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Abstract

This paper presents an algorithm that solves optimization problems on a matrix man-
ifold M ⊆ Rm×n with an additional rank inequality constraint. The algorithm resorts
to well-known Riemannian optimization schemes on fixed-rank manifolds, combined with
new mechanisms to increase or decrease the rank. The convergence of the algorithm is an-
alyzed and a weighted low-rank approximation problem is used to illustrate the efficiency
and effectiveness of the algorithm.
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1 Introduction

We consider low-rank optimization problems of the following form:

min
X∈M≤k

f(X), (1)

where M is a submanifold of Rm×n,

M≤k := {X ∈M | rank(X) ≤ k}

with k ≤ min(m,n), and f is a real-valued function on M≤k. The notation

Mr := {X ∈M | rank(X) = r} (2)

will also be used frequently. Typical choices forM are Rm×n itself and the Frobenius sphere,
i.e., the set of all m× n matrices of fixed Frobenius norm.
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Applications of (1) appear notably in machine learning, e.g., for collaborative filter-
ing [Van13, CA15], multi-class classification [AFSU07], multi-response regression [MMBS13a,
YYS15], learning a function over pairs of points [ABEV09], and learning a low-rank similarity
measure [SWC12]. Applications of low-rank optimization are also found in other areas such
as systems and control [Mar12, FPST13] and computer vision [LLY+13, SHK13].

An increasingly popular way to approach problem 1 is to consider the related but simpler
problem minX∈Rm×n

k
f(X), where Rm×nk = {X ∈ Rm×n | rank(X) = k} in view of the

notation (2); see, e.g.,[MMBS13b, AAM14, SWC12, MMBS14]. Since Rm×nk is a submanifold
of Rm×n of dimension (m+n−k)k (see [HM94, Ch. 5, Prop. 1.14]), this simpler problem can be
solved using Riemannian optimization techniques such as those presented in [AMS08, RW12,
HAG14, HGA15, Sat14]. However, a disadvantage is that the manifold Rm×nk is not closed
in Rm×n, which jeopardizes the well-posedness of the optimization problem and complicates
the convergence analysis of optimization methods if the iterates cannot be assumed to stay
safely away from Rm×n≤k−1.

Very recently a more global view of a projected line-search method on Rm×n≤k = {X ∈
Rm×n | rank(X) ≤ k} along with a convergence analysis has been developed in [SU15].
In [UV14], the results of [SU15] have been exploited to propose an algorithm that successively
increases the rank by a given constant. Its convergence to critical points can be deduced
from [SU15, Th. 3.9]; it relies on the assumption, often satisfied in practice, that the limit
points have rank k. Under this assumption, a line-search method on Rm×n≤k is ultimately the

same as a line-search method on Rm×nk .
In this paper, we develop a Riemannian rank-adaptive algorithm for the optimization

problem (1). Its main features are as follows. First, the feasible set M≤k is more general
than the set Rm×n≤k considered in [SU15, UV14]. Second, the proposed algorithm increases
or decreases the rank by an adaptively-chosen amount as the iteration proceeds. The rank
update mechanism is governed by parameters that the user can adjust to strike a balance
between the goals of (i) saving on space and time complexity by reducing the rank and (ii)
achieving higher accuracy by increasing the rank. Finally, theoretical convergence results are
given, and the proposed method is shown on numerical experiments to outperform state-of-
the-art methods on a weighted low-rank approximation problem.

The rest of this paper is organized as follows. Standing assumptions are gathered in the
next section. The proposed method is presented in Section 3 and analyzed in Section 4.
Implementation practicalities are discussed in Section 5. Numerical experiments are reported
in Section 6, and conclusions are drawn in Section 7.

A preliminary version of this work can be found in [Zho15].

2 Notation, Definitions, and Standing Assumptions

The notation Mr and M≤r defined above will be used frequently. The notation fF stands
for an extension of f on M (see Assumption 3 below) and fr denotes the restriction of f to
Mr.

Throughout the paper, the following assumptions are in force.

Assumption 1. Mr ⊆M≤r for all positive integers r ≤ k, where Mr stands for the closure
of Mr.
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Observe that, since the closure of an intersection is a subset of the intersection of the

closures and since Rm×nr = Rm×n≤r , it follows that the above assumption holds whenever the
submanifold M is a closed subset of Rm×n. It is useful to bear in mind that a sequence of
rank-r matrices can converge to a lower-rank matrix but not to a larger-rank matrix.

The next assumption is crucial to the Riemannian aspect of the proposed Riemannian
rank-adaptive method:

Assumption 2. Mr is a submanifold of Rm×n, for all positive integers r ≤ k.

We need the cost function f to be sufficiently smooth for gradient-descent techniques to
be applicable:

Assumption 3. The cost function f admits a continuously differentiable extension fF on a
neighborhood of M≤k in M.

The reader will observe that neither the size of the neighborhood nor the choice of the
extension will have an impact on the proposed method.

The tangent cone to a set S ⊆ Rm×n at X ∈ Rm×n is the set

TXS := { .γ(0) | γ ∈ C1, γ(0) = X,∃δ > 0 : ∀t ∈ (0, δ) : γ(t) ∈ S},

where
.
γ(0) denotes the derivative of curve γ at 0. This definition of TXS is motivated by the

goal of conducting line searches along smooth (i.e., C1) curves. Observe that TXS = ∅ when
X /∈ S.

We point out that, for any X ∈ Mr, the tangent cones are nested as follows: TXM≤0 ⊆
TXM≤1 ⊆ · · · ⊆ TXM. The tangent cones TXM≤r and TXM are actually linear spaces
since M and Mr are manifolds and M≤r is identical to Mr locally around X ∈Mr. More-
over, we have TXM≤s = ∅ for all s < r. This justifies the following definition.

Definition 1 (update-rank). Let X ∈ M and ηX ∈ TXM. The update-rank of ηX is the
unique integer r such that ηX ∈ TXM≤r \TXM≤r−1, with A \B denoting the set difference
{x ∈ A | x /∈ B}.

For the purpose of conducting line searches along given directions while keeping the rank
under control, we will need M to be endowed with a curve-selection mechanism defined as
follows, where TM :=

⊔
X∈MTXM denotes the tangent bundle of M.

Definition 2 (Rank-related retraction). In the context of problem (1), a mapping R̃ : TM→
M is a rank-related retraction if, for all X∗ ∈M≤k, there exists δX∗ > 0 and a neighborhood
U of X∗ in M≤k such that, for all X ∈ U and all ξX ∈ TXM≤k with ‖ξX‖ = 1, it holds
that (i) R̃X(0) = X, where R̃X denotes the restriction of R̃ to TXM and 0 stands for the
zero vector in TXM, (ii) [0, δX∗) 3 t 7→ R̃X(tξX) is smooth and R̃X(tξX) ∈ M≤r̃ for all
t ∈ [0, δX∗), where r̃ is the update-rank of ξX , (iii) d

dtR̃X(tξX)|t=0 = ξX .

Note that R̃X is not necessarily a retraction onM in the sense given in [ADM+02, AMS08],
since it may not be smooth on the tangent bundle TM. A specific rank-related retraction
is given in Section 5.

Observe that in point (ii) of Definition 2, we require R̃X(tξX) to belong to M≤r̃ but not
necessarily toMr̃. Indeed we found that the condition R̃X(tξX) ∈Mr̃ would be cumbersome
to enforce while being unnecessary for the convergence analysis.
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We let grad fF(X) denote the Riemannian gradient of fF at X ∈ M. It can be obtained
by considering any smooth extension of fF around X in Rm×n and taking the projection to
TXM of its Euclidean gradient at X; see [AMS08, (3.37)]. Likewise, grad fr(X) denotes the
Riemannian gradient of fr at X ∈Mr, and it is obtained by projecting grad fF(X) onto the
tangent space TXMr.

Throughout the paper, ‖ · ‖ denotes the Frobenius norm and 〈·, ·〉 the Frobenius inner
product.

Consider X ∈M, ξ ∈ TXM, and a positive integer r. The set of best approximations of
ξ in TXM≤r is denoted by PTXM≤r

(ξ). Note that this set may contain more than one point.
(In the case where M = Rm×n, this follows directly from (12) and the non-uniqueness of a
best low-rank approximation.) However, as indicated in [SU15, §2.1] (or see Lemma 1 below),
all its elements have the same norm, hence ‖PTXM≤r

(ξ)‖ is well defined. We say that X is a
critical point of f if ‖PTXM≤k

(grad fF(X))‖ = 0. (It can be seen that this notion does not
depend on the chosen extension fF of f .)

3 A Riemannian Rank-Adaptive Algorithm

The proposed method is listed in Algorithm 3, but we invite the reader to first read the more
reader-friendly description in Section 3.1 and to refer to the pseudocode in Algorithm 3 when
needed.

3.1 Algorithm description

We first discuss the two subprograms, Algorithms 1 and 2, called by Algorithm 3.

Algorithm 1 rank reduction with threshold ∆

Require: (X,∆), where X ∈ Rm×n and ∆ > 0.
1: Find the singular values σ1 ≥ σ2 ≥ · · ·σmin{m,n} ≥ 0 of matrix X;
2: Set r to be the largest integer r such that σr/σ1 ≥ ∆;
3: Choose X̂ ∈ arg minY ∈M≤r

‖Y −X‖;
4: Return (X̂, r).

The output X̂ of Algorithm 1 is a best approximation of X inM≤r, where r is the number
(counting multiplicities) of singular values of X that are larger than σ1∆, with σ1 the largest
singular value of X. Observe that X̂ is simply X in the plausible case where X is already in
M≤r. In the case M = Rm×n, Algorithm 1 consists in setting to zero the singular values of
X that are smaller than σ1∆.

Algorithm 2 Rank-related Armijo backtracking

1: Inherit R̃,Xn, β, ᾱ, η
∗,Mr̃, f, σ from Algorithm 3 where Algorithm 2 is called;

2: Compute the smallest nonnegative integer m such that
(i) R̃Xn(βmᾱη∗) belongs to M≤r̃, and
(ii) f(Xn)− f(R̃Xn(βmᾱη∗)) ≥ σ〈−grad fF(Xn), βmᾱη∗〉Xn ;

3: Return t∗ ← βmᾱ.
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Algorithm 2 differs from the Riemannian Armijo backtracking [AMS08, Definition 4.2.2]
by the safeguard (i). This safeguard is used because, in view of its δX∗ , Definition 2 does not
ensure that R̃Xn(βmᾱη∗) is in M≤r̃ unless m is sufficiently large.

Algorithm 3 Riemannian Rank-Adaptive Method (RRAM)

Require: initial iterate X0 ∈M≤k, ε1, ε3 > 0, ε2 ≥ 0, cA, cR, β, σ, τ1, τ2,∆0 ∈ (0, 1), ᾱ > 0;
Ensure: Sequence of iterates {Xn}.

1: ∆← ∆0; (X̃0, r)← Algorithm 1(X0,∆);
2: for n = 0, 1, 2, . . . do
3: Apply a Riemannian optimization method to minimize fr over Mr with initial point

X̃n and stop at Xn ∈Mr where σr(Xn)/σ1(Xn) < ∆ (flag← 0) or ‖grad fr(Xn)‖ < ε3
(flag← 1); if @δref then δref ← f(X̃n)− f(Xn), fref ← f(X̃n), rref ← r;

4: if flag = 1 then
5: if ‖grad fF(Xn)− grad fr(Xn)‖ > max{ε1‖grad fr(Xn)‖, ε2} and r < k then
6: r̃ ← r; η∗ ← −grad fr(Xn); choose ε4 < ε1;
7: while ‖ − grad fF(Xn)− η∗‖ > ε4‖η∗‖ and r̃ < k do
8: r̃ ← r̃ + 1; choose η∗ ∈ arg minη∈TXM≤r̃

‖ − grad fF(Xn)− η‖;
9: end while

10: Select X̃n+1 ∈ M≤r̃ such that f(Xn) − f(X̃n+1) ≥ cA(f(Xn) − f(R̃Xn(t∗η∗))),
where t∗ is the rank-related Armijo step size returned by Algorithm 2;

11: r ← rank(X̃n+1); δref ← f(Xn)− f(X̃n+1); fref ← f(Xn); rref ← r; ∆← ∆0;
12: else
13: If ε3 is small enough, stop. Otherwise ε3 ← τ1ε3 and X̃n+1 ← Xn.
14: end if
15: else {flag = 0}
16: (X̂n, r̃)← Algorithm 1(Xn,∆);
17: while fref − f(X̂n) ≤ cRδref do
18: ∆← τ2∆;
19: (X̂n, r̃)← Algorithm 1(Xn,∆);
20: end while
21: r ← r̃; X̃n+1 ← X̂n;
22: end if
23: end for

Let us now turn to the main part (Algorithm 3) of the proposed Riemannian rank-adaptive
method. The underlying idea is to alternate between the following two tasks.

1. Riemannian update (line 3 of Algorithm 3): given an iterate X̃n inMr with r ≤ k, run
a Riemannian optimization method on the manifold Mr, which returns a point Xn in
Mr when a suitably chosen stopping criterion is satisfied.

2. Rank-related update: generate a new iterate X̃n+1 in M≤k (line 10, line 13, or line 21),
update the tolerances in the suitably chosen stopping criterion (line 11, line 13, line 18),
increment n, and return to the Riemannian update.

We assume that the Riemannian optimization method invoked in the Riemannian update
(line 3) is a descent iteration enjoying a global convergence property shared by all respectable
such algorithms:
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Assumption 4 (globally convergent Riemannian optimization method). Let {Zj} denote an
infinite sequence generated by the Riemannian optimization method of line 3 of Algorithm 3.
Then f(Zj+1) < f(Zj) whenever Zj+1 6= Zj. If Z∗ is a limit point of {Zj} in Mr (i.e., if
there is no drop of rank at the limit point), then grad fr(Z∗) = 0.

Well-understood general-purpose Riemannian optimization methods abound that, when
applied to Mr, satisfy Assumption 4; see, e.g., [RW12, HAG14, Sat14, HGA15] for recent
points of entry to the literature. Several suitable implementations on Mr are available in
Matlab [BMAS14] and C++.1

The challenge is thus to suitably choose the stopping criterion of the Riemannian up-
date and to handle the rank-related updates so as to achieve the features mentioned in the
introduction.

The stopping criterion for the Riemannian update is given in line 3 of Algorithm 3. The
Riemannian update returns with flag = 0 if Xn is found to be dangerously close to the lower-
rank setM≤r−1; otherwise it returns with flag = 1 when ‖grad fr(Xn)‖ becomes sufficiently
small. (The “or” in line 3 is thus a “short-circuit or”.) The danger announced by flag = 0
comes from Assumption 4, which offers no guarantee on the limit points of the Riemannian
update that have rank lower than r. Hence, when the iterates of the Riemannian optimization
method come too close to M≤r−1, one needs to take action. The flag = 0 branch of the
decision tree will be discussed in a moment.

Let us for now consider the case flag = 1, i.e., the Riemannian update (line 3) has
returned Xn ∈ Mr sufficiently far away from M≤r−1 and satisfying ‖grad fr(Xn)‖ < ε3.
This indicates that Xn is an approximate critical point of f restricted to Mr. However, it
may still be possible to considerably reduce the value of f if we let the rank of the iterate
get larger than r. We thus resort to readily available information—namely the first-order
information provided by grad fF(Xn) and grad fr(Xn), the latter being the projection of the
former onto the tangent space TXnMr—to decide if a rank increase looks promising (line 5).
Specifically, we check if the angle between grad fF(Xn) and grad fr(Xn) is large, as measured
by the condition

tan(∠(grad fF(Xn), grad fr(Xn))) > ε1, (3)

and if moreover their difference is large, as measured by the condition

‖grad fF(Xn)− grad fr(Xn)‖ > ε2. (4)

The conditions are illustrated in Figure 1. If both these conditions are satisfied, and moreover
the maximal rank k is not reached (i.e., r < k), then we decide that we are in a favorable
situation to attempt a rank increase. We now explore this branch of the decision tree.

The next issue is to decide by how much we allow the rank to increase. To this end, we
increment r̃ from r to at most k until the tangent of the angle between −grad fF(Xn) and
its projection η∗ onto TXnM≤r̃ is smaller than some ε4 chosen smaller than ε1 (lines 6–9).
At the end of this procedure, assuming that r̃ has not reached k, we can conclude that the
update-rank of η∗ (Definition 1) is r̃ > r. Note that ifM = Rm×n and r̃ = k, then the choice
of η∗ (line 8) is equivalent to the definition in [SU15, Corollary 3.3].

We then perform an update along η∗ by means of the rank-related retraction (Definition 2)
thatM needs to be endowed with, and we choose the step size by an Armijo-type backtracking

1http://www.math.fsu.edu/~whuang2/ROPTLIB.htm
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procedure (line 10). This yields the next iterate, X̃n+1, whose rank is less than or equal to r̃
but not necessarily equal to r̃.

Note that this Armijo procedure (line 10) is the only place in the proposed method where
a rank increase can possibly occur. Choosing ε1 and ε2 small makes the algorithm more
prone to executing the Armijo step, hence to increasing the rank. Choosing ε2 > 0 may
result in blocking the rank at a small value for which the optimization problem (1) does not
admit critical points, but the forthcoming Theorem 3 gives an upper bound on the “lack of
criticality” of the output of the algorithm.

We now discuss the other branches of the decision tree. Still assume that flag = 1 but
that we decide that we are not in a favorable situation to attempt a rank increase. Then we
set X̃n+1 to Xn and we return to the Riemannian step, now with a more stringent tolerance
ε3 (line 13).

Now consider the case flag = 0, where we know that we need to take action because the
Riemannian update overMr has returned Xn dangerously close to the lower-rank setM≤r−1.
The principle of the action is to perform a rank reduction by setting X̃n+1 as the projection of
Xn toM≤r̃, where r̃ is the ∆-numerical rank ofXn returned by Algorithm 1(Xn,∆). However,
since the forthcoming convergence analysis relies crucially on the effect of the Armijo steps,
we keep decreasing ∆ (hence making the rank reduction less drastic) until the decrease of f
achieved by the latest Armijo step (or by the initial Riemannian update if no Armijo step
has been performed yet) is not too much unraveled by the rank reduction. The details are
spelled out in line 16 and beyond.

Figure 1: Illustration of conditions (3) and (4). θ is the angle between grad fF(X) and
grad fr(X) and the length of the red arrow represents ‖grad fF(X)− grad fr(X)‖.

3.2 Termination analysis

Algorithm 3 is meant to generate an infinite sequence {Xn}n=0,1,..., whose asymptotic behavior
is analyzed in Section 4. In practice, a termination criterion can be based on the norm of
the update vector η∗ and on various context-dependent considerations. Our purpose in this
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section is to make sure that all the steps of Algorithm 3 are well defined and terminate.
In view of Assumption 4, the Riemannian update in line 3 is guaranteed to terminate if

the following assumption holds:

Assumption 5. The sublevel set {X ∈M≤k : f(X) ≤ f(X̃0)} is compact.

Indeed, in view of Assumption 1 and the Bolzano–Weierstrass theorem, the sequence of
iterates generated by the Riemannian optimization method has then at least one limit point,
which is in M≤r. Either this limit point is in Mr and thus, by Assumption 4, grad fr gets
arbitrarily small; or this limit point is in M≤r−1 and the Riemannian optimization method
returns with flag = 0.

The while loop starting in line 7 obviously terminates in view of the condition r̃ < k.
The Armijo backtracking procedure (Algorithm 2) called in line 10 terminates (i.e., the

smallest nonnegative integer m exists) in view of a classical argument since the function
R 3 t 7→ f(R̃Xn(tη∗)) ∈ R is differentiable around t = 0, a consequence of Assumption 3 and
Definition 2.

In line 11, the fact that the rank may be numerically uncertain after the Armijo step is not
an issue: if this is the case, then the next Riemannian update (line 3) will return immediately
with flag = 0 and a rank decrease will take place.

It can be shown as follows that the while loop in line 17 is guaranteed to terminate.
First consider the case where line 17 is reached for the first time from the moment where
the latest assignment of δref occurred. Then, invoking in particular Assumption 4, we obtain
that fref − f(Xn) ≥ δref > 0; and thus fref − f(Xn) > cRδref . If the while loop keeps being
executed, then eventually no truncation occurs (i.e., X̂n = Xn), implying fref − f(X̂n) =
fref − f(Xn) > cRδref . The claim is then established by induction.

4 Convergence Analysis

We now proceed to the convergence analysis of Algorithm 3 under the standing assumptions
stated in Section 2.

In Section 4.1 we consider the specific case where ε2 is set to zero, then in Section 4.2 we
exploit our findings to handle the general case ε2 ≥ 0. Observe that ε2 appears only in line 5
of Algorithm 3. When it is set to zero, the first condition in line 5—which must be satisfied to
execute Armijo (line 10)—reduces to the angle condition (3). The motivation behind a choice
of ε2 > 0 is that it makes the algorithm less inclined to execute Armijo, hence more inclined
to keep the rank low, thus gaining in spatial complexity. The findings of our convergence
analysis indicate that the price to pay is the residual error that may subsist, in the sense that
lim infn→∞ ‖PTXnM≤k

(−grad fF(Xn))‖ may not be zero; however, the residual error remains
under control due to an upper bound proportional to ε2 guaranteed by Theorem 3.

We need some preliminary work before stating and proving the convergence results.
Lemma 1 concerns the vector η∗ obtained in line 8 of Algorithm 3. The first claim of Lemma 1
will be invoked in the proof of Theorem 2, while its second claim is an easy result that confirms
a property announced in Section 2.

Lemma 1. Let X ∈Mr and r̃ ≥ r. If η∗ ∈ arg minη∈TXM≤r̃
‖ − grad fF(X)− η‖ then

〈η∗,−grad fF(X)〉 = ‖η∗‖2.

We also have ‖η∗‖2 = ‖grad fF(X)‖2 −minη∈TXM≤r̃
‖ − grad fF(X)− η‖2.
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Proof. Let η∗ ∈ arg minη∈TXM≤r̃
‖ − grad fF(X) − η‖. Since the tangent cone TXM≤r̃ is

indeed a cone, tη∗ ∈ TXM≤r̃ for all t > 0. Therefore

d

dt
‖ − grad fF(X)− tη∗‖2|t=1 = 0,

which implies
〈η∗,−grad fF(X)〉 = 〈η∗, η∗〉 = ‖η∗‖2,

which is the first claim. We thus have the orthogonality condition 〈η∗,−grad fF(X)−η∗〉 = 0,
from which it follows that ‖grad fF(X)‖2 = ‖−grad fF(X)−η∗‖2 +‖η∗‖2, yielding the second
claim.

The analysis of the Armijo step makes use of the following assumption, which is satisfied
in particular when the rank-related retraction R̃ is the one proposed in Section 5.

Assumption 6 (locally radially L-C1). The lifted function

f̂ : TM→ R : ξ 7→ f ◦ R̃(ξ).

is locally radially Lipschitz continuously differentiable (locally radially L-C1), that is, for all
X∗ ∈ M≤k, there exists βRL > 0, δRL > 0, and a neighborhood U of X∗ in M≤k such that,
for all X ∈ U , for all ξ ∈ TXM≤k with ‖ξ‖ = 1, and for all t < δRL, it holds that∣∣∣∣ ddτ f̂X(τξ)|τ=t −

d

dτ
f̂X(τξ)|τ=0

∣∣∣∣ ≤ βRLt. (5)

4.1 Convergence Analysis with ε2 = 0

The main global convergence properties of Algorithm 3 for ε2 = 0 are stated in Theorem 2
below. In a nutshell, it shows that the best approximation of grad fF(Xn) in TXnM≤k gets
arbitrarily small for some n large enough. Its proof can be viewed as an extension to the rank-
adaptive setting of the well-known fact that an occasional steepest descent step is sufficient
to guarantee global convergence in a Euclidean setting [NW06, p. 41] and more generally in
the Riemannian setting [AG09]. As we will see, however, spelling out the proof details is not
straightforward.

Theorem 2. Under the standing assumptions (Section 2) and Assumptions 4–6, let {Xn} be
an infinite sequence of iterates generated by Algorithm 3 with ε2 = 0. Then

lim inf
n→∞

‖PTXnM≤k
(−grad fF(Xn))‖ = 0

.

Proof. We will distinguish two cases.
Case 1: Armijo (line 10) is executed infinitely many times. In this case, the claim follows

from a fairly standard Armijo-type analysis invoking Assumption 6. Details are given below.
Case 2: Armijo (line 10) is executed finitely many times. Since the Armijo step is the

only step of Algorithm 3 where the rank can increase, it follows that Xn stays in a fixed-
rank manifold Mr for all n large enough. The rank reduction mechanism of Algorithm 3
does not allow the iterates to approach M≤r−1 (see details below) and the stronger claim
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lim infn→∞ ‖grad f(Xn)‖ = 0 (when r = k) or even lim infn→∞ ‖grad fF(Xn)‖ = 0 (when
r < k) follows from Assumption 4.

Case 1 (details): Let {Xnj} be the infinite subsequence of iterates at which Armijo
(line 10) is executed. In view of line 10 of Algorithm 3,

f(Xnj )− f(X̃nj+1) ≥ cAσαnj 〈−grad fF(Xnj ), η
∗
nj
〉Xnj

, (6)

where σ ∈ (0, 1) is a parameter of Algorithm 3 and η∗nj
, resp. αnj , denotes the η∗, resp. t∗,

produced by line 10 at iteration nj . Note that Algorithm 3 is not a descent iteration (the
value of the cost function may increase during the rank reduction steps), hence we cannot
immediately conclude that f(Xnj ) − f(Xnj+1) goes to zero. It does though, in view of the
following argument.

Since the Riemannian optimization method (line 3) is a descent iteration (Assumption 4)

and in view of line 17, we can deduce that f(Xnj ) − f(X̃nj+1) ≥ cR

(
f(Xnj )− f(X̃nj+1)

)
(observe the difference between X̃nj+1 and X̃nj+1). We thus have

0 ≤ cR

(
f(Xnj )− f(X̃nj+1)

)
≤ f(Xnj )− f(X̃nj+1) ≤ f(Xnj )− f(Xnj+1), (7)

where the second inequality has just been shown, the first one follows from (6) and Lemma 1,
and the third one follows from f(X̃nj+1) ≥ f(Xnj+1) (Assumption 4).

Therefore {f(Xnj )} is nonincreasing. Furthermore, {f(Xnj )} is bounded below since
{Xn} is bounded (Assumption 5) and f is continuous (Assumption 3). Thus the sequence of
differences f(Xnj )− f(Xnj+1) must go to zero. So does f(Xnj )− f(X̃nj+1) in view of (7).

Contradiction is used to show that 〈grad fF(Xnj ), η
∗
nj
〉Xnj

→ 0. Suppose not. Then,

since {Xn} is bounded, there exist a convergent subsequence {Xnj}j∈J and µ > 0 such that
〈grad fF(Xnj ), η

∗
nj
〉Xnj

< −µ for all j ∈ J . Let X∗ denote the limit of {Xnj}j∈J . Since

f(Xnj )− f(X̃nj+1) goes to zero, it follows from (6) that {αnj}j∈J → 0. Since {αnj}j∈J → 0
and since the αnj ’s are determined by Armijo backtracking (Algorithm 2), it follows that
when j gets sufficiently large, at least one step of backtracking is applied to get αnj . Restrict
the index set J to those (infinitely many) sufficiently large j’s. Furthermore, again for all
j sufficiently large, in view of Definition 2 and since limj∈J→∞Xnj = X∗, the safeguard
(i) in the Armijo backtracking is always satisfied. Restrict further the index set J to those
(infinitely many) sufficiently large j’s. Then for all j ∈ J , since αnj results from at least one

step of backtracking, it must be that the update
αnj

β η∗nj
did not satisfy the Armijo condition;

that is,

f(Xnj )− f(R̃Xnj
(
αnj

β
η∗nj

)) < σ
αnj

β
〈−grad fF(Xnj ), η

∗
nj
〉Xnj

, ∀j ∈ J .

Denoting

η̃nj =
η∗nj

‖η∗nj
‖

and α̃nj =
αnj‖η∗nj

‖
β

,

the inequality above reads

f̃η̃nj
(0)− f̃η̃nj

(α̃nj )

α̃nj

< σ〈−grad fF(Xnj ), η̃nj 〉Xnj
, ∀j ∈ J ,

10



where f̃η(t) := f(R̃X(tη)). If necessary, remove from J finitely many elements to ensure
that, for all j ∈ J , Xnj is in the neighborhood U of X∗ and α̃nj < δRL, where U and δRL

are those of Assumption 6. The mean value theorem then ensures that, for all j ∈ J , there
exists tnj ∈ [0, α̃nj ] such that

− d

dt
f̃η̃nj

(t)|t=tnj
< σ〈−grad fF(Xnj ), η̃nj 〉Xnj

, ∀j ∈ J . (8)

Since ‖η∗nj
‖ ≤ ‖grad fF(Xnj )‖ which remains bounded since f ∈ C1 and {Xnj} is bounded, it

follows that η∗nj
is bounded. Thus {α̃nj}j∈J → 0 since α̃nj =

αnj ‖η
∗
nj
‖

β with {αnj}j∈J → 0. In

view of property (iii) of rank-related retractions (Definition 2), we have that d
dt f̃η̃nj

(t)|t=0 =

〈grad fF(Xnj ), η̃nj 〉Xnj
. This and (8) yield

d

dt
f̃η̃nj

(t)|t=0 −
d

dt
f̃η̃nj

(t)|t=tnj
< (1− σ)〈grad fF(Xnj ), η̃nj 〉Xnj

< −(1− σ)µ.

We have
∣∣∣ ddt f̃η̃nj

(t)|t=0 − d
dt f̃η̃nj

(t)|t=tnj

∣∣∣ ≤ βRLtnj in view of Assumption 6. As j goes to

infinity in J , the left-hand side thus goes to zero since tnj ∈ [0, α̃nj ] must go to zero. Hence

0 = limj∈J

(
d
dt f̃η̃nj

(t)|t=0 − d
dt f̃η̃nj

(t)|t=tnj

)
≤ −(1− σ)µ < 0, a contradiction.

The contradiction argument is thus complete, which shows that

〈grad fF(Xnj ), η
∗
nj
〉Xn → 0.

In view of Lemma 1, it follows that η∗nj
→ 0. We distinguish two subcases:

Case 1.1: All (except finitely many) η∗nj
were obtained in line 8 with r̃ = k. Then the claim

lim infn→∞ ‖PTXnM≤k
(−grad fF(Xn))‖ = 0 follows.

Case 1.2: The other case is where infinitely many η∗nj
were obtained with r̃ < k, hence with ‖−

grad fF(X̃nj )−η∗nj
‖ ≤ ε4‖η∗nj

‖ in view of line 7. The stronger claim lim infn→∞ ‖grad fF(Xn)‖ =
0 follows.

Case 2 (details): As we already pointed out, we know in Case 2 that Xn stays in a fixed-
rank manifold Mr for all n large enough. Let X∗ be a limit point of {Xn}, and let {Xnj}
be a subsequence that converges to X∗. Then X∗ is in the closure Mr, hence in M≤r by
Assumption 1. But X∗ cannot be inM≤r−1, otherwise the rank reduction mechanism would
not allow the rank to remain r. (This can be seen as follows. In Case 2, δref remains constant
for all n large enough. Moreover, r ≤ rref and fref − f(Xn) > cRδref hold throughout the
execution of the Algorithm 3 after the last Armijo is executed. Suppose for contradiction
that X∗ ∈ Ms with s < r. Then Xnj gets arbitrarily close to Ms. For j large enough, the

truncation in line 16 or 19 will produce X̂nj ∈ Ms ∪Ms+1 · · · ∪ Mr−1 closest to Xnj and
thus also arbitrarily close to Xnj . Since f , being C1, is uniformly continuous in any bounded

domain in which the iteration stays, it follows that |f(X̂nj ) − f(Xnj )| becomes arbitrarily

small, hence small enough for fref − f(X̂nj ) > cRδref to hold. Hence, for some j large enough,

the while loop starting in line 17 will terminate with X̂nj ∈Ms ∪Ms+1 · · · ∪Mr−1, meaning
that the rank drops below r, a contradiction.) We thus conclude that X∗ is inMr. It follows
from Assumption 4 that grad fr(X∗) = 0. We are in one of two subcases:
Case 2.1: r = k. Then−grad fr(X∗) = limj→∞−grad fr(Xnj ) = limj→∞ PTXnj

Mk
(−grad fF(Xnj )) =

11



limj→∞ PTXnj
M≤k

(−grad fF(Xnj )) and the claim follows.

Case 2.2: r < k. Then grad fF(X∗) = 0, otherwise (recall ε2 = 0) the condition in line 5
would have been satisfied and Armijo would have been executed infinitely many times, a
contradiction with Case 2. The stronger claim lim infn→∞ ‖grad fF(Xn)‖ = 0 follows.

4.2 Convergence Analysis with ε2 ≥ 0

Recall that Theorem 2 considers the case where ε2 = 0. Its proof led us to consider Case 1
where Armijo (line 10) is executed infinitely many times. Figure 2 shows a situation where
this case can indeed occur. An Armijo step is taken from Xn ∈ Mr because the gradient
angle condition (3) is satisfied (due to the narrowness of the valley in the cost function
landscape), the next iterate is not far away since it must produce a decrease in f , a rank
reduction to r occurs at a subsequent iterate, and the process repeats over and over again.
This “hem stitching” phenomenon results in a slow convergence. It is tempting to remedy
this phenomenon by making the iteration less inclined to leave Mr.

This is the purpose of the ε2 parameter of Algorithm 3. Indeed, in the example of Fig-
ure 2, when ε2 > 0, the gradient distance condition (4) will finally no longer hold (because
grad fF(Xn) goes to zero as n→∞) and thus line 13 will be executed instead of Armijo. The
iterates thus remain on Mr and the Riemannian optimization method of line 3 keeps being
applied, potentially offering a faster convergence.

The downside with ε2 > 0 is that if the minimizer X∗ of fF is now slightly offMr instead
of being inMr, then the gradient distance condition (4) will never be satisfied, hence Armijo
will never be executed, thus the rank will never increase beyond r, ruling out convergence
to X∗. The situation, however, is not as unfavorable as it may look, much to the contrary.
First, ε2 > 0 achieves the goal of making Algorithm 3 less inclined to increase the rank, hence
obtaining a lower complexity in exchange for yielding some ground on accuracy. Second, the
accuracy remains under control due to the bound on lim infn→∞ ‖PTXnM≤k

(−grad fF(Xn))‖
given in Theorem 3 below.

Theorem 3. Under the standing assumptions (Section 2) and Assumptions 4–6, let {Xn} be
a bounded infinite sequence of iterates generated by Algorithm 3, now with ε2 ≥ 0. Then

lim inf
n→∞

‖PTXnM≤k
(−grad fF(Xn))‖ ≤

(√
1 +

1

ε21

)
ε2.

Proof. Observe that ε2 appears only in line 5 of Algorithm 3. We will distinguish two cases,
according to whether ε2 influences or not the asymptotic behavior of the iteration. To this
end, let {Xnj} be the subsequence of iterates for which the requirement in line 5 does not
hold solely because the gradient distance condition (4) does not hold. In other words, we
have ‖grad fF(Xnj ) − grad fr(Xnj )‖ > ε1‖grad fr(Xnj )‖ and r < k but ‖grad fF(Xnj ) −
grad fr(Xnj )‖ ≤ ε2. Let θ denote the angle between grad fF(Xnj ) and grad fr(Xnj ). We then
have

sin(θ)‖grad fF(Xnj )‖ = ‖grad fF(Xnj )− grad fr(Xnj )‖ ≤ ε2
and tan(θ) > ε1. Thus

‖grad fF(Xnj )‖ ≤
1

sin(θ)
ε2 =

(√
1 +

1

tan2(θ)

)
ε2 ≤

(√
1 +

1

ε21

)
ε2.
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X∗

M

Mr

−gradFf (Xi)

−gradrf (Xi)

Figure 2: Illustration of a situation where the Armijo step (line 10 of Algorithm 3) would
be executed infinitely many times. The black dotted arrows represent −grad fF and the red
dotted arrows represent −grad fr. The circles are level sets of fF, and X∗ is a local minimum
of fF that belongs to Mr.

Case 1: The subsequence {Xnj} is infinite. Then lim infn→∞ ‖grad fF(Xn)‖ ≤
(√

1 + 1
ε21

)
ε2,

and the conclusion follows.
Case 2: The subsequence {Xnj} is finite. Let XK be its last element. Then the exact

same sequence {Xn} would be generated by setting ε2 to zero from iteration K + 1 onward.
One can then conclude as in Theorem 2 that lim infn→∞ ‖PTXnM≤k

(−grad fF(Xn))‖ = 0.

5 Implementation Details

A practical implementation of Algorithm 3 requires an adequate way to store the low-rank
iterates Xn and the various tangent vectors, to compute the projection required in line 8, and
to choose the rank-related retraction R̃ required in line 10. We present those implementation
details for the frequently encountered case where

M = Rm×n.

Let X ∈ Rm×nr . Then X can be decomposed as X = UrDrV
T
r where Ur and Vr are

orthonormal matrices of size m×r and n×r respectively. We have (see [SU15, Theorem 3.2]):

TXRm×n≤r̃ =

{
UrAV

T
r + UrBV

T
r⊥ + Ur⊥CV

T
r + Ur⊥EV

T
r⊥ :

A,B,C,E arbitrary matrices with rank(E) ≤ r̃ − r,

}
,

where Ur⊥ is chosen such that
[
Ur Ur⊥

]
is an orthogonal matrix, and likewise for Vr⊥. (An

expression for the case where M is the Frobenius sphere can also be found in [CAV13].)
Thus the elements η of TXRm×n≤r̃ are the matrices of the form

η =
[
Ur Ur⊥

] [A B
C E

] [
V T
r

V T
r⊥

]
, rank(E) ≤ r̃ − r. (9)
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Since E has rank at most r̃−r =: ∆r, we can write E =
[
Ũ∆r Ũ∆r⊥

] [E∆r 0
0 0

] [
Ṽ∆r Ṽ∆r⊥

]T
with E∆r of size ∆r ×∆r, and (9) becomes

η =
[
Ur U∆r U(r+∆r)⊥

] A B1 B2

C1 E∆r 0∆r×(n−r̃)
C2 0(m−r̃)×∆r 0(m−r̃)×(n−r̃)

 V T
r

V T
∆r

V T
(r+∆r)⊥


=
[
Ur̃ Ur̃⊥

] [ .
Dr̃ B2

C2 0(m−r̃)×(n−r̃)

] [
V T
r̃

V T
r̃⊥

] (10)

with U∆r = Ur⊥Ũ∆r, U(r+∆t)⊥ = Ur⊥Ũ∆r⊥ and likewise for V . Since X = UrDrV
T
r , it can be

written in the same block structure, yielding

X =
[
Ur U∆r U(r+∆r)⊥

]  Dr 0r×∆r 0r×(n−r̃)
0∆r×r 0∆r×∆r 0∆r×(n−r̃)

0(m−r̃)×r 0(m−r̃)×∆r 0(m−r̃)×(n−r̃)

 V T
r

V T
∆r

V T
(r+∆r)⊥


=
[
Ur̃ Ur̃⊥

] [ Dr̃ 0r̃×(n−r̃)
0(m−r̃)×r̃ 0(m−r̃)×(n−r̃)

] [
V T
r̃

V T
r̃⊥

]
.

Expression (10) can be rewritten as

η =
.
Ur̃Dr̃V

T
r̃ + Ur̃

.
Dr̃V

T
r̃ + Ur̃Dr̃

.
V T
r̃ , (11)

with UTr̃
.
Ur̃ = 0, V T

r̃

.
Vr̃ = 0, imposing that the last ∆r columns of

.
Ur̃ and

.
Vr̃ are zero, and

imposing that the first r columns of Ur̃ (resp. Vr̃) are Ur (resp. Vr).
The tangent space to Rm×n is a copy of Rm×n. Let ξ ∈ Rm×n. Then ξ admits a unique

decomposition

ξ =
[
Ur Ur⊥

] [A B
C E

] [
V T
r

V T
r⊥

]
,

and η∗ ∈ arg minη∈TXM≤r̃
‖ξ − η‖ if and only if

η =
[
Ur Ur⊥

] [A B

C Ẽ

] [
V T
r

V T
r⊥

]
(12)

where Ẽ is a best (in the Frobenius norm) rank-(r̃ − r) approximation of E; see [SU15,
Corollary 3.3].

One possible choice for the rank-related retraction (Definition 2) is the following one,
which relies on the decomposition (11):

R̃X(η) = Ũ+D̃+Ṽ+, (13)

where

Ũ+ = (Ur̃ +
.
Ur̃)S

−1
U ,

Ṽ+ = (Vr̃ +
.
Vr̃)S

−1
V ,

D̃+ = SU (Dr̃ +
.
Dr̃)S

T
V ,

where SU and SV can be chosen freely, e.g., to orthonormalize the factors Ũ+ and Ṽ+. This
rank-related retraction reduces to the RRR retraction of [AO14, §3.4] when η ∈ TXRm×nr .
Other rank-related retractions are given in [Zho15, §4.3.5].
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6 Application

In order to illustrate the potential of the rank-adaptive mechanism introduced in Algorithm 3,
we present numerical experiments for the well-known weighted low-rank approximation prob-
lem:

min
X∈M≤k

‖A−X‖2W , f(X) = ‖A−X‖2W = vec{A−X}TWvec{A−X}, (14)

where M = Rm×n, A is given, W ∈ Rmn×mn is a positive definite symmetric weighting
matrix, and vec{A} denotes the vectorized form of A, i.e., a vector constructed by stacking
the consecutive columns of A in one vector. This problem has several applications, notably
in machine learning [SJ03].

In our experiments, the matrix A is generated as A1A
T
2 ∈ Rm×n, where A1 ∈ Rm×r and

A2 ∈ Rn×r are drawn from the standard Gaussian distribution. The weighting matrix W is
generated as W = UΣUT , where U is obtained by orthonormalizing a matrix drawn from
the standard Gaussian distribution and Σ is a diagonal matrix whose diagonal is a vector of
logarithmically spaced points between 10−2 and 1 multiplied element-wise by a vector drawn
from the uniform distribution on [0.5, 1.5]. We take m = 100, n = 15, r = 5. Three values
are considered for the rank bound k, one less than the true rank r, one equal to the true rank,
and one greater than the true rank.

Four algorithms are compared: DMM [BM06], SULS [SU15], APM [LPW97], and RRAM
(Algorithm 3). We use the publicly available Matlab implementation of APM2 and our own
implementation of the other algorithms.3 In RRAM, the Riemannian update (line 3 of
Algorithm 3) is performed by means of the same Riemannian steepest-descent scheme as in
SULS.

The initial iterate of RRAM and SULS is taken as U0Σ0V
T

0 , where U0, resp. V0, is obtained
by orthonormalizing a matrix of size m× k, resp. n× k, drawn from the standard Gaussian
distribution, and Σ0 is a diagonal matrix with entries drawn from the uniform distribution
on [0, 1]. The initial points of DMM and APM are randomly generated n-by-(n − k) and
m-by-(m− k) matrices respectively. RRAM (Algorithm 3) is run with ε1 =

√
3, ε2 = 10−4,

ε4 = ε1
2 , ∆0 = 10−2.

The results shown in Table 1 are the average of 10 runs for different data matrices A,
weighting matrices W , and initial points. All the results are obtained with Matlab version
8.3.0 (R2014a) for Linux on a platform with Intel(R) Core(TM) i7-4770 CPU at 3.4 GHz with
16GB memory.

For k = 3 < r and k = 5 = r, the rank of the iterates of RRAM remains equal to k, hence
it performs very similarly to SULS. Observe that these two algorithms clearly outperform the
two others.

For k = 10 > r, the rank update mechanism of RRAM reduces the rank of the iterates
from k to r. In view of the chosen stopping criterion, SULS and RRAM terminate with
a comparable accuracy, but RRAM is considerably faster. The effect of the rank-adaptive
mechanism as the iteration proceeds is visible on Figure 3.

2ftp://ftp.esat.kuleuven.be/sista/markovsky/abstracts/04-220.html
3http://sites.uclouvain.be/absil/2015.05
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k method rank f Relative Error time(sec)

k = 3 RRAM 3.0 1.833+02 3.410−01 9.271−01

SULS 3.0 1.833+02 3.410−01 9.161−01

DMM 3.0 1.833+02 3.410−01 2.566+00

APM 3.0 1.822+02 3.401−01 1.836+00

k = 5 RRAM 5.0 6.752−12 6.751−08 3.665−01

SULS 5.0 6.752−12 6.751−08 3.507−01

DMM 5.0 4.432−11 9.460−08 2.262+00

APM 5.0 3.740−09 1.439−06 1.166+00

k = 10 RRAM 5.0 (10/10) 6.434−12 6.345−08 4.733−01

SULS 10.0 (0/10) 9.483−12 7.704−08 9.264−01

DMM 10.0 (0/10) 3.798−11 8.657−08 1.034+00

APM 10.0 (0/10) 9.623−09 2.270−06 2.946+00

Table 1: Method comparisons. The number in the parenthesis indicates the fraction of
experiments where the numerical rank (number of singular values greater than 10−8) found
by the algorithm equals the true rank. The subscript ±n indicates a scale of 10±n. RRAM
(Algorithm 3) and SULS are stopped when the norm of the final gradient on the fixed-rank
manifold over the norm of initial full gradient is less than 10−7 while DMM and APM are
stopped when the norm of final gradient over the norm of initial gradient is less than 10−7.

7 Conclusions and perspectives

In this paper, we have proposed a new algorithm (Algorithm 3) for minimizing a real-valued
function on a manifold M under an additional rank inequality constraint. Rank update
mechanisms, based on certain rank-related objects, have been defined to facilitate efficiently
finding a suitable rank. Instances of those objects have been provided for the case where M
is the matrix space Rm×n. They can readily be adapted to the case whereM is the Frobenius
sphere, and the way is open for handling other cases. The convergence properties of the
algorithm have been analyzed, and it has been shown to outperform state-of-the-art methods
on a weighted low-rank approximation problem.

This work opens several avenues for further research, e.g., to improve the efficiency of
Algorithm 3, set its parameters, strengthen its convergence analysis, investigate the use of
other Riemannian optimization algorithms for the Riemannian update (line 3), and test the
method on other low-rank optimization problems.
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