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Visualizing Multi-Gene Landscapes

1. The program DRUIDS [8] was used to identify nonstationary sites in 
each of the eight genes included in the multiple sequence alignment.  

2. Maximum likelihood non-parametric bootstrap analyses using PAUP* 
[9] and Bayesian MCMC analyses using MrBayes [10] were 
conducted on the original alignment and on the DRUIDS filtered 
alignment for each locus.

3. The program PAUP* was used to calculate the unweighted Robinson-
Foulds [11] tree-to-tree distance among all bootstrap trees and among 
the last 1000 MCMC trees. The last 1000 trees represents 1 mil. 
generations.    

4. The program TreeScaper [12] was used to project in 2D and 3D 
different sets RF-distances obtained from different sets of 
concatenated phylogenetic trees.

INTRODUCTION
Large multilocus data sets are increasingly common and offer new 
opportunities to better understand the processes and patterns of
evolution. These new data sets are not without challenges, however. For 
example,  analyses of different data partitions may support different 
phylogenies because reconstruction methods sometimes fail to 
adequately accommodate process heterogeneity underlying data 
partitions found within an alignment [1, 2, 3, 4] or because some data 
partitions simply do not share the same evolutionary history [5]. 
Furthermore, large data sets are typically more computationally 
challenging to analyze and often call for more extreme heuristic
shortcuts, which may fail to converge to a global optimum [6]. 

We use a dimensionality reduction method (similar to [7]) to 
visualize the consequences of removing potentially misleading 
characters from an alignment of 169 Elasmobranch protein coding 
sequences comprised of 1 mtDNA and 7 nuclear loci.  Characters were 
removed from the alignment based on how well they fit a model of
stationarity using a program called DRUIDS [8].  We expect that sets of 
trees favored by individual loci will be more difficult to distinguish in 
projections (i.e., landscapes) of  phylogenetic trees obtained from 
analyses of an alignment after the DRUIDS filter is applied.    

Dimensionality Test Unfiltered DRUID Filtered
NN 6.91808 6.63336
COR 4.53759 4.57536
ML 17.2628 18.6626

Number of ML Bootstrap 
Trees

Number of 
Nucleotides

Gene Unfiltered Filtered Unfiltered Filtered Color

RAG1 120 116 921 835 Red
ACT 137 133 456 444 Dark Orange
KBTBD2 111 106 1074 1004 Lime
TOB101 161 145 696 630 Aqua
ND2 116 139 999 905 Blue
PROX1 112 110 1041 960 Olive
SCFD2 113 113 510 510 Fuchsia
RAG2 116 121 699 679 Teal
TOTALS 986 983 6396 5967

TABLE 2. The intrinsic dimensionality of each tree-to-tree distance matrix was 
measured using three tests; NN = Nearest Neighbour estimator [13,14], COR =  
Correlation Dimension [15,16], and ML = Maximum Likelihood estimator [17].
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FIGURE 3. Projections of bootstrap and Bayesian trees obtained from the KBTBD2 
and ACT loci using the unfiltered and DRUIDS filtered alignments.  The bivariate 
scatter plots on the right represents the posterior probabilities of tree bipartitions 
with and without DRUIDS filtered characters. The top biplot represents ACT 
bipartitions  and the bottom represents KBTBD2 bipartitions.  
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TABLE 1. The number of ML (GTR+Γ+Pinvar) nonparametric bootstrap (100 
replicates) trees and the number of characters in each gene partition before and 
after the DRUIDS filter. 
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FIGURE 2. Projections of bootstrap and Bayesian trees obtained from the analysis of 
unfiltered and DRUIDS filtered alignments. Each locus was analyzed independently. RF-
distances were calculated on concatenated sets of trees obtained from each analysis 
and RF-distances were projected using CCA and Stochastic Gradient Decent (i.e., a 
dimensionality reduction method). The colored points in the left projections represent 
trees favored by different loci. The colors in the right plots represent trees obtained 
from unfiltered and DRUIDS filtered alignments. No characters were removed by the 
DRUIDS filter for the SCFD2 locus.
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ML Bootstrap versus Bayesian MCMC

TABLE 3. Two cluster-based methods were used to quantify whether the DRUID 
filtered data lessened the distinction among sets of trees favored by different loci.   
Both the 1NN [19] and Random Index Methods suggest that filtering the data does 
not lessen the distinction, which is congruent with our visualizations.
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FIGURE 5. A view of 2- 3D output generated by the 
software package TreeScaper.  TreeScaper is freely 
available at:

http://bpd.sc.fsu.edu/index.php/diagnostic-software

FIGURE 5. A view of 2- 3D output generated by the 
software package TreeScaper.  TreeScaper is freely 
available at:

http://bpd.sc.fsu.edu/index.php/diagnostic-software

TreeScaper Software 

Quantitative Comparisons

Acknowledgements
This work is supported in part by grants EF-0849861 and DEB-1132229 from the National Science 
Foundation. 

FIGURE 4. Plots on the left show the relationship among bootstrap trees (Red) and 
Bayesian MCMC trees (Blue). Bivariate plots show the relationship among bootstrap 
support values and Bayesian posterior probabilities for each bipartition. The DRUIDS 
filter did not obviously reconcile the difference between bootstrap support values and 
Bayesian posterior probabilities.
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FIGURE 1. Projections of the RF-distances among bootstrap trees from separate analyses 
of 15 mtDNA data partitions using A) a test data set generated by shuffling columns in an 
alignment of Salamander sequences and B) in the original salamander alignment [18]. 
Colors correspond to the bootstrap trees favored by each separate data partition.

FIGURE 1. Projections of the RF-distances among bootstrap trees from separate analyses 
of 15 mtDNA data partitions using A) a test data set generated by shuffling columns in an 
alignment of Salamander sequences and B) in the original salamander alignment [18]. 
Colors correspond to the bootstrap trees favored by each separate data partition.
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Filtered

0.997965 0.997965 0.997965 0.1397 0.1456 0.1442

Methods

Results

To test if clustering of related trees was caused by an artifact of the 
dimensionality reduction method, we plotted RF-distances of trees 
inferred from random sets of characters collected over the entire  
alignment.  The size of the character sets corresponded with the size of 
the gene partitions. The projection of trees from the “shuffled” data set 
was then compared to the projection of trees obtained from the original 
alignment (Fig 1). This test was performed on an alignment of 42
salamander  mtDNA sequences from another study.  
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Observations
• Removing nonstationary characters from the Elasmobranch multiple sequence 

alignment did not significantly alter the relationship among bootstrap and Bayesian 
phylogenetic trees favored by different loci.

• Bootstrap trees from the DRUIDS filtered and the unfiltered alignments were 
indistinguishable.

• Bayesian MCMC trees from the DRUIDS filtered and the unfiltered alignments 
were noticeably different for each locus, suggesting that Bayesian MCMC analyses 
are more susceptible to model misspecification than are bootstrap analyses.

• Using DRUIDS to filter the Elasmobranch multiple sequence alignment did not 
help to reconcile differences between Bayesian MCMC posterior probabilities and 
bootstrap support values. 


