yi;
13: r ← r + si(ξi − ω);
14: end for
15: set ηk = −r; . # d
16: find the largest αk ∈ {1, %, %2, . . .} satisfying

f(xk+1) ≤ f(xk) + δαkη
T
k gfdk,

17: Compute ηwk = D2E
St(p,n)
xk (ηk) by Algorithm 2; . # 4np2 − 2p3

18: Apply Algorithm 3 with Z = xk + αkη
w
k and obtain unit vectors V = {v1, v2, . . . , vp}

and sign scalars S = {s1, s2, . . . , sp}. . # 2np2 − 2p3/3
19: Set xk+1 = β(V,S)(Ip) by Algorithm 5; . # 4np2 − 2p3

20: Compute grad f̃(xk+1);
21: Compute the intrinsic representation gfdk+1 of grad f(xk+1); . # 4np2 − 2p3

22: Define sk = αkηk and y = gfdk+1 − gfdk; . # 2d

23: Compute a = yTk sk and b = ‖sk‖22; . # 4d

24: if a
b
≥ 10−4‖gfdk‖2 then . # 2d

25: Compute c = ‖y(k+1)
k ‖22 and define ρk = 1/a and γk+1 = a/c; . # 2d

26: Add sk, yk and ρk into storage and if l ≥ m, then discard vector pair {sk−l, yk−l}
and scalar ρk−l from storage, else l← l + 1;

27: else
28: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l}, {sk, . . . , sk−l+1} ←
{sk−1, . . . , sk−l} and {yk, . . . , yk−l+1} ← {yk−1, . . . , yk−l}

29: end if
30: k = k + 1, goto Step 4.

X∗ei, are eigenvectors for the p smallest eigenvalues of A, λi, ordered so that
λ1 ≤ · · · ≤ λp.

If the matrix A is dense and n � p, then the number of flops in a func-
tion evaluation is 2n2p, which dominates the complexities of Algorithm 10
and Algorithm 11. Therefore, it would not be easy to observe the influence
of intrinsic representation and vector transport by parallelization. Thus, we
choose a sparse matrix A and p � n, i.e., n = 1000 and p = 8 in the ex-
periments. Note that the situation p � n is commonly encountered in many
applications such as the matrix completion problem [Van13], the max-cut SDP
relaxation [GW95], and the phase retrieval problem [HGZ16].
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Table 1 An average of 100 random runs of Algorithms 10 and 11 with various choices of
m. Note that m is the upper bound of the limited-memory size l. The subscript k indi-
cates a scale of 10k. iter, nf , ng, nR, and nV denote the number of iterations, function
evaluations, gradient evaluations, retractions and vector transport evaluations, respectively.
gf/gf0 denotes the norm of initial gradient over the norm of the final gradient. t denote the
computational time in seconds. t/iter denotes the average computational time per iteration.

m 2 8 32
Algo. 10 Algo. 11 Algo. 10 Algo. 11 Algo. 10 Algo. 11

iter 1027 915 933 830 877 745
nf 1052 937 941 837 883 751
ng 1028 916 934 831 878 746
nR 1051 936 940 836 882 750
nV 1027 915 933 830 877 745

gf/gf0 9.00−7 9.11−7 9.24−7 9.25−7 9.52−7 9.49−7

t 2.94−1 2.50−1 4.84−1 2.74−1 1.27 4.31−1

t/iter 2.86−4 2.73−4 5.18−4 3.31−4 1.45−3 5.79−4

The vector transport in Algorithm 10 is the vector transport by projection.
The initial iterate X0 is given by applying Matlab’s function “orth” to a matrix
whose entries are drawn from the standard normal distribution. A is set to be
diag(1, 2, . . . n) + B + BT , where the entries of B have probability 1/n to be
nonzero, i.e., drawn from the standard normal distribution. N is chosen to
be diag(p, p − 1, · · · , 1). % is set to be 0.5. The stopping criterion requires
the norm of the initial gradient ‖ grad f(X0)‖ over the norm of the gradient
‖ grad f(Xk)‖ to be less than 10−6. All the experiments are performed in
C++ with compiler g++-4.7 on a 64 Ubuntu platform with 3.6GHz CPU
(Intel(R) Core(TM) i7-4790). The code is available at http://www.math.fsu.
edu/~whuang2/papers/IRTVVTMM.htm.

An average of 100 random runs of Algorithms 10 and 11 with various
choices of m is reported in Table 1. Note that m is the upper bound of the
limited-memory size l. The average computational time per iteration of Algo-
rithm 11 is smaller than that of Algorithm 10. Moreover, the larger m is, the
faster Algorithm 11 is in the sense of the computational time per iteration. In
addition, the number of iterations of Algorithm 11 is also slightly smaller than
Algorithm 10. Therefore, Algorithm 11 still needs less computational time in
total.

8 Conclusion

We have presented tractable implementations of computing a d-dimensional
representation given a w-dimensional representation and vice versa for the
Stiefel manifold St(p, n), the Grassmann manifold Gr(p, n), the fixed-rank
manifold Mp and the manifold of positive semidefinite matrices with rank
fixed S+(p, n). Their complexities are summarized in Table 2. The resulting

4 Note that Alg1(X,Z) = Alg1(X,PX(Z)), where X ∈ St(p, n) and Alg1 :
(St(p, n),Rn×p)→ Rnp−p(p+1)/2 is the function defined by Algorithm 1

http://www.math.fsu.edu/~whuang2/papers/IRTVVTMM.htm
http://www.math.fsu.edu/~whuang2/papers/IRTVVTMM.htm
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Table 2 The complexities of E2D and D2E for S+(p, n), Gr(p, n), Mp and S+(p, n).

St(p, n) Gr(p, n) Mp S+(p, n)

E2D 4np2 − 2p3 4np2 − 2p3 6(m+ n)p2 − 4p3 8np2 − 5p3/3

D2E 4np2 − 2p3 4np2 − 2p3 6(m+ n)p2 + 2 min(m,n)p2 − 10p3/3 5np2 − 2p3

vector transport by parallelization is isometric and has the identity imple-
mentation. It is demonstrated theoretically and empirically that the intrinsic
representation and vector transport by parallelization can outperform extrinsic
representation and other vector transports in the sense of efficiency.
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