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Riemannian Optimization

Problem: Given f (x) :M→ R, solve

min
x∈M

f (x)

where M is a Riemannian manifold.

M

R
f
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Examples of Manifolds

Sphere Ellipsoid

Stiefel manifold: St(p, n) = {X ∈ Rn×p|X T X = Ip}
Grassmann manifold: Set of all p-dimensional subspaces of Rn

Set of fixed rank m-by-n matrices

And many more

Wen Huang Riemannian Optimization
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Riemannian Manifolds

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x
TxM
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Applications

Three applications are used to demonstrate the importance of the
Riemannian optimization:

Independent component analysis [CS93]

Matrix completion problem [Van13, HAGH16]

Elastic shape analysis of curves [SKJJ11, HGSA15]

Wen Huang Riemannian Optimization
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Application: Independent Component Analysis

People 1

People p

People 2

Microphone 1

Microphone n

Microphone 2

s(t) ∈ Rp

IC 1

IC p

IC 2

x(t) ∈ Rn

Cocktail party problem

ICA

Observed signal is x(t) = As(t)

One approach:

Assumption: E{s(t)s(t + τ)} is diagonal for all τ
Cτ (x) := E{x(t)x(x + τ)T} = AE{s(t)s(t + τ)T}AT

Wen Huang Riemannian Optimization
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Application: Independent Component Analysis

Minimize joint diagonalization cost function on the Stiefel manifold
[TI06]:

f : St(p, n)→ R : V 7→
N∑

i=1

‖V T Ci V − diag(V T Ci V )‖2
F .

C1, . . . ,CN are covariance matrices and
St(p, n) = {X ∈ Rn×p|X T X = Ip}.
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Application: Matrix Completion Problem

Matrix completion problem

User 1

User 2

User m

Movie 1 Movie 2 Movie n

Rate matrix M

1

53

4

4

5 3

15

2

The matrix M is sparse

The goal: complete the matrix M
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Application: Matrix Completion Problem

movies meta-user meta-movie
a11 a14

a24

a33

a41

a52 a53

 =


b11 b12

b21 b22

b31 b32

b41 b42

b51 b52


(

c11 c12 c13 c14

c21 c22 c23 c24

)

Minimize the cost function

f : Rm×n
r → R : X 7→ f (X ) = ‖PΩM − PΩX‖2

F .

Rm×n
r is the set of m-by-n matrices with rank r . It is known to be a

Riemannian manifold.
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Application: Elastic Shape Analysis of Curves

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Classification
[LKS+12, HGSA15]

Face recognition
[DBS+13]
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Application: Elastic Shape Analysis of Curves

Elastic shape analysis invariants:

Rescaling

Translation

Rotation

Reparametrization

The shape space is a quotient space

Figure: All are the same shape.

Wen Huang Riemannian Optimization



13/60

Riemannian Optimization
Averaging Matrices

Problem Statement and Motivations
Optimization Framework and History

Application: Elastic Shape Analysis of Curves

shape 1 shape 2

q1

q̃2

q2

[q1] [q2]

Optimization problem minq2∈[q2] dist(q1, q2) is defined on a
Riemannian manifold

Computation of a geodesic between two shapes

Computation of Karcher mean of a population of shapes

Wen Huang Riemannian Optimization
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More Applications

Role model extraction [MHB+16]

Computations on SPD matrices [YHAG17]

Phase retrieval problem [HGZ17]

Blind deconvolution [HH17]

Synchronization of rotations [Hua13]

Computations on low-rank tensor

Low-rank approximate solution for Lyapunov equation

Wen Huang Riemannian Optimization
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αk sk .

This iteration is implemented in numerous ways, e.g.:

Steepest descent: xk+1 = xk − αk∇f (xk )

Newton’s method: xk+1 = xk −
[
∇2f (xk )

]−1∇f (xk )

Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide

Riemannian concepts describing
directions and movement on the
manifold

Riemannian analogues for gradient
and Hessian

xk xk + dk

Wen Huang Riemannian Optimization
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Riemannian gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in Tx M
satisfying ∀η ∈ Tx M, the directional derivative

D f (x)[η] = 〈grad f (x), η〉

and grad f (x) is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
Tx M to Tx M defined as

Hess f (x) : Tx M → Tx M : η → ∇η grad f ,

where ∇ is the affine connection.

Wen Huang Riemannian Optimization
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Retractions

Euclidean Riemannian
xk+1 = xk + αk dk xk+1 = Rxk

(αkηk )

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx (0) = x

DRx (0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx (tη)

TxM
x

η

Rx (η)

M
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Categories of Riemannian optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and Rx (tη) to define line

Steepest decent

Newton

Local model-based: series of flat space problems

Riemannian trust region Newton (RTR)

Riemannian adaptive cubic overestimation (RACO)

Wen Huang Riemannian Optimization
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Categories of Riemannian optimization methods

Retraction and transport-based: information from multiple tangent spaces

Nonlinear conjugate gradient: multiple tangent vectors

Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function (M, g):

formulas for combining information from multiple tangent spaces.

Wen Huang Riemannian Optimization
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Vector Transports

Vector Transport

Vector transport: Transport a tangent
vector from one tangent space to
another

Tηx ξx , denotes transport of ξx to
tangent space of Rx (ηx ). R is a
retraction associated with T

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx

Figure: Vector transport.
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Retraction/Transport-based Riemannian Optimization

Given a retraction and a vector transport, we can generalize many
Euclidean methods to the Riemannian setting. Do the Riemannian
versions of the methods work well?

No

Lose many theoretical results and important properties;

Impose restrictions on retraction/vector transport;

Wen Huang Riemannian Optimization
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Comparison with Constrained Optimization

All iterates on the manifold

Convergence properties of unconstrained optimization algorithms

No need to consider Lagrange multipliers or penalty functions

Exploit the structure of the constrained set

M

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (I)

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”. Rosen (1961) essentially anticipated this but was not
explicit in his Gradient Projection Algorithm.

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Steepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics. On Riemannian
submanifolds of Rn.

Smith (1993-94), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential mapping; parallel
translation.

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (II)

The “pragmatic era” begins:

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expx η is replaced by a projective
update π(x + η), the projection of the point x + η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (III)

Theory, efficiency, and library design improve dramatically:

Absil, Baker, Gallivan (2004-07), Theory and implementations of
Riemannian Trust Region method. Retraction-based approach. Matrix
manifold problems, software repository:
http://www.math.fsu.edu/~cbaker/GenRTR

Anasazi Eigenproblem package in Trilinos Library at Sandia National
Laboratory

Ring and With (2012), combination of differentiated retraction and
isometric vector transport for convergence analysis of RBFGS

Absil, Gallivan, Huang (2009-2017), Complete theory of Riemannian
Quasi-Newton and related transport/retraction conditions, Riemannian
SR1 with trust-region, RBFGS on partly smooth problems, A C++
library: http://www.math.fsu.edu/~whuang2/ROPTLIB

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (IV)

Ring and With (2012), Global convergence analysis for Fletcher-Reeves
Riemannian nonlinear CG method with the strong wolfe conditions under
a strong assumption.

Sato, Iwai (2013-2015), Global convergence analysis for Fletcher-Reeves
type Riemannian nonlinear CG method with the strong wolfe conditions
under a mild assumption; and global convergence for Dai-Yuan type
Riemannian nonlinear CG method with the weak wolfe conditions under
mild assumptions.

Zhu (2017), Global convergence for Riemannian version of Dai’s
nonmonotone nonlinear CG method.

Wen Huang Riemannian Optimization
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Some History of Optimization On Manifolds (IV)

Bonnabel (2011) Riemannian stochastic gradient descent method.

Sato, Kasai, Mishra(2017) Riemannian stochastic gradient descent
method using variance reduction or quasi-Newton.

Becigneul, Ganea(2018) Riemannian versions of ADAM, ADAGRAD, and
AMSGRAD for geodesically convex functions.

Zhang, Sra(2016-2018) Riemannian first-order methods for geodesically
convex optimization.

Bento, Ferreira, Melo(2017) Chen, Ma, So, Zhang(2018) Riemannian
proximal gradient method.

Many people Application interests increase noticeably

Wen Huang Riemannian Optimization
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Riemannian Optimization Libraries

Four Riemannian optimization libraries for general problems:

Boumal, Mishra, Absil, Sepulchre(2014)
Manopt (Matlab library)

Townsend, Koep, Weichwald (2016)
Pymanopt (Python version of manopt)

Huang, Absil, Gallivan, Hand (2018)
ROPTLIB (C++ library, interfaces to Matlab and Julia)

Martin, Raim, Huang, Adragni(2018)
ManifoldOptim (R wrapper of ROPTLIB)

Wen Huang Riemannian Optimization
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Application: Averaging Symmetric Positive Definite
matrices

Definition

A symmetric matrix A is called positive definite A � 0 iff all its
eigenvalues are positive.

Sn
++ = {A ∈ Rn×n : A = AT ,A � 0}

2× 2 SPD matrix

u√
λu

v√
λv

3× 3 SPD matrix

u√
λu

v√
λv

w√
λw
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Motivation of Averaging SPD Matrices

Possible applications of SPD matrices

- Diffusion tensors in medical imaging
[CSV12, FJ07, RTM07]

- Describing images and video
[LWM13, SFD02, ASF+05, TPM06,
HWSC15]

Motivation of averaging SPD matrices

- Aggregate several noisy measurements of the same object

- Subtask in interpolation methods, segmentation, and clustering

Wen Huang Riemannian Optimization
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Averaging Schemes: from Scalars to Matrices

Let A1, . . . ,AK be SPD matrices.

Generalized arithmetic mean: 1
K

K∑
i=1

Ai

→ Not appropriate in many practical applications

A A+B
2 B

detA = 50 det(A+B
2 ) = 267.56 detB = 50

Generalized geometric mean: (A1 · · ·AK )1/K

→ Not appropriate due to non-commutativity

→ How to define a matrix geometric mean?

Wen Huang Riemannian Optimization
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Desired Properties of a Matrix Geometric Mean

The desired properties are given in the ALM list1, some of which are:

G (Aπ(1), . . . ,Aπ(K)) = G (A1, . . . ,AK ) with π a permutation of (1, . . . ,K)

if A1, . . . ,AK commute, then G(A1, . . . ,AK ) = (A1, . . . ,AK )1/K

G(A1, . . . ,AK )−1 = G(A−1
1 , . . . ,A−1

K )

det(G(A1, . . . ,AK )) = (det(A1) · · · det(AK ))1/K

1T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004
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Geometric Mean of SPD Matrices

A well-known mean on the manifold of SPD matrices is the Karcher
mean [Kar77]:

G (A1, . . . ,AK ) = arg min
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai ), (1)

where δ(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F is the geodesic distance
under the affine-invariant metric

g(ηX , ξX ) = trace(ηX X−1ξX X−1)

The Karcher mean defined in (1) satisfies all the geometric
properties in the ALM list [LL11]

Wen Huang Riemannian Optimization
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Algorithms

G (A1, . . . ,Ak ) = argmin
X∈Sn

++

1

2K

K∑
i=1

δ2(X ,Ai ),

Riemannian steepest descent [RA11, Ren13]

Riemannian Barzilai-Borwein method [IP15]

Riemannian Newton method [RA11]

Richardson-like iteration [BI13]

Riemannian steepest descent, conjugate gradient, BFGS, and trust
region Newton methods [JVV12]

Limited-memory Riemannian BFGS method [YHAG16]

Wen Huang Riemannian Optimization
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Remarks

Previous work:

Riemannian steepest descent and Riemannian CG methods are
preferred in terms of computational time

High rate of convergence of Riemannian Newton method does not
make up for extra complexity

New results:

Explain the preference for the first order methods

More options of retractions and vector transports

More efficient implementation

Limited-memory Riemannian BFGS method

Wen Huang Riemannian Optimization
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Conditioning of the Objective Function

Hemstitching phenomenon
for steepest descent

well-conditioned Hessian ill-conditioned Hessian

Small condition number ⇒ fast convergence

Large condition number ⇒ slow convergence

Wen Huang Riemannian Optimization
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Conditioning of the Karcher Mean Objective Function

Riemannian metric:

gX (ξ, η) = trace(ξX−1ηX−1)

Euclidean metric:

gX (ξ, η) = trace(ξη)

Condition number κ of Hessian at the minimizer µ:

Hessian of Riemannian metric:

- κ(HR ) ≤ 1 +
ln(maxκi )

2
, where κi = κ(µ−1/2Aiµ

−1/2)

- κ(HR ) ≤ 20 if max(κi ) = 1016

Hessian of Euclidean metric:

-
κ2(µ)

κ(HR)
≤ κ(HE) ≤ κ(HR)κ2(µ)

- κ(HE ) ≥ κ2(µ)/20

Wen Huang Riemannian Optimization
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Implementations

Retraction

Exponential mapping: ExpX (ξ) = X 1/2 exp(X−1/2ξX−1/2)X 1/2

Second order approximation retraction [JVV12]:

RX (ξ) = X + ξ +
1

2
ξX−1ξ

Vector transport

Parallel translation: Tpη (ξ) = QξQT , with Q = X
1
2 exp(

X− 1
2 ηX− 1

2

2
)X− 1

2

Vector transport by parallelization [HAG16]: essentially an identity

Requires orthogonal basis for tangent spaces

Wen Huang Riemannian Optimization
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Implementations

Cholesky Xk = Lk LT
k assumed to be computed on each step

BX of TX Sn
++, the orthonormal basis of TX Sn

++

BX = {Lei e
T
i LT : i = 1, . . . , n} ∪ { 1√

2
L(ei e

T
j + ej e

T
i )LT ,

i < j , i = 1, . . . , n, j = 1, . . . , n},

!where {ei , . . . , en} is the standard basis of n-dimensional Euclidean
space.

orthonormal under gX (ξX , ηX ).

ξX = BX ξ̂X ↔ ξX = LSLT , where S is symmetric and constains
scale coefficients.

intrinsic representation of tangent vectors is easily maintained.
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Numerical Results: K = 100, size = 3× 3, d = 6

1 ≤ κ(Ai ) ≤ 200
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Numerical Results: K = 30, size = 100× 100, d = 5050

1 ≤ κ(Ai ) ≤ 20
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Numerical Results: Riemannian vs. Euclidean Metrics

K = 100, n = 3, and 1 ≤ κ(Ai ) ≤ 106.
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Other types of mean

Sacrifice a few properties in the ALM list to gain
robustness/efficiency etc

Log-Euclidean mean

arithmetic-harmonic mean

Divergence-based means

Inductive means

Minimax centers

Medians

The median based on Riemannian distance
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Motivations

The mean of a set of points is sensitive to outliers

The median is robust to outliers
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Figure: The geometric mean and median in R2 space.
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Riemannian Median of SPD Matrices

The Riemannian median of a set of SPD matrices is defined as:

M(A1, . . . ,AK ) = argmin
X∈Sn

++

1

2K

K∑
i=1

δ(Ai ,X ),

where δ(X ,Y ) is a distance function.

The cost function is non-smooth at X = Ai

The median is unique
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Algorithms

M(A1, . . . ,AK ) = argmin
X∈Sn

++

1

2K

K∑
i=1

δ(Ai ,X )

Riemannian Weiszfeld’s algorithm [FVJ09]

Our approach: Riemannian quasi-Newton algorithms

- Smooth RBFGS [HAG18]

- Modified RBFGS [Hua13]

- Nonsmooth RBFGS [HHY18]

- Limited-memory versions of the above three [HAGH16]
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Numerical Results for L1 Median Computation on Sn
++:

Comparison of Different Algorithms

K = 100, size = 3 × 3
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Figure: Evolution of averaged distance between current iterate and the exact
Riemannian median with respect to time and iterations.
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Numerical Results for L1 Median Computation on Sn
++:

Comparison of Different Algorithms

K = 100, size = 3 × 3

well-conditioned Ai + 5% ill-conditioned outliers
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Figure: Evolution of averaged distance between current iterate and the exact
Riemannian median with respect to time and iterations.
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Application: Electroencephalography (EEG) Classification

13 Hz 17 Hz 21 Hz No led

The subject is either asked to focus on one specific blinking LED or
a location without LED

EEG system is used to record brain signals

Covariance matrices of size 24× 24 are used to represent EEG
recordings [KCB+15, MC17]
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EEG Classification: Examples of Covariance Matrices
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EEG Classification: Minimum Distance to Mean classier

Goal: classify new covariance matrix using Minimum Distance to Mean
Classifier

For each class k = 1, . . . ,K , compute the center µk of the
covariance matrices in the training set that belong to class k

Classify a new covariance matrix X according to

k̂ = argmin
1≤k≤K

δ(X , µk )
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EEG Classfification: Accuracy

Accuracy comparison

Means
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EEG Classfification: Computation Time

Computation time comparison
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Summary

Introduced the framework of Riemannian optimization

Used applications to show the importance of Riemannian
optimization

Briefly reviewed the history of Riemannian optimization

Introduced the mean of SPD matrices

Demonstrated the performance of the Riemannian methods
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Thank you

Thank you!
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