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Problem of Interest

min
X∈Rp1×p2

f (X) :=
1
2
‖y−A(X)‖2

2 , subject to rank(X) = r ,

where y ∈ Rn,A(X) = [〈A1,X〉, . . . , 〈An,X〉]>.

Motivation: Low rank matrix recovery
Observe y,A from y = A(X∗) + ε. Goal: recover X∗ from
y,A

Specific problems:
Matrix regression: Ai

i.i.d .∼ N(0,1)
[Candès and Plan, 2011, Recht et al., 2010]
Matrix Completion: Ai has one entry to be 1, others are 0
[Candès and Tao, 2010]
Phase retrieval: Ai = aia>i [Shechtman et al., 2015]
Rank-one sensing: Ai = aib>i
[Cai and Zhang, 2015, Chen et al., 2015]

Non-convex and hard to solve!
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Prior Work

Convex relaxation: minX
1
2‖y−A(X)‖22 + λ‖X‖∗

[Recht et al., 2010, Candès and Plan, 2011]

Theoretical properties 4 computation can be intensive

Non-convex methods: enforce rank r constraint
Factorize X = RL> + Gradient descent or Alternating
Minimization on R ∈ Rp1×r ,L ∈ Rp2×r

[Ma et al., 2019, Park et al., 2018, Sun and Luo, 2015, Tu et al., 2016, Wang et al., 2017,

Zhao et al., 2015, Zheng and Lafferty, 2015, Jain et al., 2013, Hardt, 2014]...

Projected gradient descent (Singular value projection (SVP),
Iterative Hard Thresholding (IHT))
[Goldfarb and Ma, 2011, Jain et al., 2010, Tanner and Wei, 2013]...

Manifold optimization [Boumal and Absil, 2011, Keshavan et al., 2009,

Vandereycken, 2013, Wei et al., 2016, Huang and Hand, 2018]

...

Most of existing algorithms
require careful tuning or
have a convergence rate no faster than linear.

=⇒ Can we do better?
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Our Algorithm: RISRO

Recursive Importance Sketching algorithm for Rank
constrained least squares Optimization (RISRO).

Advantages
Tuning free
High-order convergence guarantees under proper
assumptions
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RISRO-Procedure
1 Input y,A, and initialization X0 with (economic) SVD U0Σ0V0>

2 For t = 0,1, . . .
� Perform importance sketching on A.

Construct importance
covariates AB

i := Ut>AiVt ,AD1
i := Ut>

⊥ AiVt ,AD2
i := Ut>AiVt

⊥

� Solve a dimension reduced least squares.

(Bt+1,Dt+1
1 ,Dt+1

2 ) = arg min
B,D1,D2

n∑
i=1

(
yi − 〈AB

i ,B〉 − 〈A
D1
i ,D1〉 − 〈AD2

i ,D>2 〉
)2

� Update sketching matrices.

Let Xt+1
U = (UtBt+1 + Ut

⊥Dt+1
1 ),

Xt+1
V = (VtBt+1> + Vt

⊥Dt+1
2 ). Update

Ut+1 = QR(Xt+1
U ), Vt+1 = QR(Xt+1

V ).

� (Optional) Xt+1 = Xt+1
U

(
Bt+1)† Xt+1>

V

QR(·) is the Q part in QR decomposition and (·)† is the Moore-Penrose
inverse
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RISRO-Intuition

Suppose yi = 〈Ai , X̄〉+ ε̄i where X̄ is a rank r target matrix. Rewritten

yi = 〈AB
i ,U

t>X̄Vt〉+ 〈AD1
i ,Ut>

⊥ X̄Vt〉+ 〈AD2
i ,Ut>X̄Vt

⊥〉+ εt
i ,

where εt
i = 〈Ut>

⊥ AiVt
⊥,U

t>
⊥ X̄Vt

⊥〉+ ε̄i .

If εt = 0. Then

Bt+1 = Ut>X̄Vt , Dt+1
1 = Ut>

⊥ X̄Vt , Dt+1
2 = Ut>X̄Vt

⊥

is a solution of the least squares. Moreover if Bt+1 is invertible

Xt+1 = Xt+1
U

(
Bt+1)−1

Xt+1>
V = X̄

In general εt 6= 0, but we hope Xt → X̄.
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Importance Sketching in RISRO

Sketching: do dimension reduction to speed up the computation

Comparison of Importance Sketching and Randomized
Sketching

Importance Sketching Randomized Sketching
[Mahoney, 2011, Woodruff, 2014]

Sketching Matrix Deterministic, Ut ,Vt

(with supervision)
Random

Dimension reduction Reduce p, hold n Reduce n, hold p

Statistical efficiency High Low
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Sketching Interpretations for algorithms in literature

Alternating Minimization (Alter Mini)
[Jain et al., 2013, Zhao et al., 2015]

V̂t+1 = arg min
V∈Rp2×r

n∑
i=1

(
yi − 〈Ai ,UtV>〉

)2
= arg min

V∈Rp2×r

n∑
i=1

(
yi − 〈Ut>Ai ,V>〉

)2
,

Vt+1 = QR(V̂t+1)

Rank 2r iterative least squares (R2RILS) for matrix completion
[Bauch and Nadler, 2020]
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min
M∈Rp1×r ,N∈Rp2×r

∑
(i,j)∈Ω

{(
UtN> + MVt> − Y

)
[i,j]

}2

,

Ω is the observed entry indices.
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)2
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Sketching Interpretations for algorithms in literature

Alter Mini: Miss one set of covariates =⇒ large iteration
error
R2RILS: Double core sketch
=⇒

{
Rank deficiency in the least squares
Hard in theory and implementation

F RISRO: resolve both issues =⇒ High-order convergence!
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Convergence Analysis
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Convergence Analysis: Assumption

Restricted isometry property (RIP)
[Candès, 2008, Recht et al., 2010] :

A : Rp1×p2 → Rn satisfies the r−RIP with r -restricted isometry
constant δ ∈ [0,1) if

(1− δ)‖Z‖2
F ≤ ‖A(Z)‖2

2 ≤ (1 + δ)‖Z‖2
F

holds for all Z of rank at most r .

� Widely used [Cai and Zhang, 2013, Candès and Plan, 2011]...

� Easy to satisfy in random subgaussian design
[Candès and Plan, 2011]

� Key quantity in landscape analysis [Bhojanapalli et al., 2016,
Ge et al., 2017, Uschmajew and Vandereycken, 2018]

Caveat: RIP may not hold in some scenarios such as
matrix completion.
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RISRO Convergence Analysis
Let X̄ be a rank r stationary point and ε̄ := y−A(X̄).
Assume

A satisfies 3r -restricted isometry property (RIP) with RIP
constant δ

Initialization condition: ‖X0 − X̄‖F ≤ C(δ)σr (X̄)

Small residual (gradient) condition: ‖A∗(ε̄)‖F ≤ C′(δ)σr (X̄).

σr (X̄) is the r -th largest singular value of X̄. A∗(b) :=
∑n

i=1 biAi is the
adjoint operator of A.

Theorem 1: Under the assumptions above, Xt generated by RISRO
converges Q-linearly to X̄:

‖Xt+1 − X̄‖F ≤
3
4
‖Xt − X̄‖F, ∀ t ≥ 0.

‖Xt+1 − X̄‖2
F ≤

c1(δ)‖Xt − X̄‖2

σ2
r (X̄)

(
‖Xt − X̄‖2

F + ‖A∗(ε̄)‖F‖Xt − X̄‖F + ‖A∗(ε̄)‖2
F

)
,

∀ t ≥ 0.

If ε̄ = 0, then {Xt} converges quadratically to X̄ as

‖Xt+1 − X̄‖F ≤
√

c1(δ)‖Xt − X̄‖2
F

σr (X̄)
, ∀ t ≥ 0.
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RISRO Convergence Analysis

F Quadratic-linear convergence

‖Xt+1−X̄‖2
F ≤

c1(δ)‖Xt − X̄‖2

σ2
r (X̄)

(
‖Xt − X̄‖2

F + ‖A∗(ε̄)‖F‖Xt − X̄‖F + ‖A∗(ε̄)‖2
F

)
.

when ‖Xt − X̄‖F � ‖A∗(ε̄)‖F =⇒ quadratic convergence
when ‖Xt − X̄‖F ≤ c‖A∗(ε̄)‖F =⇒ reduce to linear
convergence

ε̄ ↓ =⇒ Longer period of quadratic convergence.

F ε̄ = 0 =⇒ y = A(X̄) =⇒ matrix sensing
[Recht et al., 2010]
RISRO achieves quadratic convergence
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Simulation

yi = 〈Ai ,X∗〉+ εi for 1 ≤ i ≤ n, Ai
i.i.d.∼ N(0,1) and εi

i.i.d.∼ N(0, σ2).
X∗ ∈ Rp×p with p = 100, r = 3, κ(X∗) = 1 and X0 = SVDr (A∗(y)).

(Quadratic-linear) n = 5pr , σ = 10α for α ∈ {0,−1,−2,−14}
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Vs. Other Algorithms

Suppose p1 = p2 = p and n ≥ pr . Under similar assumptions
as in Theorem 1:

GD PGD (SVP / IHT) Alter Mini RISRO (this work)
Iteration
Complexity O(np2r) O(np2) O(np2r 2) O(np2r 2)

Tuning Yes Yes No No
Convergence Linear Linear Linear Quadratic-(linear)

F Improve upon Alter Mini for free
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Comparison Simulation σ = 0

κ = 1
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Any connection of RISRO to existing optimization
algorithms?
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Connection to Riemannian Manifold Optimization

Iteration t of RISRO:

1 Perform importance sketching.

2 Perform a dimension reduced least squares.

=⇒ Implicitly solves "Fisher Scoring" or "Riemannian
Gauss-Newton" equation in Riemannian optimization on fixed
rank matrices.

3 Update sketching matrices and Xt+1.

=⇒ Perform a type of retraction in Riemannian optimization
literature
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Riemannian Manifold Optimization

Target: optimize a function f defined on a Riemannian manifold
M. [Absil et al., 2009]

Common Riemannian manifolds, embedded submanifold:
a smooth subset of Rn + a Riemannian metric.

Mr = {X ∈ Rp1×p2 : rank(X) = r}
Riemannian metric: Euclidean inner product,
〈U,V〉 = trace(U>V)
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Retraction

Iterative algorithm: x t+1 = x t + ξ.

Manifold optimization: x t+1 may not lie in the manifold

Solution: retraction!

Retraction: a smooth map that brings the vector in the tangent
space back to the manifold. Denote TxM as the tangent space
at x

F Let ηt be the update direction such that Xt + ηt has the following
representation,

Xt + ηt = [Ut Ut
⊥]

[
Bt+1 Dt+1>

2
Dt+1

1 0

]
[Vt Vt

⊥]>.

F Xt + ηt =⇒ Xt+1. Retraction is:

Xt+1 = RXt (ηt ) = [Ut Ut
⊥]

[
Bt+1 Dt+1>

2

Dt+1
1 Dt+1

1 (Bt+1)
−1Dt+1>

2

]
[Vt Vt

⊥]>

F ηt solves the Fisher Scoring or Riemannian Gauss-Newton
direction.
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Connection to Riemannian Optimization
Recall f (X) := 1

2 ‖y−A(X)‖2
2.

Riemannian Gradient: grad f (X)

= PTX (A∗(A(X)− y)).

PTX (·) is the orthogonal projector onto the tangent space at X.

Riemannian Hessian: Hessf (X)

[η] = PTX (A∗(A(η))) + h(y−A(X)).
h(·) depends on X, η.

Riemannian Newton direction ηNewton

−gradf (X) = Hessf (X)[ηNewton]

⇐⇒ −gradf (X) = PTX (A∗(A(ηNewton))) + h(y−A(X))

Update in RISRO:

Xt + ηt = [Ut Ut
⊥]

[
Bt+1 Dt+1>

2
Dt+1

1 0

]
[Vt Vt

⊥]>.

Theorem 2: ηt solves

−gradf (Xt ) = PTXt (A∗(A(η))).

h(y−A(X)) is just thrown away!
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Connection of RISRO and Riemannian optimization
Suppose y = A(X) + ε, where X is a fixed matrix and εi

i.i.d.∼ N(0, σ2).
Then for any η,

{E(Hessf (X)[η])} |X=Xt = PTXt (A∗(A(η))) .

By Theorem 2, ηt solves

−gradf (Xt ) = {E(Hessf (X)[η])} |X=Xt .

This algorithm is called Fisher Scoring in literature [Lange, 2010].
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Applications to Statistics and Machine Learning
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Applications to Statistics and Machine Learning

Low-rank matrix trace regression model:

yi = 〈Ai ,X∗〉+ εi , for 1 ≤ i ≤ n,

X∗ ∈ Rp1×p2 is the true model parameter and rank(X∗) = r .
Phase retrieval

yi = |〈ai ,x∗〉|2 for 1 ≤ i ≤ n,

x∗ ∈ Rp.
Goal: estimate or recovery X∗ (or x∗).
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Low-rank matrix trace regression

Theorem: Suppose A satisfies the 3r-RIP with RIP constant δ and

‖X0 − X∗‖F ≤ C(δ) · σr (X∗)

σr (X∗) ≥ C′(δ) ·
√

r‖A∗(ε)‖.

Then iterations generated by RISRO satisfy

‖Xt+1 − X∗‖2
F ≤c1(δ)‖Xt − X∗‖2

(
‖Xt − X∗‖2

F
σ2

r (X∗)
+

√
r‖A∗(ε)‖
σr (X∗)

)
+ c2(δ)r‖A∗(ε)‖2,

for all t ≥ 0.

F First term: Decreases quadratic-linearly.

F Second term: Statistical error independent of t .
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Summary

Introduce a new algorithm, RISRO, for rank constrained
least squares.
=⇒ Tuning free, fast and has high-order convergence

Introduce the recursive importance sketching framework
=⇒ Provide a platform to compare different algorithms from a
sketching perspective

Connect RISRO with Riemannian optimization
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Thank you! Questions?
Luo, Y., Huang, W., Li, X., & Zhang, A. R. (2020). Recursive Importance

Sketching for Rank Constrained Least Squares: Algorithms and High-order
Convergence. arXiv preprint arXiv:2011.08360.
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