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Problem of Interest

min  f(X) := % ly — A(X)|5, subjectto rank(X) =r,

XeRP1 %P2

where y € R", A(X) = [(A1,X),..., (A, X)]".
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Problem of Interest

min  f(X) := % ly — A(X)|5, subjectto rank(X) =r,

XeRP1 %P2

where y € R", A(X) = [(A1,X),..., (A, X)]".

Motivation: Low rank matrix recovery
@ Observey, A fromy = A(X*) + €. Goal: recover X* from
y, A
Specific problems:
@ Matrix regression: A; "<& N(0,1)
[Candés and Plan, 2011, Recht et al., 2010]
@ Matrix Completion: A; has one entry to be 1, others are 0
[Candés and Tao, 2010]
@ Phase retrieval: A; = a;a; [Shechtman et al., 2015]
@ Rank-one sensing: A; = a;b]
[Cai and Zhang, 2015, Chen et al., 2015]
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@ Convex relaxation: miny |ly — A(X)|[3 + A[|X]|
[Recht et al., 2010, Candés and Plan, 2011]

Theoretical properties computation can be intensive

@ Non-convex methods: enforce rank r constraint

e Factorize X = RL" + Gradient descent or Alternating
Minimization on R € RP**" L € RP2*"
[Ma et al., 2019, Park et al., 2018, Sun and Luo, 2015, Tu et al., 2016, Wang et al., 2017,
Zhao et al., 2015, Zheng and Lafferty, 2015, Jain et al., 2013, Hardt, 2014]...

e Projected gradient descent (Singular value projection (SVP),
Iterative Hard Thresholding (IHT))
[Goldfarb and Ma, 2011, Jain et al., 2010, Tanner and Wei, 2013]...

e Manifold optimization (goumal and Avsil, 2011, Keshavan et al., 2009,
Vandereycken, 2013, Wei et al., 2016, Huang and Hand, 2018]

° ...
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@ Convex relaxation: miny |ly — A(X)|[3 + A[|X]|
[Recht et al., 2010, Candés and Plan, 2011]

Theoretical properties computation can be intensive

@ Non-convex methods: enforce rank r constraint
e Factorize X = RL" + Gradient descent or Alternating
Minimization on R € RP**" L € RP2*"
[Ma et al., 2019, Park et al., 2018, Sun and Luo, 2015, Tu et al., 2016, Wang et al., 2017,
Zhao et al., 2015, Zheng and Lafferty, 2015, Jain et al., 2013, Hardt, 2014]...
e Projected gradient descent (Singular value projection (SVP),
Iterative Hard Thresholding (IHT))
[Goldfarb and Ma, 2011, Jain et al., 2010, Tanner and Wei, 2013]...
e Manifold optimization (goumal and Avsil, 2011, Keshavan et al., 2009,
Vandereycken, 2013, Wei et al., 2016, Huang and Hand, 2018]
o ...
@ Most of existing algorithms
e require careful tuning or
e have a convergence rate no faster than linear.
= Can we do better?
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Our Algorithm: RISRO

Recursive Importance Sketching algorithm for Rank
constrained least squares Optimization (RISRO).

Advantages
@ Tuning free

@ High-order convergence guarantees under proper
assumptions
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RISRO-Procedure

@ Inputy, A, and initialization X° with (economic) SVD U°x°voT
Q Fort=0.1,...
B Perform importance sketching on A.

B Solve a dimension reduced least squares.

B Update sketching matrices.
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RISRO-Procedure

@ Inputy, A, and initialization X° with (economic) SVD U°E Vo™

@ Fort=0,1,...

B Perform importance sketching on A. Construct importance
covariates AP := UTTA V!, AP = UTTAVE A = UTTA VY

A

wHTAvt UHTAVL

Sketching in RISRO ﬁ h;.!-g

T
T
T 3
T
T

wHTAVE %

B Solve a dimension reduced least squares.

B Update sketching matrices.
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RISRO-Procedure

@ Inputy, A, and initialization X° with (economic) SVD U°E Vo™
@ Fort=0,1,...

B Perform importance sketching on A. Construct importance

covariates AP := U'TAV! AP = UTAVE AP = UTTAVY
WhHTAVE (UHTAVL
1 Sketching in RISRO ﬁ h;.!-g
1 (UJt_)TAth %
B Solve a dimension reduced least squares.
n

2
(B'+1,D{, D) =aremin 3 (y; (AP, B) ~ (A7, D) ~ (A", D))
SH1LM2 i

A

B Update sketching matrices.
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RISRO-Procedure

@ Inputy, A, and initialization X° with (economic) SVD U°E Vo™
@ Fort=0,1,...

B Perform importance sketching on A. Construct importance

covariates AP := U'TAV! AP = UTAVE AP = UTTAVY
WhHTAVE (UHTAVL
1 Sketching in RISRO ﬁ h;.!-g
1 (UJt_)TAth %
B Solve a dimension reduced least squares.
n

2
(B'+1,D{, D) =aremin 3 (y; (AP, B) ~ (A7, D) ~ (A", D))
SH1LM2 i

A

W Update sketching matrices. Let Xj" = (U'B"' + U’ D{""),
X, = (VIB"'" + VD). Update
t+1 t41 t+1 t+1
U™ =QR(X, ), VI = QR(X, ).

B (Optional) X' = X{/" (Bt+) X117
QR(:) is the Q part in QR decomposition and ()" is the Moore-Penrose

i . o) o
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RISRO-Intuition

Suppose y; = (A;, X) + & where X is a rank r target matrix. Rewritten
yi = (AP, UTTXVY) o+ (AP U RV + (AP UTTXVY ) + €,

where €/ = (UTTA V! UTTXVE) + &

Meeting of WHU-XMU December, 21, 2020 7



RISRO-Intuition

Suppose y; = (A;, X) + & where X is a rank r target matrix. Rewritten
yi = (AB UTTXVY) (AP U XV (AP UTTXVY) + €,
where e/ = (UTA V! UTXVE) +&;.
If &/ = 0. Then
B+ — UITXV!, D§+1 = UiTXV!, D;H = UTXV!,
is a solution of the least squares. Moreover if B!+ is invertible

Xt = Xt (Bt+1)*1 XGT = X

In general €! # 0, but we hope X! — X.
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Importance Sketching in RISRO

Sketching: do dimension reduction to speed up the computation

A (UHTAVE (UDHTAV]
L

e Sketching in RISRO EE.!IH

% (UDT:‘lin %

@ Comparison of Importance Sketching and Randomized
Sketching

Randomized Sketching

Importance Sketching
[Mahoney, 2011, Woodruff, 2014]

Deterministic, U7, V'

Sketching Matrix . . Random

(with supervision)
Dimension reduction Reduce p, hold n Reduce n, hold p
Statistical efficiency High Low
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Sketching Interpretations for algorithms in literature

@ Alternating Minimization (Alter Mini)
[Jain et al., 2013, Zhao et al., 2015]

V! = argmin i (y,» — (A, UtVT>)2 = arg min i (y,- — <U1TA,-,VT>>2,

VeRP2 X" T VeRP2 X" T

VH~1 — QR(vf+1)

Ai (Ut)TAi

h-=Sketching in Alter Mini @m
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Sketching Interpretations for algorithms in literature

@ Alternating Minimization (Alter Mini)

[Jain et al., 2013, Zhao et al., 2015]

N n 2 n 2

VT —argminy (y,» — (A, vaT>) =argmin}_ (y, - <UTTA,,VT>) :
VERP2XT 14 VERP2XT 4

Vit — QR(VTH)

Sketching in Alter Mini ﬁm

Ai (Ut)TAi

@ Rank 2r iterative least squares (R2RILS) for matrix completion
[Bauch and Nadler, 2020]

2
min {(U’NT NN |V Y) } ,
[

Py X1 Po X1 &
MeR ,NER (i,))en

Q is the observed entry indices.
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Sketching Interpretations for algorithms in literature

@ Alternating Minimization (Alter Mini)
[Jain et al., 2013, Zhao et al., 2015]

n
vt = arg min Z (y,» — (A, UIVT))2 = argmin Z

VERP2XT iy

Vit — QR(VTH)

A;

n

(yi B <U1TA,', VT>>27

VERP2XT 4

W9 A

T
T

Sketching in Alter Mini ﬁm

@ Rank 2r iterative least squares (R2RILS) for matrix completion
[Bauch and Nadler, 2020]

(i,j)eQ
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2
3 {(U’NT MV v) M} = > (v[,-i,-] —(UTATNTY - (M,A‘7V’>)

(i)eQ
WwHTA;

Sketching in R2RILS E ﬁm

AV
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Sketching Interpretations for algorithms in literature

WA
Ut TA'Vt Ut TA_Vt . N
Wy av G Al Al ping 0 Aer Wit ﬁm
E H LEF; fcht
Sketching in RISRO B ‘V WHT4;

1—
whHrave 1 _Sketchjp, ; E m
ngi
DR2RiLs gyt %

[T

@ Alter Mini: Miss one set of covariates = large iteration
error

@ R2RILS: Double core sketch
Rank deficiency in the least squares

Hard in theory and implementation
* RISRO: resolve both issues —> High-order convergence!
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Convergence Analysis
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Convergence Analysis: Assumption

@ Restricted isometry property (RIP)
[Candeés, 2008, Recht et al., 2010] :

A RP*P2 — R satisfies the r—RIP with r-restricted isometry
constant § € [0,1) if

(1= 9)IZIIF < I A@)IZ < (1 +4)lZIIF

holds for all Z of rank at most r.

¢ Widely used [Cai and Zhang, 2013, Candés and Plan, 2011]...

¢ Easy to satisfy in random subgaussian design
[Candés and Plan, 2011]

¢ Key quantity in landscape analysis [Bhojanapalli et al., 2016,
Ge et al., 2017, Uschmajew and Vandereycken, 2018]
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Convergence Analysis: Assumption

@ Restricted isometry property (RIP)
[Candeés, 2008, Recht et al., 2010] :

A RP*P2 — R satisfies the r—RIP with r-restricted isometry
constant § € [0,1) if

(1= 9)IZIIF < I A@)IZ < (1 +4)lZIIF

holds for all Z of rank at most r.

¢ Widely used [Cai and Zhang, 2013, Candés and Plan, 2011]...

¢ Easy to satisfy in random subgaussian design
[Candés and Plan, 2011]

¢ Key quantity in landscape analysis [Bhojanapalli et al., 2016,
Ge et al., 2017, Uschmajew and Vandereycken, 2018]

Caveat: RIP may not hold in some scenarios such as
matrix completion.
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RISRO Convergence Analysis

Let X be a rank r and
Assume

@ A satisfies 3r-restricted isometry property (RIP) with RIP
constant §

@ |Initialization condition: ||X° — X||r < C(8)a,(X)
@ Small residual (gradient) condition: ||.A*(€)||r < C'(8)a,(X).

or(X) is the r-th largest singular value of X. A*(b) := "7, b;A; is the
adjoint operator of A.
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RISRO Convergence Analysis

Let X be a rank r and

Theorem 1: Under the assumptions above, X' generated by RISRO
converges Q-linearly to X:

_ 3 _
X = Xle < SIX = X[, V0.
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RISRO Convergence Analysis

Let X be arank r and
Theorem 1: Under the assumptions above, X' generated by RISRO
converges Q-linearly to X:

_ 3 _
X = Xle < SIX = X[, V0.

-y ci(o Xt—x 2 v, * Y *
I = X < SENTEEE (1% K1+ A O X = Kl + A4 OE)

vit>0.
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RISRO Convergence Analysis

Let X be a rank r and

Theorem 1: Under the assumptions above, X' generated by RISRO
converges Q-linearly to X:

_ 3 _
X = Xle < SIX = X[, V0.

. ¢ (8)||X! — X||I? - . - .
et - X < SOOI X (e i 4 g4 @)X - Rle + 14°1R)

ot (X)
vit>0.
If , then {X!} converges quadratically to X as
t_ y|2
||Xt+1 _ x”F < V Gt (6)||X_ XHF’ Vi>0.
or(X)
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RISRO Convergence Analysis

% Quadratic-linear convergence

S)IIX" — X2 5 ‘e g ‘(2
X=X < ‘()Jg(,—() (1 = 50+ 1" @) X K+ 14" ) )
r

e when [[X! — X|| > ||.4*(€)||r => quadratic convergence

e when || X! — X||g < ¢[|A*(€)||r = reduce to linear
convergence

€ | = Longer period of quadratic convergence.
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RISRO Convergence Analysis

% Quadratic-linear convergence

S)IIX" — X2 5 ‘e g ‘(2
X=X < ‘()Jg(,—() (1 = 50+ 1" @) X K+ 14" ) )
r

e when [[X! — X|| > ||.4*(€)||r => quadratic convergence
e when || X! — X||g < ¢[|A*(€)||r = reduce to linear
convergence

€ | = Longer period of quadratic convergence.

*x é=0 = y=AX) = matrix sensing
[Recht et al., 2010]
RISRO achieves quadratic convergence
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yi= (A, X*) +efor1<i<n A" NO1)and e "= N0, o?).
X* € RPXP with p = 100, r = 3, x(X*) = 1 and X° = SVD,(A*(y)).

@ (Quadratic-linear) n = 5pr, o = 10® for a € {0, —1, -2, —14}

== 16400 4 1e+04- 4
i % € %
X 1le-04 4 § 1e+00- 4 a
X ) = 'y -14
¥ 1e-08 AN S le-04 A g _%
£ S A £ N A _
>|< le-12 \‘ A © 1e-08 \j\ 0
x . o \A 4
= ) 10 20 0 10 20
Iteration Number Iteration Number
@ (Quadratic) n/(pr) € {4,5,6,7,8},0 =0

_u 1e+00-de g

0 o § b n

X 1e-04 Sa pr

= K 4

T le-08 A 5

0 gy 26

= le-12 N1y ;

= b S

0 1 2 3 4 5

Iteration Number
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Vs. Other Algorithms

Suppose p; = po = p and n > pr. Under similar assumptions
as in Theorem 1:

GD PGD (SVP/IHT) | Alter Mini | RISRO (this work)
Iteration 5 5 5 o 5 5
Complexity | C(P°7) O(np?) O(np*r?) O(npr?)
Tuning Yes Yes No No
Convergence Linear Linear Linear Quadratic-(linear)

% Improve upon Alter Mini for free
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Iteration Number
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50
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1e-08
le-12
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1e+00-4
le-04
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2
Runtime (s)
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Runtime (s)

Algorithm

RISRO (this work)
e Alter Mini
~ GD
+ SvpP
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Algorithm

RISRO (this work)
= Alter Mini
~ GD
+ SVP

NNM
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Any connection of RISRO to existing optimization
algorithms?
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Connection to Riemannian Manifold Optimization

lteration t of RISRO:

@ Perform importance sketching.

© Perform a dimension reduced least squares.

© Update sketching matrices and X'*1.
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Connection to Riemannian Manifold Optimization

lteration t of RISRO:

@ Perform importance sketching.

© Perform a dimension reduced least squares.

— Implicitly solves "Fisher Scoring" or "Riemannian
Gauss-Newton" equation in Riemannian optimization on fixed
rank matrices.

© Update sketching matrices and X'*1.

— Perform a type of retraction in Riemannian optimization
literature

RISRO

Non-linear
Riemannian Least square

Fisher Scoring
Gauss-Newton

Meeting of WHU-XMU December, 21, 2020
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Riemannian Manifold Optimization

@ Target: optimize a function f defined on a Riemannian manifold
M. [Absil et al., 2009]

@ Common Riemannian manifolds, embedded submanifold:
a smooth subset of R” + a Riemannian metric.
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Riemannian Manifold Optimization

@ Target: optimize a function f defined on a Riemannian manifold
M. [Absil et al., 2009]

@ Common Riemannian manifolds, embedded submanifold:
a smooth subset of R” + a Riemannian metric.

@ M, ={XecRP*P: rank(X) =r}

Riemannian metric: Euclidean inner product,
(U,V) = trace(UTV)
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@ lterative algorithm: x*1 = x! + ¢.
Manifold optimization: x*' may not lie in the manifold

Solution: retraction!
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@ lterative algorithm: x*1 = x! + ¢.
Manifold optimization: x*' may not lie in the manifold

Solution: retraction!
@ Retraction: a smooth map that brings the vector in the tangent

space back to the manifold. Denote T, M as the tangent space
at x

[Absil et al., 2009, Section 4.1]

R:TM— M, x x&— Rx(&) e M.
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@ lterative algorithm: x*1 = x! + ¢.
Manifold optimization: x*' may not lie in the manifold
Solution: retraction!

@ Retraction: a smooth map that brings the vector in the tangent

space back to the manifold. Denote T, M as the tangent space
at x

% Let 7' be the update direction such that X! + 7' has the following
representation,

Bi+1 pitt1T
X+t =[Ut U] [Dt“ 20 ] vt vi]r.
1
* X! 4+l = X'+, Retraction is:
B+ D;+1T

X = Ry(n) = [U" U] l vt v’

DIt DIF(BH ) DT

% ' solves the Fisher Scoring or Riemannian Gauss-Newton
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Connection to Riemannian Optimization

Recall £(X) = 3 [ly — AX)[3.
@ Riemannian Gradient: grad f(X)

@ Riemannian Hessian: Hessf(X)

@ Riemannian Newton direction 7yewon

—gradf(X) = Hessf(X)[/Newton]
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Connection to Riemannian Optimization

Recall (X) = 4 [ly — AX)|2

@ Riemannian Gradient: grad f(X) = Pr, (A*(A(X) —y)).
Pr.(-) is the orthogonal projector onto the tangent space at X.

@ Riemannian Hessian: Hessf(X)
[n] = Prc (A*(A(n))) + h(y — A(X)).
h(-) depends on X, .

@ Riemannian Newton direction nxewton
—gradf(X) = Hessf(X)[/Newton]
> —gradf(X) = Pr, (A*(A(newon))) + h(y — A(X))
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Connection to Riemannian O

Recall (X) = 4 [ly — AX)|2

@ Riemannian Gradient: grad f(X) =

ptimization

Pr(A*(A(X) —¥))-

Pr.(-) is the orthogonal projector onto the tangent space at X.

@ Riemannian Hessian: Hessf(X)

[n] = Prc (A*(A(n))) + h(y — A(X)).

h(-) depends on X, .

@ Riemannian Newton direction 7newon
—gradf(X) = Hessf(X)[/Newton]
> —gradf(X) = Pr, (A*(A(newon))) + h(y — A(X))

@ Update in RISRO:

B+ ptt1T
X+t =[Ut U] [

2
DI 0

Meeting of WHU-XMU
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Connection to Riemannian Optimization

Recall f(X) =} [ly — AX)[.
@ Riemannian Gradient: grad f(X) = Pr, (A*(A(X) — y)).
P, (-) is the orthogonal projector onto the tangent space at X.

@ Riemannian Hessian: Hessf(X)
[n] = Prc (A*(A(n))) + h(y — A(X)).
h(-) depends on X, .

@ Riemannian Newton direction 7newon
—gradf(X) = Hessf(X)[/Newton]
= —gradf(X) = Pr, (A" (A(7Newon))) + Ay — A(X))
@ Update in RISRO:

B+ ptt1T
X+t =[Ut U] [

bt |V v
Theorem 2: ! solves

—gradf(X') = Pr,, (A*(A(n)))-
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Connection of RISRO and Riemannian optimization

Suppose y = A(X) + €, where X is a fixed matrix and ¢; g N(0, 02).
Then for any 7,

{E(Hessf(X)[1])} [x=xt = Pr,, (A"(A(7))) -
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Connection of RISRO and Riemannian optimization

Suppose y = A(X) + €, where X is a fixed matrix and ¢; g N(0, 02).
Then for any 7,

{E(Hessf(X)[1])} [x=xt = Pr,, (A"(A(7))) -

By Theorem 2, 5! solves J

—gradf(X) = {E(Hessf(X)[1])} [xx:-
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Connection of RISRO and Riemannian optimization

Suppose y = A(X) + €, where X is a fixed matrix and ¢; g N(0, 02).

Then for any 7,
{E(Hessf(X)[1])} Ix=x: = Pr,, (A"(A(n))) -

By Theorem 2, 5! solves
~gradf(X') = {E(Hess (X)[7])} lx-x J

This algorithm is called Fisher Scoring in literature [Lange, 2010].

RISRO

Non-linear
Riemannian Least square

Fisher Scoring
Gauss-Newton
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Applications to Statistics and Machine Learning

¢ K
W o
fF 0
t
A £ Ty
' [ X & mining
da
7§ 1
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Applications to Statistics and Machine Learning

@ Low-rank matrix trace regression model:
yi= (A, X*)+¢€, for1<i<n,

X* € RP1*Pz is the true model parameter and rank(X*) = r.
@ Phase retrieval

yi=|(a,x*)? for 1<i<n,

xX* € RP.
Goal: estimate or recovery X* (or x*).
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Low-rank matrix trace regression

Theorem: Suppose A satisfies the 3r-RIP with RIP constant § and
® [|IX° — X*[[¢ < C(8) - or(X")
® o/(X*) > C'(8) - VrIlA*(e)ll.

Then iterations generated by RISRO satisfy

IXE = XA VAA ()]
X)) (%) >

X = X*[[E <er (8)]X° — X2 (
+ ;

for all t > 0.

% First term: Decreases quadratic-linearly.

* : Statistical error independent of t.
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@ Introduce a new algorithm, RISRO, for rank constrained
least squares.
— Tuning free, fast and has high-order convergence

@ Introduce the recursive importance sketching framework
— Provide a platform to compare different algorithms from a
sketching perspective

@ Connect RISRO with Riemannian optimization
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Thank you! Questions?

Luo, Y., Huang, W., Li, X., & Zhang, A. R. (2020). Recursive Importance
Sketching for Rank Constrained Least Squares: Algorithms and High-order
Convergence. arXiv preprint arXiv:2011.08360.
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