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Compare NLDR Methods

Study Goals
1.Evaluate the performance and goodness of fit of  
several popular NLDR methods 
2.Estimate the intrinsic dimensionality of tree-to-tree 
distances
3.Evaluate 2D and 3D projects
4.Compare the tree projects of different mtDNA data sets

INTRODUCTION
Phylogenetic analyses of large and diverse data sets 
generally result in large sets of competing phylogenetic 
trees. Consensus tree methods used to summarize sets 
of competing trees discard important information 
regarding the similarity and distribution of competing 
trees. A more fine grain approach is to use a 
dimensionality reduction method to project tree-to-tree 
distances in 2D or 3D space [1]. In this study, we 
systematically evaluate the performance of several  
nonlinear dimensionality reduction (NLDR) methods 
on tree-to-tree distances obtained from independent 
nonparametric bootstrap analyses of genes from three 
mid- to large-sized mitochondrial genome alignments.

FIGURE 1. Two-dimensional projections of 3011 non-parametric bootstrap trees from the 
salamander data set using three cost functions (y-axis) and three optimization algorithms 
(x-axis).  The colors represent the underlying genes used to generate the trees (see color 
column in Table 2). * Kruskal-1 uses the linear iteration method instead of the stochastic 
gradient descent method used by the other cost functions in this column.
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MethodsMethods
DataData

A tree-to-tree distance matrix was created for the Fish, Mammal, 
and Salamander data set by concatenating the bootstrap trees found 
for gene and calculated the unweighted Robinson-Foulds (RF) 
distance [5].

Taxa Number of Sequences Reference
Fishes 90 [2] Setiamarga et al., 2008 

Mammals 89 [3] Kjer and Honeycutt, 2007 

Salamanders 42 [4] Zhang et al., 2008 

Number of Trees Number of Nucleotides
Gene Fishes Mammals Salamanders Fishes Mammals Salamander

s
Color

12S 256 219 119 693 787 809 RED
16S 205 146 106 922 1199 1260
ATP6 415 540 156 657 708 681
ATP8 939 362 783 156 164 162
COI 386 228 106 1539 1542 1548
COII 444 433 196 690 682 681 GREEN
COIII 643 554 149 783 786 783
CytB 235 195 122 1164 1140 1131
ND1 507 170 111 933 969 957
ND2 371 129 111 990 1048 1014
ND3 690 1559 355 339 347 330 BLUE
ND4 219 150 108 1371 1384 1332
ND4L 1362 1056 378 285 290 279
ND5 188 114 103 1632 1801 1734
tRNAs 162 146 108 1152 1339 1274
TOTALS 7022 6001 3011 13306 14186 13975

TABLE 3. Several analytical measures of intrinsic dimensionality of the three tree-
to-tree distance matrices, where NN = Nearest Neighbour estimator [8,9], COR =  
Correlation Dimension [10,11], ML = Maximum Likelihood estimator [12].  and VIS 
result from figure 3 [13].
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Efficiency of Cost Function and 
Optimization

FIGURE 3. Raw stress of CCA plotted as a function of the projection 
dimensionality. Intrinsic dimensions of Salamander, Mammal and Fishes data 
are about 7, 15 and 15, respectively.
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FIGURE 2. Goodness of fit measure plotted as a function of time, where 1NN = 1 
Nearest Neighbour [6], CON = Continuity [7] and TRU = Trustworthiness [7].
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TABLE 1. Aligned whole mitochondrial DNA (mtDNA) genomes were obtained from three 
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TABLE 2. Phylogenetic trees were obtained for each of the three mtDNA data  (GTR+Γ) 
nonparametric bootstrap analysis (100 replicates) on each of the 15-mtDNA genes
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TABLE 3. Three goodness of fit measures used to evaluate each combination of cost 
function and optimization algorithm: 1NN = 1 Nearest Neighbour [6], CON = Continuity 
[7] and TRU = Trustworthiness [7].
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2D Versus 3D Projections

FIGURE 4. (a) Two- and (b) Three-dimensional projections of 3011 non-parametric 
bootstrap trees from the Salamander data sets using CCA with stochastic gradient 
descent.

FIGURE 4. (a) Two- and (b) Three-dimensional projections of 3011 non-parametric 
bootstrap trees from the Salamander data sets using CCA with stochastic gradient 
descent.

FIGURE 5. Two-dimensional projections of 6001 Mammals (a) and 7022 Fishes (b) 
non-parametric bootstrap trees using CCA with stochastic gradient descent.
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