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General Federated Learning Optimization:

min
x∈Rn

F (x) =
S∑

i=1

pi fi (x), with pi ≥ 0 and
S∑

i=1

pi = 1, (1.1)

• S is the number of agents;
• fi is the local objective of agent i , and covers

fi (x) =

{
Eξ∼Di [fi (x ; ξ)] with Di being a local data distribution
1
Si

∑Si
i=1 fi (x ; zi,j ) with Di = {zi,1, . . . , zi,Si } being a local dataset;
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Figure 1: Flowchart of a federated learning algorithm
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Euclidean version:

Algorithm: A representative federated averaging algorithm [McM+17]

1. for t = 0, 1, . . . ,T − 1 do
2. The server uniformly selects a subset St of s agents at random;
3. The server upload global parameter x̃t to all agents in St , i.e., x j

t,0 ← x̃t ;
4. for j ∈ St in parallel do
5. Agent j updates a local parameter x j

t,K by K -step SGD with x̃t being
initial iterate;

6. Sent x j
t,K to the server;

7. end for
8. Server aggregates the received local parameters {x j

t,K }j∈St by averaging

x̃t+1 ←
∑
j∈St

pj∑
j∈St

pj
x j

t,K ;

9. end for

• Sever: Steps 2, 3, and 8;
• Agents: Steps 5 and 6;

Riemannian Federated Learning via Averaging Gradient Stream 5

minxj∈Rn fi (x)

[McM+17] B. McMahan, E. Moore, D. Ramage, B. A. y Arcas. Communication-Efficient Learning of Deep Networks
from Decentralized Data. Proceedings of Machine Learning Research, 54, P.1273-1282, 2017.
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Euclidean to Riemannian

Algorithm: A Riemannian federated learning algorithm

1. for t = 0, 1, . . . ,T − 1 do
2. The server uniformly selects a subset St of s agents at random;
3. The server upload global parameter x̃t to all agents in St , i.e., x j

t,0 ← x̃t ;
4. for j ∈ St in parallel do
5. Agent j updates a local parameter x j

t,K by K -step Riemannian SGD with x̃t

being initial iterate;
6. Sent x j

t,K to the server;
7. end for
8. Server aggregates the received local parameters {x j

t,K }j∈St by averaging

x̃t+1 ← ave(x j
t,K | j ∈ Sj );

9. end for

• Agents: Riemannian SGD [Bon13]
• Sever: Aggregation

How to aggregates {x j
t,K}j∈St on a manifold?

Riemannian Federated Learning via Averaging Gradient Stream 6

minxj∈M fi (x)
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Euclidean to Riemannian (Aggregation: an existing approach):

• Naive generalization:
x̃t+1 ←

∑
j∈St

pj∑
j∈St

pj
x j

t,K 6=⇒ Riemannian setting

• An alternative approach:

x̃t+1 ←
∑
j∈St

pj∑
j∈St

pj
x j

t,K ⇐⇒ x̃t+1 = arg min
x

∑
j∈Sj

pj∑
j∈St

pj
‖x − x j

t,K‖
2
F

⇐⇒ x̃t+1 = arg min
x

∑
j∈Sj

pj∑
j∈St

pj
dist2(x , x j

t,K ) =⇒ Riemannian setting;

• x̃t+1 = arg minx
∑

j∈Sj

pj∑
j∈St

pj
dist2(x , x j

t,K ): computationally expensive;

• One step of Riemannian gradient descent (called tangent mean) [LM23]:

x̃t+1 ← Expx̃t

(∑
j∈St

pj∑
i∈St

pi
Exp−1

x̃t
(x j

t,K )

)
;

Riemannian Federated Learning via Averaging Gradient Stream 7

[LM23] Jiaxiang Li and Shiqian Ma. Federated learning on Riemannian manifolds. Applied Set-Valued Analysis and
Optimization, 5(2), 2023.
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Existing Riemannian Federated Learning:
• Federated Learning on Riemannian Manifolds [LM23]

• Integrate SVRG technique within Riemannian federated learning
• Use tangent mean as the server aggregation
• Requirements for convergence

• Full agent participation, and one step of local update;
• One agent participates, and multiple steps of local update.

• Federated Learning on Riemannian Manifolds with Differential
Privacy [Hua+24]
• Use differential privacy to enhance the privacy of federated learning;
• Use tangent mean as the server aggregation.
• Requirements for convergence similar to that in [LM23].

• Riemannian Federated Learning on Compact Submanifolds with
Heterogeneous Data [Zha+24]

- Use projection onto the manifold
- Allow multiple agents and multiple local updates

[LM23] J. Li and S. Ma. Federated Learning on Riemannian Manifolds. Applied Set-Valued Analysis and Optimization,
2023.

[Hua+24] Z. Huang, W. Huang, P. Jawanpuria, B. Mishra. Federated Learning on Riemannian Manifolds with
Differential Privacy. arxiv:2404.10029, 2024.

[Zha+24] J. Zhang and J. Hu and A. M.-C. So and M. Johansson. Nonconvex Federated Learning on Compact Smooth
Submanifolds With Heterogeneous Data. arxiv:2406.08465, 2024.
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Limitations
• Full agent participation and one step of local update or one agent

participation and multiple of local updates [LM23; Hua+24]
• Compact submanifolds embedded in Euclidean spaces [Zha+24]

Proposed Riemannian federated learning algorithm
overcomes these limitations!

Riemannian Federated Learning via Averaging Gradient Stream 9
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A new server aggregation: average of gradient stream

Euclidean aggregation: x̃t+1 =
∑

j∈St

pj∑
j∈St

pj
x j

t,K

x j
t,K = x j

t,K−1 −
αt,K−1

Bt,K−1

∑
b∈Bj

t,K−1

∇fj (x j
t,K−1; ξj

t,K−1,b)

︸ ︷︷ ︸
RSGD for instance

=x j
t,K−2 −

αt,K−2

Bt,K−2

∑
b∈Bj

t,K−2

∇fj (x j
t,K−2; ξj

t,K−2,b)−
αt,K−1

Bt,K−1

∑
b∈Bj

t,K−1

∇fj (x j
t,K−1; ξj

t,K−1,b)

= · · · = x j
t,0︸︷︷︸
x̃t

−
K−1∑
k=0

αt,k

Bt,k

∑
b∈Bj

t,k

∇fj (x j
t,k ; ξj

t,k,b)

=⇒ x̃t+1 − x̃t = −
∑
j∈St

pj∑
j∈St

pj

K−1∑
k=0

αt,k

Bt,k

∑
b∈Bj

t,k

∇fj (x j
t,k ; ξj

t,k,b).

Riemannian Federated Learning via Averaging Gradient Stream 11
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Euclidean aggregation: x̃t+1 =
∑

j∈St

pj∑
j∈St

pj
x j

t,K

−dt = x̃t+1 − x̃t = −
∑

j∈St

pj∑
j∈St

pj

∑K−1
k=0

αt,k
Bt,k

∑
b∈Bj

t,k
∇fj (x j

t,k ; ξj
t,k,b)

Tangent mean: x̃t+1 = Expx̃t

(
−
∑

j∈St

pj∑
j∈St

pj
Exp−1

x̃t
(x j

t,K )

)

x j
t,K = Expx j

t,K−1

−αt,K−1

Bt,K−1

∑
b∈Bj

t,K−1

gradfj (x j
t,K−1; ξj

t,K−1,b)


. . .

x j
t,1 = Expx̃t

−αt,0

Bt,0

∑
b∈Bj

t,0

gradfj (x j
t,0; ξj

t,0,b)



Exp and Exp−1 are short of linearity!
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Back to the Euclidean aggregation, note that

∆j
t,K := x̃t − x j

t,K =
K−1∑
k=0

αt,k

Bt,k

∑
b∈Bj

t,k

∇fj (x j
t,k ; ξj

t,k,b).

Then one has

x̃t+1 = x̃t − dt , with dt =
∑
j∈St

pj∑
j∈St

pj
∆j

t,K .

In the Euclidean setting:
• agent j sends ∆j

t,k to the server

• the server averages these ∆j
t,K

• the server generates a new global
parameter x̃t+1

In existing works [Kar+20; Red+21],
sending ∆j

t,K is to use acceleration
technique in the server aggregation.

In the Riemannian setting, we
proposed a similar aggregation
• agent j sends the “∆j

t,K ” to the
server;
• the server averages these “∆j

t,K ”;
• the server retracts the average into

the manifold;

What is “∆j
t,K ” in the Riemannian manifold?
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A new server aggregation: average of gradient stream

Construct the “∆j
t,K ”, which is dented by ζ j

t,K in the Riemannian setting:
• The local mini-batch gradients,

1
Bt,0

∑
b∈Bj

t,0
gradfj (x j

t,0; ξj
t,0,b), . . . , 1

Bt,K−1

∑
b∈Bj

t,K−1
gradfj (x j

t,K−1; ξj
t,K−1,b)

are inside different tangent spaces.

• Transport the local mini-batch gradients to the tangent space Tx̃tM, i.e.,

Γ
x̃t
x j
t,0

(
1

Bt,0

∑
b∈Bj

t,0
gradfj (x j

t,0; ξ
j
t,0,b)

)
, . . . , Γ

x̃t
x j
t,1

(
1

Bt,K−1

∑
b∈Bj

t,K−1
gradfj (x j

t,K−1; ξ
j
t,K−1,b

)
,

• Add these transported together to get to ζ j
t,K :

ζ j
t,K =

∑K−1
k=0 αt,k Γx̃t

x j
t,k

(
1

Bt,k

∑
b∈Bj

t,k
gradfj (x j

t,k ; ξj
t,k,b)

)
;

The proposed server aggregation is given by

x̃t+1 = Rx̃t

(
−
∑

j∈St

pj∑
j∈St

pj
ζ

j
t,K

)
= Rx̃t

(
−
∑

j∈St

pj∑
j∈St

pj

∑K−1
k=0 αt,k Γ

x̃t

x j
t,k

(
1

Bt,k

∑
b∈Bj

t,k
gradfj (x j

t,k ; ξj
t,k,b)

))
.

The proposed aggregation is another generalization of the Euclidean aggregation.
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Riemannian Federated Learning via Averaging Gradient Stream

Algorithm: Riemannian Federated Learning Averaging Gradient Stream
1. for t = 0, 1, . . . , T − 1 do
2. The server uniformly selects a subset St of s agents at random;
3. The server upload global parameter x̃t to all agents in St , i.e., x j

t,0 ← x̃t ;
4. for j ∈ St in parallel do
5. Set ζ j

t,0 ← 0x̃t
;

6. for k = 1, 2, . . . , K do
7. Agent j randomly samples an i.i.d. mini-batch Bj

t,k−1 of size Bt,k−1;

8. Set ηj
t,k−1 ← −

αt,k−1
Bt,k−1

∑
b∈Bj

t,k−1
gradfj (x j

t,k−1; ξ
j
t,k−1,b);

9. Set x j
t,k ← R

xj
t,k−1

(η
j
k−1), and ζ j

t,k ← ζ
j
t,k−1 + Γ

x̃t
x j
t,k−1

(η
j
t,k−1)

10. end for
11. Sent ζ j

t,K to the server;
12. end for
13. Server aggregates the received local parameter difference {ζ j

t,K }j∈St
by averaging

x̃t+1 ← Rx̃t

−∑
j∈St

pj∑
j∈St

pj
ζ

j
t,K

 ;

14.end for

• The communication cost remains unchanged.
• The computational cost of the server remains unchanged.
• K − 1 times more transport calculations on the agent.
• The algorithm works for general manifolds.
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Convergence Analysis

Assumptions:
• (Full Participation) Full agents participate in local updates at each

communication round.
• (I.I.D. Data) Agent’s data are subjected to an independently identical

distribution.

We focus on expected risk minimization.

min
x∈M

F (x) :=
1
S

S∑
i=1

Eξ∼Di [fi (x ; ξ)]

= E[f (x ; ξ)]

• Each agent only has access to f (x ; ξ) and gradf (x ; ξ).
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Convergence Analysis
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Assumption 3.1

We assume that:

(1) x∗ = arg minx∈M F (x), the outer iterates {x̃t}t≥1 and the inner iterates
{{{x j

t,k}
S
j=1}k≥0}t≥1 generated by FedAGS remain in a compact and

connected subsetW ⊆M;

(2) the compact and connected subsetW is totally retractive with respect to
the retraction R;

(3) for each realization of ξ, the component f (·; ξ) are continuously
differentiable;

(4) the vector transport Γ is isometric;

(5) the cost function F is L-retraction smooth and L-Lipchitz continuous
differentiable with respect to Γ onW; and

(6) the step sizes αt,k are upper bounded, i.e., there exists A > 0 such that
αt,k ≤ A for all t and k.



Convergence Analysis
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Assumption 3.2

For any fixed parameter x ∈M, the Riemannian stochastic gradient gradf (x ; ξ)
is an unbiased estimator of the true gradient corresponding to the parameter x,
i.e.,

Eξ[gradf (x ; ξ)] = gradF (x)

Assumption 3.3

For any fixed parameter x ∈M, there exists a scalar σ > 0 such that for any
mini-batch indices set B of the realizations of random variable ξ, the following
holds

EB

∥∥∥∥∥ 1
B

∑
b∈B

gradf (x ; ξb)− gradF (x)

∥∥∥∥∥
2
 ≤ σ2

B
,

where B is the size of B.

Reasonability: all the assumptions have been used in exisitng Riemannian
optimization or Federated learning algorithms.
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Convergence Analysis: fixed step size

Theorem 1 (Nonconvex)

If we run RFedAGS with a fixed step size αt,k = ᾱ, a fixed batch size Bt,k = B̄
such that the step size ᾱ satisfies certain conditions. Then the resulting
sequence of iterates {x̃t}T

t=1 satisfies

1
T
E

[
T∑

t=1

‖gradF (x̃t )‖2

]
≤ 2(F (x̃1)− F (x∗))

T (K − 1 + δ)ᾱ
+

ᾱKσ2L
(K − 1 + δ)

H(ᾱ,K ,S),

where x∗ ∈ arg minx∈M F (x).

Sublinearly converge to a neighborhood of the solution.
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T (K − 1 + δ)ᾱ
+

ᾱKσ2L
(K − 1 + δ)

H(ᾱ,K ,S),

where x∗ ∈ arg minx∈M F (x).

Suppose the fixed step size is chosen independent of K .

Then the larger K is, the faster the algorithm converges.
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Convergence Analysis: fixed step size

Theorem 2 (Riemannian Polyak-Łojasiewicz)

Under the same conditions as Theorem 1 together with assuming that the
function F satisfies the Riemannian Polyak-Łojasiewicz (RPL) condition

F (x)− F (x∗) ≤ 1
2µ
‖gradF (x)‖2, ∀x ∈ W,

where x∗ = arg minx∈M F (x) and µ is a positive constant. Under certain
conditions on ᾱ, we have

E[F (x̃T )− F (x∗)] ≤ (1− µᾱ(K − 1 + δ))T−1E[F (x̃1)− F (x∗)]

+
K ᾱσ2L

2µB̄(K − 1 + δ)
H(ᾱ,K ,S).

Linearly converge to a neighborhood of the solution.
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Convergence Analysis: fixed step size

Theorem 2 (Riemannian Polyak-Łojasiewicz)

Under the same conditions as Theorem 1 together with assuming that the
function F satisfies the Riemannian Polyak-Łojasiewicz (RPL) condition

F (x)− F (x∗) ≤ 1
2µ
‖gradF (x)‖2, ∀x ∈ W,

where x∗ = arg minx∈M F (x) and µ is a positive constant. Under certain
conditions on ᾱ, we have

E[F (x̃T )− F (x∗)] ≤ (1− µᾱ(K − 1 + δ))T−1E[F (x̃1)− F (x∗)]

+
K ᾱσ2L

2µB̄(K − 1 + δ)
H(ᾱ,K ,S).

Suppose the fixed step size is chosen independent of K .

Then the larger K is, the faster the algorithm converges.
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Convergence Analysis: decaying step sizes

Theorem 3 (Nonconvex)

If we run RFedAGS with decaying step sizes αt,k = ᾱt , and not fixed but
bounded batch sizes Bt,k = B̄t for outer iterations and Blow ≤ B̄t ≤ Bup with
Blow and Bup being positive integers, then the resulting sequence of iterates
{x̃t}T

t=1 satisfies

E

 T∑
t=1

ᾱt∑T
t=1 ᾱt

‖gradF (x̃t )‖2

 ≤ 2(F (x̃1)− F (x∗))

(K − 1 + δ)
∑T

t=1 ᾱt
+

T∑
t=1

ᾱ2
t Kσ2L

(K − 1 + δ)B̄t
∑T

t=1 ᾱt
H(ᾱt , K , S).

Further, if the step size ᾱt ’s satisfy
∑∞

t=1 ᾱt =∞, and
∑∞

t=1 ᾱ
2
t <∞, then

the following holds

lim
T→∞

E

 T∑
t=1

αt∑T
t=1 αt

‖gradF (xt )‖2

 = 0.

Suppose the decaying step size is chosen independent of K .

Then the larger K is, the faster the algorithm converges.

If the decaying step size ᾱt = κ
(γ+t)p for constants κ > 0, γ > 0, and

p ∈ (1/2, 1], then

E

[ T∑
t=1

ᾱt∑T
t=1 ᾱt

‖gradF (xt )‖2

]
=

O
(

1
ln(γ+T )

)
p = 1,

O
(

1
(γ+T )1−p

)
p ∈ (1/2, 1),

which converges sublinearly.
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Convergence Analysis: decaying step sizes
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bounded batch sizes Bt,k = B̄t for outer iterations and Blow ≤ B̄t ≤ Bup with
Blow and Bup being positive integers, then the resulting sequence of iterates
{x̃t}T

t=1 satisfies

E

 T∑
t=1

ᾱt∑T
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Further, if the step size ᾱt ’s satisfy
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2
t <∞, then

the following holds

lim
T→∞

E

 T∑
t=1

αt∑T
t=1 αt

‖gradF (xt )‖2

 = 0.

If the decaying step size ᾱt = κ
(γ+t)p for constants κ > 0, γ > 0, and

p ∈ (1/2, 1], then

E

[ T∑
t=1

ᾱt∑T
t=1 ᾱt

‖gradF (xt )‖2

]
=

O
(

1
ln(γ+T )

)
p = 1,

O
(

1
(γ+T )1−p

)
p ∈ (1/2, 1),

which converges sublinearly.
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Convergence Analysis: decaying step sizes

Theorem 4 (RPL)

Under the same conditions as Theorem 2 except for that the step size
sequence and the batch size sequence satisfy

αt,k = ᾱt =
κ

γ + t
for some γ > 0 and κ satisfying certain assumptions

and Bt,k = B̄t ∈ [Blow,Bup].

Then for all t ∈ {1, 2, . . . ,T − 1}, the expected optimality gap is bounded by

E[F (x̃t )− F (x∗)] ≤ ν

γ + t
,

where ν = max{ κ2K 2σ2L
SBlow(κµ(K−1+δ)−1)

,
κ3(2K−1)K (K−1)σ2L2M
3γBlow(κµ(K−1+δ)−1)

, (γ + 1)(F (x̃1)− F (x∗))}.

Convergence rate is improved from O
(

1
ln(t)

)
to O

( 1
t

)
.
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Convergence Analysis

Riemannian Federated Learning via Averaging Gradient Stream 24

All the above theorems rely on the below conditions for step sizes.

Theorem 5

We run RFedAGS with a fixed step size αt,k = ᾱt and a fixed batch size Bt,k = B̄t within
parallel steps.
• If K = 1 with step sizes ᾱt satisfying

2− δ ≥ Lᾱt ; (3.1)

• or K > 1 with step sizes ᾱt satisfying{
1 ≥ L2ᾱ2

t M(K + 1)(K − 2) + ᾱt LK ,
1− δ ≥ 2L2ᾱ2

t M,
(3.2)

where δ ∈ (0, 1) is some constant, then it holds that

Et [F (x̃t+1)]− F (x̃t ) ≤ −
ᾱt (K − 1 + δ)

2
‖gradF (x̃t )‖2 +

K ᾱ2
t σ

2L
2B̄t

H(ᾱt ,K ,S),

where H(ᾱt ,K ,S) = ᾱt (2K−1)(K−1)ML
3 + K

S , and the expectations above are taken over
the randomness at the t-th outer iteration conditioned on x̃t .

• Inspired from Euclidean results in [ZC18];
• M is a constant related to the manifold and retraction (M = 1 for Euclidean).

[ZC18] F. Zhou and G. Cong. On the convergence properties of a K-step averaging stochastic gradient descent
algorithm for nonconvex optimization. International Joint Conference on Artificial Intelligence, 2018.
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All the above theorems rely on the below conditions for step sizes.

Theorem 5

We run RFedAGS with a fixed step size αt,k = ᾱt and a fixed batch size Bt,k = B̄t within
parallel steps.
• If K = 1 with step sizes ᾱt satisfying

2− δ ≥ Lᾱt ; (3.1)

• or K > 1 with step sizes ᾱt satisfying{
1 ≥ L2ᾱ2

t M(K + 1)(K − 2) + ᾱt LK ,
1− δ ≥ 2L2ᾱ2

t M,
(3.2)

where δ ∈ (0, 1) is some constant, then it holds that

Et [F (x̃t+1)]− F (x̃t ) ≤ −
ᾱt (K − 1 + δ)

2
‖gradF (x̃t )‖2 +

K ᾱ2
t σ

2L
2B̄t

H(ᾱt ,K ,S),

where H(ᾱt ,K ,S) = ᾱt (2K−1)(K−1)ML
3 + K

S , and the expectations above are taken over
the randomness at the t-th outer iteration conditioned on x̃t .

• 2√
K 2+4M(K +1)(K−2)+K

≥
√

1−δ
2M ⇒ the second inequality in (3.2) takes effect;

• M ≥ (1−δ)K 2

2(1−(1−δ)(K +1)(K−2))
⇒ theoretical upper bound of ᾱt independent of K .



Optimal choice for the number of local updates

Multiple inner iterations bring benefits.

Assume that step size αt is chosen independent of K .

• The larger K is, the faster algorithms converge in the sense of the first
terms in the upper bounds;

• The larger K is, the smaller the upper bounds (involving both terms) are
if T is not too large.

Riemannian Federated Learning via Averaging Gradient Stream 25



Optimal choice for the number of local updates

Theorem 6 (Fixed step size)

We run RFedAGS with a fixed batch size Bt,k = B̄ and a fixed step size
αt,k = ᾱ satisfying Conditions (3.1) and (3.2). Under the same conditions as
Theorem 1, if the number of outer iterations T satisfies

(F (x1)− F (x∗)) >
α2TLσ2

SB
+
α3σ2L2TM

B
,

then the optimal choice of K , the number of inner iterations, is greater than
1, but not infinite.

Theorem 7 (decaying step size)

We run RFedAGS with batch sizes Bt,k = B̄t and decaying step sizes
αt,k = ᾱt such that ᾱ1 satisfying Conditions (3.1) and (3.2). Under the same
conditions as Theorem 3, if the number of outer iterations T satisfies

(F (x1)− F (x∗)) > σ2L
T∑

t=1

α2
t

Bt

(
αt ML +

2
S

)
,

then the optimal choice K is greater than 1, but not infinite.
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Numerical Experiments

• The experiments conducted on the empirical risk minimization
• I.I.D. data and full agent participation

min
x∈M

F (x) :=
1
S

S∑
i=1

f (x ;Di ) =
1
S

S∑
i=1

N∑
j=1

1
N

f (x ; zi,j ),

where S is the number of agents, Di = {zi,1, . . . , zi,N} is the local dataset with
size of N held by agent i .

For decaying step sizes cases, the step sizes are computed by the following
formulation:

ᾱt =

{
α0 if t = 0
α0/(β + ct ) if t > 0,

with ct =


0 if t = 0,
ct−1 + 1 if mod(t , dec) = 0,
ct−1 otherwise,

where α0 is the initial step size, β is the decaying parameter, and dec is the
decaying gap.

Riemannian Federated Learning via Averaging Gradient Stream 28



Three simulation experiments

Computing principal eigenvector over sphere manifolds (CPESph)

• minx∈Sd F (x) := − 1
S

∑S
i=1

1
N

∑N
j=1 xT (zi,jzT

i,j )x with
Sd = {x ∈ Rd+1 : ‖x‖2 = 1}

• The objective locally satisfies RPL condition

• Synthetize the samples Di = {zi,1, . . . , zi,N} for all i = 1, . . . ,S:

• Diagonal matrix Σi = diag{1, 1− 1.1ν, . . . , 1− 1.4ν, |y1|
(d+1)

,
|y2|

(d+1)
, . . . } of

size (d + 1)× (d + 1) with ν being the eigengap and yi ∈ R being sampled
from the standard Gaussian distribution

• Set Zi = Ui Σi Vi with Ui ∈ RN×(d+1) and V ∈ R(d+1)×(d+1) being two
orthonormal matrix

• Set zi,j = Zi (j, :)T
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Three simulation experiments

Computing Fréchet mean over SPD manifolds (CFMSPD)

• minX∈Sd
++

F (X ) := 1
S

∑S
i=1

1
N

∑N
j=1 ‖logm(X−1/2Zi,jX−1/2)‖2

F with

Sd
++ = {X ∈ Rd×d : X � 0}

• The objective locally satisfies the RPL condition

• Synthetize the samples Di = {Zi,1, . . . ,Zi,N} ⊂ Sd
++:

• Each data point is sampled from the Wishart distribution W (Id/d , d) with a
diameter DW
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Three simulation experiments

Minimization of the Brockett cost function over Stiefel manifolds (MBCFSti)

• minX∈St(p,d) F (X ) = 1
S

∑S
i=1

∑N
j=1 trace(X T Ai,jXH) with

St(p, d) = {X ∈ Rd×p : X T X = Ip}

• H = diag{p, p − 1, . . . , 1}

• The objective locally satisfies the RPL condition

• Synthetize the samples Di = {Ai,1, . . . ,Ai,N} ⊂ Sd
++:

• Set Ai,j = B + BT with B being drawn from the standard normal distribution
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Three simulation experiments

Table 1: The parameters of the three problems and RFedAGS. Notation a.bk denotes a
number a.b × 10k and the dash “−” means that the parameter does not exist in the
problem.

Parameters

Problems

Problem-related Algorithm-related

d p ν DW S N ᾱ α0 β dec B̄

CPESph 2.51 – 1−3 – 1.01 8.01 1 1 1.0−1 5.01 6.41

CFMSPD 2 – – 1 1.01 6.01 3.0−3 8.0−3 1.0−1 2.01 3.01

MBCFSti 2.51 2 – – 2.01 5.01 3.0−3 2.0−2 1.0−1 5.01 2.51
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Three simulation experiments
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Figure 2: The influence of the different number, K , of local updates on synthetic data.
Fixed step size cases (first row) and decaying step size cases (second row).

• Linear convergence if fixed step sizes;
• More accurate if decaying step size;
• The larger K is, the faster the algorithm converges;
• Too large K may enlarge the accuracy for large T .
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• Linear convergence if fixed step sizes;
• More accurate if decaying step size;
• The larger K is, the faster the algorithm converges;
• Too large K may enlarge the accuracy for large T .
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Comparison with existing methods

Principal component analysis (PCA) on the Stiefel manifold

min
X∈St(d,p)

F (X ) = − 1
S

S∑
i=1

 1
N

N∑
j=1

trace(X T (Ai,jAT
i,j )X )


• The samples generated identically to those in CPESph;
• Compared to RFedAvg [LM23], RFedSVRG [LM23], RFedProj [Zha+24];
• (S,N) = (40, 80), α = 0.8, B = 40, K = 10, and

(d , p) = (30, 5), (30, 10).
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[Zha+24] J. Zhang and J. Hu and A. M.-C. So and M. Johansson. Nonconvex Federated Learning on Compact Smooth
Submanifolds With Heterogeneous Data. arxiv:2406.08465, 2024.



Comparison with existing methods
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Figure 3: First two columns: Cayley transform. Third column: QR and by projection.

• CPU time = server CPU time + max(agent’s CPU time);
• Above: perform similarly initially and RFedSVRG and RFedProj find

more accurate solutions;
• RFedAvg, RFedSVRG: inverse of retraction in server;
• RFedProj: orthogonal projection costs more for large p.
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Summary

For more numerical experiments and details, please see
Zhenwei Huang, Wen Huang, Pratik Jawanpuria, and Bamdev Mishra.
Riemannian federated learning via averaging gradient streams.
arxiv.org/abs/2409.07223, 2024.

• Introduced the federated learning;

• Proposed a new server aggregation;

• Convergence analysis;

• Numerical experiments;
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Thank you

Thank you for your attention!
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