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Riemannian Optimization

Problem: Given f (x) :M→ R, solve

min
x∈M

f (x)

where M is a Riemannian manifold.

M

R
f
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Examples of Manifolds

Sphere Ellipsoid

Stiefel manifold: St(p, n) = {X ∈ Rn×p|X T X = Ip}
Grassmann manifold: Set of all p-dimensional subspaces of Rn

Set of fixed rank m-by-n matrices

And many more

Wen Huang Rice University
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Riemannian Manifolds

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x
TxM
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Applications

Three applications are used to demonstrate the importance of the
Riemannian optimization:

Independent component analysis [CS93]

Matrix completion problem [Van12, HAGH16]

Elastic shape analysis of curves [SKJJ11, HGSA15]

Wen Huang Rice University
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Application: Independent Component Analysis

People 1

People p

People 2

Microphone 1

Microphone n

Microphone 2

s(t) ∈ Rp

IC 1

IC p

IC 2

x(t) ∈ Rn

Cocktail party problem

ICA

Observed signal is x(t) = As(t)

One approach:

Assumption: E{s(t)s(t + τ)} is diagonal for all τ
Cτ (x) := E{x(t)x(x + τ)T} = AE{s(t)s(t + τ)T}AT

Wen Huang Rice University
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Application: Independent Component Analysis

Minimize joint diagonalization cost function on the Stiefel manifold
[TI06]:

f : St(p, n)→ R : V 7→
N∑

i=1

‖V T Ci V − diag(V T Ci V )‖2
F .

C1, . . . ,CN are covariance matrices and
St(p, n) = {X ∈ Rn×p|X T X = Ip}.

Wen Huang Rice University
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Application: Matrix Completion Problem

Matrix completion problem

User 1

User 2

User m

Movie 1 Movie 2 Movie n

Rate matrix M

1

53

4

4

5 3

15

2

The matrix M is sparse

The goal: complete the matrix M

Wen Huang Rice University
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Application: Matrix Completion Problem

movies meta-user meta-movie
a11 a14

a24

a33

a41

a52 a53

 =


b11 b12

b21 b22

b31 b32

b41 b42

b51 b52


(

c11 c12 c13 c14

c21 c22 c23 c24

)

Minimize the cost function

f : Rm×n
r → R : X 7→ f (X ) = ‖PΩM − PΩX‖2

F .

Rm×n
r is the set of m-by-n matrices with rank r . It is known to be a

Riemannian manifold.
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Application: Elastic Shape Analysis of Curves

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Classification
[LKS+12, HGSA15]

Face recognition
[DBS+13]
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Application: Elastic Shape Analysis of Curves

Elastic shape analysis invariants:

Rescaling

Translation

Rotation

Reparametrization

The shape space is a quotient space

Figure: All are the same shape.
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Application: Elastic Shape Analysis of Curves

shape 1 shape 2

q1

q̃2

q2

[q1] [q2]

Optimization problem minq2∈[q2] dist(q1, q2) is defined on a
Riemannian manifold

Computation of a geodesic between two shapes

Computation of Karcher mean of a population of shapes

Wen Huang Rice University
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More Applications

Matrix/tensor completion [HAGH16]

Role model extraction [MHB+16]

Computations on SPD matrices [YHAG17]

Elastic shape analysis [HGSA15, YHGA15, HYGA15]

Phase retrieval problem [HGZ16]

Blind deconvolution [HH17]

Synchronization of rotations [Hua13]

Low-rank approximate solution for Lyapunov equation

Wen Huang Rice University
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Comparison with Constrained Optimization

All iterates on the manifold

Convergence properties of unconstrained optimization algorithms

No need to consider Lagrange multipliers or penalty functions

Exploit the structure of the constrained set

M

Wen Huang Rice University
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αk sk .

This iteration is implemented in numerous ways, e.g.:

Steepest descent: xk+1 = xk − αk∇f (xk )

Newton’s method: xk+1 = xk −
[
∇2f (xk )

]−1∇f (xk )

Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide

Riemannian concepts describing
directions and movement on the
manifold

Riemannian analogues for gradient
and Hessian

xk xk + dk

Wen Huang Rice University
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Riemannian gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in Tx M
satisfying ∀η ∈ Tx M, the directional derivative

D f (x)[η] = 〈grad f (x), η〉

and grad f (x) is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
Tx M to Tx M defined as

Hess f (x) : Tx M → Tx M : η → ∇η grad f ,

where ∇ is the affine connection.

Wen Huang Rice University
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Retractions

Euclidean Riemannian
xk+1 = xk + αk dk xk+1 = Rxk

(αkηk )

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx (0) = x

DRx (0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx (tη)

TxM
x

η

Rx (η)

M
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Categories of Riemannian optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and Rx (tη) to define line

Steepest decent

Newton

Local model-based: series of flat space problems

Riemannian trust region Newton (RTR)

Riemannian adaptive cubic overestimation (RACO)

Wen Huang Rice University
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Categories of Riemannian optimization methods

Retraction and transport-based: information from multiple tangent spaces

Conjugate gradient: multiple tangent vectors

Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function (M, g):

formulas for combining information from multiple tangent spaces.

Wen Huang Rice University
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Vector Transports

Vector Transport

Vector transport: Transport a tangent
vector from one tangent space to
another

Tηx ξx , denotes transport of ξx to
tangent space of Rx (ηx ). R is a
retraction associated with T

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx

Figure: Vector transport.
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Retraction/Transport-based Riemannian Optimization

Benefits

Increased generality does not compromise the important theory

Less expensive than or similar to previous approaches

May provide theory to explain behavior of algorithms specifically
developed for a particular application – or closely related ones

Possible Problems

May be inefficient compared to algorithms that exploit application
details

Wen Huang Rice University
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Some History of Optimization On Manifolds (I)

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”. Rosen (1961) essentially anticipated this but was not
explicit in his Gradient Projection Algorithm.

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Steepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics. On Riemannian
submanifolds of Rn.

Smith (1993-94), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential mapping; parallel
translation.

Wen Huang Rice University
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Some History of Optimization On Manifolds (II)

The “pragmatic era” begins:

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expx η is replaced by a projective
update π(x + η), the projection of the point x + η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.

Absil, Mahony, Sepulchre (2007) Nonlinear conjugate gradient using
retractions.

Wen Huang Rice University
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Some History of Optimization On Manifolds (III)

Theory, efficiency, and library design improve dramatically:

Absil, Baker, Gallivan (2004-07), Theory and implementations of
Riemannian Trust Region method. Retraction-based approach. Matrix
manifold problems, software repository

http://www.math.fsu.edu/~cbaker/GenRTR

Anasazi Eigenproblem package in Trilinos Library at Sandia National
Laboratory

Absil, Gallivan, Qi (2007-10), Basic theory and implementations of
Riemannian BFGS and Riemannian Adaptive Cubic Overestimation.
Parallel translation and Exponential map theory, Retraction and vector
transport empirical evidence.

Wen Huang Rice University
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Some History of Optimization On Manifolds (IV)

Ring and With (2012), combination of differentiated retraction and
isometric vector transport for convergence analysis of RBFGS

Absil, Gallivan, Huang (2009-2017), Complete theory of Riemannian
Quasi-Newton and related transport/retraction conditions, Riemannian
SR1 with trust-region, RBFGS on partly smooth problems, A C++
library: http://www.math.fsu.edu/~whuang2/ROPTLIB

Sato, Iwai (2013-2015), Zhu (2017), Global convergence analysis for
Riemannian conjugate gradient methods

Bonnabel (2011), Sato, Kasai, Mishra(2017) Riemannian stochastic
gradient descent method.

Many people Application interests increase noticeably

Wen Huang Rice University
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Current UCL/FSU Methods

Riemannian Steepest Descent [AMS08]

Riemannian conjugate gradient [AMS08]

Riemannian Trust Region Newton [ABG07]: global, quadratic
convergence

Riemannian Broyden Family [HGA15, HAG18] : global (convex),
superlinear convergence

Riemannian Trust Region SR1 [HAG15]: global, (d + 1)−superlinear
convergence

For large problems

Limited memory RTRSR1
Limited memory RBFGS

Wen Huang Rice University
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Current UCL/FSU Methods

Riemannian manifold optimization library (ROPTLIB) is used to optimize
a function on a manifold.

Most state-of-the-art methods;

Commonly-encountered manifolds;

Written in C++;

Interfaces with Matlab, Julia and R;

BLAS and LAPACK;

www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

Wen Huang Rice University
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Current/Future Work on Riemannian methods

Manifold and inequality constraints

Discretization of infinite dimensional manifolds and the
convergence/accuracy of the approximate minimizers – specific to a
problem and extracting general conclusions

Partly smooth cost functions on Riemannian manifold

Limited-memory quasi-Newton methods on manifolds

Wen Huang Rice University

Riemannian Optimization



29/45

Riemannian Optimization Motivations Optimization History Blind deconvolution Summary

Blind deconvolution

[Blind deconvolution]

Blind deconvolution is to recover two unknown signals from their
convolution.

Wen Huang Rice University
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Problem Statement

[Blind deconvolution (Discretized version)]

Blind deconvolution is to recover two unknown signals w ∈ CL and
x ∈ CL from their convolution y = w ∗ x ∈ CL.

We only consider circular convolution:
y1

y2

y3

...
yL

 =


w1 wL wL−1 . . . w2

w2 w1 wL . . . w3

w3 w2 w1 . . . w4

...
...

...
. . .

...
wL wL−1 wL−2 . . . w1




x1

x2

x3

...
xL


Let y = Fy, w = Fw, and x = Fx, where F is the DFT matrix;

y = w � x , where � is the Hadamard product, i.e., yi = wi xi .

Equivalent question: Given y , find w and x .

Wen Huang Rice University
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Problem Statement

Problem: Given y ∈ CL, find w , x ∈ CL so that y = w � x .

An ill-posed problem. Infinite solutions exist;

Assumption: w and x are in known subspaces, i.e., w = Bh and
x = Cm, B ∈ CL×K and C ∈ CL×N ;

Reasonable in various applications;

Leads to mathematical rigor; (L/(K + N) reasonably large)

Problem under the assumption

Given y ∈ CL, B ∈ CL×K and C ∈ CL×N , find h ∈ CK and m ∈ CN so
that

y = Bh � Cm = diag(Bhm∗C∗).

Wen Huang Rice University
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Related work

Ahmed et al. [ARR14]1

Convex problem:

min
X∈CK×N

‖X‖n, s. t. y = diag(BXC∗),

where ‖ · ‖n denotes the nuclear norm, and X = hm∗;

(Theoretical result): the unique minimizer
high probability

============= the true
solution;

The convex problem is expensive to solve;

1A. Ahmed, B. Recht, and J. Romberg, Blind deconvolution using convex
programming, IEEE Transactions on Information Theory, 60:1711-1732, 2014

Wen Huang Rice University
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Find h,m, s. t. y = diag(Bhm∗C∗);
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Related work

Li et al. [LLSW16]2

Nonconvex problem3:

min
(h,m)∈CK×CN

‖y − diag(Bhm∗C∗)‖2
2;

(Theoretical result):

A good initialization

(Wirtinger flow method + a good initialization)
high probability

============⇒
the true solution;

Lower successful recovery probability than alternating minimization
algorithm empirically.

2X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, preprint arXiv:1606.04933, 2016

3The penalty in the cost function is not added for simplicity
Wen Huang Rice University

Riemannian Optimization

Find h,m, s. t. y = diag(Bhm∗C∗);
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Manifold Approach

The problem is defined on the set of rank-one matrices (denoted by
CK×N

1 ), neither CK×N nor CK × CN ; Why not work on the manifold
directly?

A representative Riemannian method: Riemannian steepest descent
method (RSD)

A good initialization

(RSD + the good initialization)
high probability

============⇒ the true solution;

The Riemannian Hessian at the true solution is well-conditioned;

Wen Huang Rice University

Riemannian Optimization

Find h,m, s. t. y = diag(Bhm∗C∗);
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Efficiency

Table: Comparisons of efficiency

L = 400,K = N = 50 L = 600,K = N = 50
Algorithms [LLSW16] [LWB13] R-SD [LLSW16] [LWB13] R-SD
nBh/nCm 351 718 208 162 294 122

nFFT 870 1436 518 401 588 303
RMSE 2.22−8 3.67−8 2.20−8 1.48−8 2.34−8 1.42−8

An average of 100 random runs

nBh/nCm: the numbers of Bh and Cm multiplication operations respectively

nFFT: the number of Fourier transform

RMSE: the relative error
‖hm∗−h]m∗] ‖F

‖h]‖2‖m]‖2

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization

preprint arXiv:1312.0525, 2013

Wen Huang Rice University
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Probability of successful recovery

Success if
‖hm∗−h]m∗] ‖F

‖h]‖2‖m]‖2
≤ 10−2

1 1.5 2 2.5

L/(K+N)

0

0.2

0.4

0.6

0.8

1

P
ro

b.
 o

f S
uc

c.
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ec
.

Transition curve

[LLSW16]
[LWB13]
R-SD

Figure: Empirical phase transition curves for 1000 random runs.

[LLSW16]: X. Li et. al., Rapid, robust, and reliable blind deconvolution via nonconvex optimization, preprint arXiv:1606.04933, 2016
[LWB13]: K. Lee et. al., Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization

preprint arXiv:1312.0525, 2013
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Image deblurring

Original image [WBX+07]: 1024-by-1024 pixels

Motion blurring kernel (Matlab: fspecial(’motion’, 50, 45))

Wen Huang Rice University
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Image deblurring

What subspaces are the two unknown signals in?

Image is approximately sparse in the Haar
wavelet basis

Use the blurred image to learn the dominated
basis: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the support of the blurring kernel is
known: B.

L = 1048576,K = 109,
N = 5000, 20000, 80000

Wen Huang Rice University
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wavelet basis

Use the blurred image to learn the dominated
basis: C.

Support of the blurring kernel is learned from
the blurred image

Suppose the support of the blurring kernel is
known: B.

L = 1048576,K = 109,
N = 5000, 20000, 80000
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Image deblurring

Initial guess (N=5000) Initial guess (N=20000) Initial guess (N=80000)

Reconstructed image (N=5000) Reconstructed image (N=20000) Reconstructed image (N=80000)

Figure: Initial guess by running power method for 50 iterations and the
reconstructed image for N = 5000, 20000, and 80000. Computational time: 2-3
mins.
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Summary

Introduced the framework of Riemannian optimization

Used applications to show the importance of Riemannian
optimization

Introduced the blind deconvolution problem

Showed the performance of the Riemannian steepest descent
method in this application
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Thank you

Thank you!
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