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Plots of Tree-to-Tree distances 

Study Goals
1.Visually and analytically evaluate projections of four 
commonly used tree-to-tree distance metrics.
2.Estimate the intrinsic dimensionality of tree-to-tree 
distance metrics.  

INTRODUCTION
Phylogenetic analyses of large and diverse data sets 
generally result in large sets of competing phylogenetic 
trees. Consensus tree methods used to summarize sets 
of competing trees discard important information 
regarding the similarity and distribution of competing 
trees. A more fine-grain approach is to use a 
dimensionality reduction method to project tree-to-tree 
distances in 2D or 3D space [1]. In this study, we
evaluate several tree-to-tree distance metrics using  
trees obtained from independent nonparametric 
bootstrap analyses of genes from a mitochondrial 
genome alignment.

MethodsMethods

Aligned whole salamander mitochondrial DNA (mtDNA) genomes were 
obtained from Zhang et al. [2]. The software package PAUP* 4.0b10 [3] was 
used to perform 100-replicate nonparametric bootstrap analyses [4] on each 
of 15-gene partitions contained within the mtDNA alignment. The maximum 
likelihood (ML) criterion and a heuristic search [neighbor joining starting 
tree, Sub-tree Pruning and Regrafting (SPR) branch swapping with a 
reconstruction limit of 10] were used to select optimal phylogenetic trees for 
each bootstrap replicate. Parameters of the ML model (i.e., nucleotide 
substitution rates, base frequencies [5] and an among site rate heterogeneity 
parameter [6]) were independently optimized for each gene partition on a 
neighbor joining tree constructed for each gene partition. A special purpose 
script by JCW (available upon request) was used to distribute phylogenetic 
analyses in parallel on FSU’s shared HPC system.  

The program TreeScaper [7] was used to evaluate several dimensionality 
reduction cost functions and optimization algorithms.  The Curvilinear 
Components Analysis (CCA) cost function and the stochastic gradient decent 
optimization algorithm provided the best fit to the original tree-to-tree 
distances according to several goodness of fit measures [8, 9] (Fig.1). 

Efficiency of Cost Function and 
Optimization

FIGURE 1. Goodness of fit measure plotted as a function of iteration, where 1NN = 
1 Nearest Neighbour [8], CON = Continuity [9] and TRU = Trustworthiness [9].
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Figure 3. Distributions of raw tree-to-tree distances for four distance metrics evaluated under this study. Figure 3. Distributions of raw tree-to-tree distances for four distance metrics evaluated under this study. 

Relationship Among Distance Metrics

Figure 5. A projection of the relationship among 2D matrices, similar to those 
displayed in Figure 2.  Ten projections for each of the four tree-to-tree distance 
metrics were generated based on different initialization conditions.  The 40 2D 
projections were compared using a Procrustes analysis and the program 
TreeScaper [7] with the cost function set to CCA and the optimization algorithm set 
to the stochastic gradient decent method was used to display the result of the 
Procrustes.
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FIGURE 4. Raw stress of CCA plotted as a function of the projection 
dimensionality. More than 4 dimensions does not greatly improve the raw 
stress for  the Match Distance metric.
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FIGURE 2. Two-dimensional projections of 1921 non-parametric bootstrap trees from the salamander data 
set using four tree-to-tree distance metrics (Robinson Foulds [10],  Match Distance [11, 12], Agd1 [13],  and 
Agreement Subtree [13]).  The colors represent the underlying genes used to generate the trees. Projections 
were made using TreeScaper [7] with the cost function set to CCA and the optimization algorithm set to 
Stochastic Gradient Decent. 
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Observations
1.Tree-to-tree distance metrics can qualitatively and 
quantitatively influence projections of “tree landscapes.”
2.The projection of the RF-distances shows groups of related 
mtDNA gene trees best.
3.The Match Distance metric discriminates among bootstrap 
trees better than other metrics.  
4.Fewer dimensions are required to optimally project the 
“Match Distance” tree-to-tree distance metric.


