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Problem Statement

Problem: Given f(x) : M — R, N
solve T T -

in f
R

D

where M is a Riemannian manifold.
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Problem Statement

Problem: Given f(x) : M — R, N
solve T T -

in f
R

D

where M is a Riemannian manifold.

Manifolds:
Stiefel: St(p,n) = {X € R™P: XTX = I,};

@ Grassmann: the set of p dimensional linear spaces in R”;
o Fixed rank: R"*" = {X € R™*" : rank(X) = r} or tensor;
e Symmetric positive definite: ST, = {X € R"™*": X > 0};
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Review (non-exhaustive)

@ Smooth unconstrained problems
o Steepest descent: Smith 1994; Helmke-Moore 1994;
lannazzo-Porcelli 2019;
o Conjugate gradient: Smith 1994; Gallivan-Absil 2010; Ring-Wirth
2012; Sato-lwai 2015;
o Quasi-Newton: Ring-Wirth 2012; Huang-Absil-Gallivan 2018;
o Trust region Newton: Absil-Baker-Gallivan 2007;

@ Nonsmooth unconstrained problems
o Proximal point method: Ferreira-Oliveira 2002;
o Optimality conditions: Yang-Zhang-Song 2014;
o Gradient sampling: Huang 2013; Hosseini and Uschmajew 2017;
o e-subgradient-based methods: Grohs and Hosseini 2015;

o Constrained problems:
o Augmented Lagrangian methods: Boumal-Liu 2019;
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Review (non-exhaustive)

@ Smooth unconstrained problems:
o Stiefel manifold: Wen-Yin 2012; Jiang-Dai 2014; Xiao-Liu-Yuan
2020; Dai-Wang-Zhou 2020
o Symmetric positive definite manifold: Bini-lannazzo 2013; Zhang
2017; Yuan-Huang-Absil-Gallivan 2020;
o Fixed rank manifold: Wen-Yin-Zhang 2012; Mishra 2014;
Boumal-Absil 2014;

@ Nonsmooth unconstrained problems:

o Stiefel Manifold: Huang-Wei 2019; Chen-Ma-So-Zhang 2020;
Xiao-Liu-Yuan 2020;
o Fixed rank manifold: Cambier-Absil 2016;

o Constrained problems:

o Stiefel + non-negativity: Jiang-Meng-Wen-Chen 2019;
e Symmetric positive definite + zeros: Phan-Menickelly 2020;
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Review (non-exhaustive)

Riemannian optimization libraries for general problems:

Boumal, Mishra, Absil, Sepulchre(2014)
Manopt (Matlab library)

Townsend, Koep, Weichwald (2016)
Pymanopt (Python version of manopt)

Bergmann (2019)
manoptjl (Julia, nonsmooth methods)

Huang, Absil, Gallivan, Hand (2018)
ROPTLIB (C++ library, interfaces to Matlab and Julia)

Martin, Raim, Huang, Adragni (2018)
ManifoldOptim (R wrapper of ROPTLIB)

Meghawanshi, Jawanpuria, Kunchukuttan, Kasai, Mishra (2018)
McTorch (Python, GPU acceleration)
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@ Smooth unconstrained problems

e Broyden family including BFGS method [HGA15, HAG16, HAG18]
o Trust-region symmetric rank-one method [HAG15]
o Their limited-memory versions [HG21]

@ Nonsmooth unconstrained problems

o e-subgradient with quasi-Newton method [HHY18]
o Proximal gradient methods [HW21]

@ Applications:

o Elastic shape analysis [HGSA15]

e Blind deconvolution [HH18]

o Phase retrieval [HGZ16]

o Sparse principal component analysis [HW19]

o Library: ROPTLIB [HAGH18]
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Recent work: Riemannian Proximal Gradient Methoods

in F(x)="f
min F(x) = f(x) + g(x),
@ M is a Riemannian manifold;
@ f is continuously differentiable and may be nonconvex; and

@ g is continuous, but may be not differentiable.
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Recent work: Riemannian Proximal Gradient Methoods
Euclidean setting

Optimization with Structure: M =R"

min F(x) = f(x) + g(x), (1)
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Recent work: Riemannian Proximal Gradient Methoods
Euclidean setting

Optimization with Structure: M =R"

min F(x) = f(x) + g(x), (1)

A proximal gradient method®:

initial iterate:xp,

dix = argminpeprn (VF(xk), p) + %||p||,2E + g(xk + p), (Proximal mapping)
Xk41 = Xk + dx. (Update iterates)

1The update rule: x;. 1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).
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Recent work: Riemannian Proximal Gradient Methoods
Euclidean setting

Optimization with Structure: M =R"

min F(x) = f(x) + g(x), (1)

A proximal gradient method®:

initial iterate:xp,

dix = argminpeprn (VF(xk), p) + %||p||,2E + g(xk + p), (Proximal mapping)
Xk41 = Xk + dx. (Update iterates)

@ g = 0: reduce to steepest descent method;

1The update rule: x;. 1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).
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Recent work: Riemannian Proximal Gradient Methoods
Euclidean setting

Optimization with Structure: M =R"

min F(x) = f(x) + g(x), (1)

A proximal gradient method®:

initial iterate:xp,

dix = argminpeprn (VF(xk), p) + %||p||,2E + g(xk + p), (Proximal mapping)
Xk41 = Xk + dx. (Update iterates)

@ g = 0: reduce to steepest descent method,;
@ L: greater than the Lipschitz constant of Vf;

1The update rule: x;. 1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).
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Recent work: Riemannian Proximal Gradient Methoods
Euclidean setting

Optimization with Structure: M =R"

min F(x) = f(x) + g(x), (1)

A proximal gradient method®:

initial iterate:xp,
dix = argminpeprn (VF(xk), p) + %||p||,2E + g(xk + p), (Proximal mapping)
Xk41 = Xk + dx. (Update iterates)
@ g = 0: reduce to steepest descent method;
@ L: greater than the Lipschitz constant of Vf;

@ Proximal mapping: easy to compute;

1The update rule: x;. 1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).
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Recent work: Riemannian Proximal Gradient Methoods
Euclidean setting

Optimization with Structure: M =R"

min F(x) = f(x) + g(x), (1)

A proximal gradient method®:

initial iterate:xp,

di = arg minpers (VF(x), p) + 5||plIZ + g(xk + p), (Proximal mapping)
Xk41 = Xk + dx. (Update iterates)
@ g = 0: reduce to steepest descent method;
@ L: greater than the Lipschitz constant of Vf;
@ Proximal mapping: easy to compute;

@ Any limit point is a critical point;

1The update rule: x;. 1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).
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Recent work: Riemannian Proximal Gradient Methoods
Euclidean setting

Optimization with Structure: M =R"

min F(x) = f(x) + g(x), (1)

A proximal gradient method®:

initial iterate:xp,

dix = argminpeprn (VF(xk), p) + %||p||,2E + g(xk + p), (Proximal mapping)
Xk41 = Xk + dx. (Update iterates)

g = 0: reduce to steepest descent method,;

L: greater than the Lipschitz constant of Vf;

Proximal mapping: easy to compute;

Any limit point is a critical point;

O(1/k) sublinear convergence rate for convex f and g;

1The update rule: x;. 1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).
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Recent work: Riemannian Proximal Gradient Methoods
Euclidean setting

Optimization with Structure: M =R"

min F(x) = f(x) + g(x), (1)

A proximal gradient method®:

initial iterate:xp,
dix = argminpeprn (VF(xk), p) + %||p||,2E + g(xk + p), (Proximal mapping)
Xk41 = Xk + dx. (Update iterates)

g = 0: reduce to steepest descent method,;

L: greater than the Lipschitz constant of Vf;

Proximal mapping: easy to compute;

(]

(]

("]

@ Any limit point is a critical point;

@ O(1/k) sublinear convergence rate for convex f and g;
°

Local convergence rate by KL property;
1The update rule: x;. 1 = arg min (Vf(xx),x — xx) + éHX — xk||2 + g(x).

Speaker: Wen Huang Riemannian Optimization: Proximal Gradient Methods



Recent work: Riemannian Proximal Gradient Methoods
Euclidean setting

min,croxm F(x) = f(x) + g(x), with F satisfying the
Kurdyka-tojasiewicz (KL) property with exponent 6 € (0, 1];

Reference [BST14]:
@ Only one accumulation point;

@ if # = 1, then the proximal gradient method terminates in finite
steps;

e if § €[0.5,1), then |[xx — x.|| < Cid¥ for C; >0 and d € (0,1);
o if 0 € (0,0.5), then ||xx — x| < kT for C; > 0;
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Recent work: Riemannian Proximal Gradient Methoods

Diffuclities in the Riemannian setting

Euclidean proximal mapping

. L
di =arg min (Vf(x),p) + 5llpllF + &(x + p)
peERNXM 2

In the Riemannian setting:
@ How to define the proximal mapping?
@ Can be solved cheaply?
@ Share the same convergence rate?
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Recent work: Riemannian Proximal Gradient Methoods
A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di =arg min (Vf(x),p) + 5llpllF + &(x + p)
pERNXM 2

A Riemannian proximal mapping [CMSZ20]

Q i = argminger, am (VF(xi), 1) + 5lInliE + glx + n);

@ Only works for embedded submanifold;

1[CMSZ18]: S. Chen, S. Ma, M. C. So, and T. Zhang, Proximal gradient method
for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization,
30(1):210-239, 2020
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Recent work: Riemannian Proximal Gradient Methoods
A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di =arg min (Vf(x),p) + 5llpllF + &(x + p)
pERNXM 2

A Riemannian proximal mapping [CMSZ20]

Q i = argminger, am (VF(xi),m) + 5lInliE + g(x + n);

@ Only works for embedded submanifold;

@ Proximal mapping is defined in tangent space;

1[CMSZ18]: S. Chen, S. Ma, M. C. So, and T. Zhang, Proximal gradient method
for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization,
30(1):210-239, 2020

Speaker: Wen Huang Riemannian Optimization: Proximal Gradient Methods



Recent work: Riemannian Proximal Gradient Methoods
A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di =arg min (Vf(x),p) + 5llpllF + &(x + p)
pERNXM 2

A Riemannian proximal mapping [CMSZ20]

Q i = argminger, am (VF(xi),m) + 5lInliE + g(x + n);

@ Only works for embedded submanifold;
@ Proximal mapping is defined in tangent space;

@ Convex programming;

1[CMSZ18]: S. Chen, S. Ma, M. C. So, and T. Zhang, Proximal gradient method
for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Optimization,
30(1):210-239, 2020
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Recent work: Riemannian Proximal Gradient Methoods
A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di = arg_min (VFf(xc),p) + 5 [Pl + g0xk + p)
pERNXm 2

ManPG [CMSZ20]

@ 1 = argminyer,, M (VF(xk),m) + 5llnllE + g0xk +n):

Only works for embedded submanifold;
Proximal mapping is defined in tangent space;

Convex programming;

e 6 o6 o

Solved efficiently for the Stiefel manifold by a semi-Newton
algorithm [XLWZ18];
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Recent work: Riemannian Proximal Gradient Methoods
A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di = arg_min (VFf(xc),p) + 5 [Pl + g0xk + p)
pERNXm 2

ManPG [CMSZ20]

Q@ i = argminger, m (VF(x),n) + 5l + g0 +n);
Q@ xii1 = Ry (akmi) with an appropriate step size ay;

@ Only works for embedded submanifold; .M

@ Proximal mapping is defined in tangent space; ‘\
@ Convex programming;

@ Solved efficiently for the Stiefel manifold by a semi-Néwto

algorithm [XLWZ18];

@ Step size 1 is not necessary decreasing;
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Recent work: Riemannian Proximal Gradient Methoods
A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di =arg min (Vf(x),p) + 5llpllF + &(x + p)
peERNXM 2

ManPG [CMSZ20]

Q i = argminger, M (V) n) + 5l + g0k +n);
Q@ xx11 = Ry (akmk) with an appropriate step size ay;

e Convergence to a stationary point;
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Recent work: Riemannian Proximal Gradient Methoods
A Riemannian Proximal Gradient Method in [CMSZ20]

Euclidean proximal mapping

. L
di =arg min (Vf(x),p) + 5llpllF + &(x + p)
peERNXM 2

ManPG [CMSZ20]

Q i = argminger, M (V) n) + 5l + g0k +n);
Q@ xx11 = Ry (akmk) with an appropriate step size ay;

@ Convergence to a stationary point;

@ No convergence rate analysis;
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Recent work: Riemannian Proximal Gradient Methoods

New Riemannian Proximal Gradient Methods

GOAL: Develop a Riemannian proximal gradient method with
convergence rate analysis and good numerical performance for some
instances
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Recent work: Riemannian Proximal Gradient Methoods

New Riemannian Proximal Gradient Methods

GOAL: Develop a Riemannian proximal gradient method with
convergence rate analysis and good numerical performance for some
instances

A New Riemannian Proximal Gradient Method

. L
@ 7k = argminyem, a (gradf (i), m)x, + 5 Inl%, +8( Ru(n) ):
——

replace xx + n

Riemannian metric
Q xit1 = R (mk);

@ General framework for Riemannian optimization;
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Recent work: Riemannian Proximal Gradient Methoods

New Riemannian Proximal Gradient Methods

GOAL: Develop a Riemannian proximal gradient method with
convergence rate analysis and good numerical performance for some
instances

A New Riemannian Proximal Gradient Method

. L
@ 7k = argminyer, a (gradf (), mx, + 5 [Inl%, +8( Ru(n) ):
~——

replace xx + n

Riemannian metric
Q xit1 = R (mk);

o General framework for Riemannian optimization;

@ Step size can be fixed to be 1;
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Recent work: Riemannian Proximal Gradient Methoods
Assumptions and Convergence Result

Assumption:

@ The function F is bounded from below and the sublevel set
Q,, = {x e M| F(x) < F(x0)} is compact;

This assumption hold if, for example, F is continuous and M is compact.

Sparse PCA:  min —trace(X T ATAX) 4+ || X]|1,
XeSt(p,n)
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Recent work: Riemannian Proximal Gradient Methoods

Assumptions and Convergence Result

Assumption:

@ The function F is bounded from below and the sublevel set
Q,, = {x e M| F(x) < F(x0)} is compact;

@ The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Q,,.

Definition

A function h: M — R is called L-retraction-smooth with respect to a
retraction R in N' C M if for any x € N and any S, C T M such that
R.(Sx) € N, we have that

P(R(n)) < h(x) + {grad hx),m)s + 52, W € S
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Recent work: Riemannian Proximal Gradient Methoods
Assumptions and Convergence Result

Assumption:

@ The function F is bounded from below and the sublevel set
Q,, = {x e M| F(x) < F(x0)} is compact;

@ The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Q,,.

if the following conditions hold, then f is L-retraction-smooth with respect
to the retraction R in the manifold M [BAC18, Lemma 2.7]

@ M is a compact Riemannian submanifold of a Euclidean space R";
@ the retraction R is globally defined;
o f:R" — R is L-smooth in the convex hull of M;

Sparse PCA:  min —trace(X AT AX) + || X1,
XeSt(p,n)
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Recent work: Riemannian Proximal Gradient Methoods
Assumptions and Convergence Result

Assumption:

@ The function F is bounded from below and the sublevel set
Q,, = {x e M| F(x) < F(x0)} is compact;

@ The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Q,,.

Theoretical results:

e For any accumulation point x, of {xx}, x. is a stationary point, i.e.,
0 € OF(x:).
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Recent work: Riemannian Proximal Gradient Methoods
Assumptions and Convergence Rate

Additional Assumptions:
e f and g are retraction-convex in D €Q,;

@ Retraction approximately satisfies the triangle relation in €: for all
X, Y,z € Qv

1€« = nllZ = ISy 1] <slln«l% for a constant x

where 1, = R7H(y), & = R7Y(2). ¢ = Ry Y(2).

Theoretical results:
e Convergence rate O(1/k):

»\r—\

Flx) — F(x) < (| A2+ (R o) - F (x*))).
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Recent work: Riemannian Proximal Gradient Methoods
Assumptions and Local Convergence Result

Assumption:

© Assumptions for the global convergence

@ The function F is bounded from below and the sublevel set
Q,, = {x e M| F(x) < F(x)} is compact;

@ The function f is L-retraction-smooth with respect to the retraction R
in the sublevel set Q,,.

min  —trace(X TATAX) + || X1,
XeSt(p,n)
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Recent work: Riemannian Proximal Gradient Methoods

Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ f is locally Lipschitz continuously differentiable

Definition ( [AMS08, 7.4.3])

A function f on M is Lipschitz continuously differentiable if it is
differentiable and if there exists 81 such that, for all x,y in M with
dist(x,y) < i(M), it holds that

1P grad f(y) — grad f(x)|lx < f1 dist(x, y),

where v is the unique minimizing geodesic with v(0) = x and (1) = y.
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Recent work: Riemannian Proximal Gradient Methoods
Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence

@ f is locally Lipschitz continuously differentiable

If £ is smooth and the manifold M is compact, then the function f is
Lipschitz continuously differentiable. [AMS08, Proposition 7.4.5 and
Corollary 7.4.6].

min  —trace(XTATAX) + || X1,
XeSt(p,n)
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Recent work: Riemannian Proximal Gradient Methoods

Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ f is locally Lipschitz continuously differentiable
@ F satisfies the Riemannian KL property defined in [BACNO11]

Definition

A continuous function f : M — R is said to have the Riemannian KL property at x € M if and only
if there exists € € (0, co], a neighborhood U C M of x, and a continuous concave function
¢ : [0,e] — [0, c0) such that

@ (0)=0,cis C*on (0,¢), and ¢’ > 0 on (0, 7),
@ For every y € U with f(x) < f(y) < f(x) + €, we have

'(fy) = f(x)) dist(0, 0f (y)) > 1,

where dist(0, 9f(y)) = inf{||v||, : v € 8f(y)} and O denotes the Riemannian generalized
subdifferential. The function ¢ is called the desingularising function.

The desingularising function ¢ quantifies the relationship between f(x,) — f(x.) and dist(0, Of (x)).
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Recent work: Riemannian Proximal Gradient Methoods
Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ f is locally Lipschitz continuously differentiable
@ F satisfies the Riemannian KL property defined in [BACNO11]

Theoretical results:
@ it holds that

oo
Z dist(xg, Xk41) < 00.
k=0

Therefore, there exists only a unique accumulation point.
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Recent work: Riemannian Proximal Gradient Methoods
Assumptions and Local Convergence Result

Assumption:
© Assumptions for the global convergence
@ f is locally Lipschitz continuously differentiable
@ F satisfies the Riemannian KL property defined in [BACNO11]

Theoretical results:

o If the desingularising function has the form ¢(t) = %te for C >0 and
6 € (0,1] for all x € Q,,, then
e if 6 =1, then the Riemannian proximal gradient method terminates in
finite steps;
o if § €[0.5,1), then ||xk — x.|| < Gid* for G > 0 and d € (0,1);
o if § € (0,0.5), then [xc — x| < Gk™2 for C, > 0;
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Recent work: Riemannian Proximal Gradient Methoods
Riemannian KL property

How to verify if a function satisfies the Riemannian KL property?

Restriction of a semialgebraic Function onto Stiefel manifold satisfies the
Riemannian KL property with desingularising function in the form of
s(t) = 5t% where 6 € (0,1] and C > 0.
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Recent work: Riemannian Proximal Gradient Methoods
Riemannian KL property

How to verify if a function satisfies the Riemannian KL property?

Restriction of a semialgebraic Function onto Stiefel manifold satisfies the
Riemannian KL property with desingularising function in the form of
s(t) = 5t% where 6 € (0,1] and C > 0.

Definition (Semialgebraic functions)

@ A subset S of R” is called semialgebraic if there exists a finite number
of polynomial function gj;, h; : R” — R such that

S=U_, N {ueR"| g;(u) =0 and h;(u) < 0}.

@ Let A C R" be semialgebraic. A function : A — R is semialgebraic if
its graph is semialgebraic in R,
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Recent work: Riemannian Proximal Gradient Methoods
Riemannian KL property

How to verify if a function satisfies the Riemannian KL property?

Restriction of a semialgebraic Function onto Stiefel manifold satisfies the
Riemannian KL property with desingularising function in the form of
s(t) = 5t% where 6 € (0,1] and C > 0.

Function —trace(XT AT AX) + \||X||1 is a semialgebraic function on R"*P.
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Recent work: Riemannian Proximal Gradient Methoods
Numerical Experiments

Two sparse PCA models:
o first model: [GHT15]

min |IXTATAX — D?||2 + \|| X||1,
X€e€O0B(p,n)

where A € R™*" is a data matrix, D is the diagonal matrix with
dominant singular values of A,

OB(p,n) = {X € R™P | diag(X"X) = I,}, p < m;
@ second model

min  —trace(XTATAX) 4+ \||X||1.
XeSt(p,n)
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Recent work: Riemannian Proximal Gradient Methoods
Numerical Experiments

First: _min )HXTATAX—D2H,2:+>\||X||1,.

€0B(p,

Table: An average result of 10 random tests. n = 128, m = 20, r = 4.
8 = (L||xk+1 — x||)?. The subscript k indicates a scale of 10*.

A Algo iter  time f é spar. navar
3 ManPG | 11791 1.40 8.33; 5.11_ 054 0.86
RPG 11679 094 8.33; 5.11 4 054 0.86

e ManPG: the method in [CMSZ20];

@ RPG: the new Riemannian proximal gradient;

See more numerical experiments in [HW21].
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Recent work: Riemannian Proximal Gradient Methoods
Numerical Experiments

Second: min —trace(XTATAX) + X[ X]|1.

XeSt(p,n)
-71
—¥—ManPG
=72 —7—RPG
-73
=3
g -74
-75
-76 VA

0 20 40 60 80
iteration iteration

Figure: Two typical runs of ManPG, RPG, A-ManPG, and A-RPG for the
Sparse PCA problem. n =1024, p =4, A =2, m = 20.

See more numerical experiments in [HW21].
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Ongoing related research

Main references: Huang and Wei, Riemannian proximal gradient methods, Mathematical
Programming, Series A, doi:10.1007/s10107-021-01632-3, 2021

@ Riemannian proximal gradient methods without solving the
subproblem exactly;

@ Develop related geometry tools for other manifolds
@ Riemannian KL property for more objective and manifolds

@ Applications
o Sparse PCA
o Clustering
o Community detection
o Image impainting with Low rank sparse constraints
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@ Riemannian optimization problem statement

Literature review

My related work

A Riemannian proximal gradient method

Ongoing related research
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