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Wen Huang Université catholique de Louvain



4/46

Introduction Motivations Optimization History Phase Retrieval Problem Summary

Riemannian Optimization

Problem: Given f(x) :M→ R, solve

min
x∈M

f(x)

where M is a Riemannian manifold.

M

R
f
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Examples of Manifolds

Sphere Ellipsoid

Stiefel manifold: St(p, n) = {X ∈ Rn×p|XTX = Ip}
Grassmann manifold: Set of all p-dimensional subspaces of Rn

Set of fixed rank m-by-n matrices

And many more

Wen Huang Université catholique de Louvain
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Riemannian Manifolds

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x
TxM
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Applications

Three applications are used to demonstrate the importances of the
Riemannian optimization:

Independent component analysis [CS93]

Matrix completion problem [Van12]

Phase retrieval problem [CSV13, EM13]
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Application: Independent Component Analysis

People 1

People p

People 2

Microphone 1

Microphone n

Microphone 2

s(t) ∈ Rp

IC 1

IC p

IC 2

x(t) ∈ Rn

Cocktail party problem

ICA

Observed signal is x(t) = As(t)

One approach:

Assumption: E{s(t)s(t+ τ)} is diagonal for all τ
Cτ (x) := E{x(t)x(x+ τ)T } = AE{s(t)s(t+ τ)T }AT
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Application: Independent Component Analysis

Minimize joint diagonalization cost function on the Stiefel manifold
[TI06]:

f : St(p, n)→ R : V 7→
N∑
i=1

‖V TCiV − diag(V TCiV )‖2F .

C1, . . . , CN are covariance matrices and
St(p, n) = {X ∈ Rn×p|XTX = Ip}.
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Application: Matrix Completion Problem

Matrix completion problem

User 1

User 2

User m

Movie 1 Movie 2 Movie n

Rate matrix M

1

53

4

4

5 3

15

2

The matrix M is sparse

The goal: complete the matrix M
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Application: Matrix Completion Problem

movies meta-user meta-movie
a11 a14

a24

a33

a41

a52 a53

 =


b11 b12

b21 b22

b31 b32

b41 b42

b51 b52


(
c11 c12 c13 c14

c21 c22 c23 c24

)

Minimize the cost function

f : Rm×nr → R : X 7→ f(X) = ‖PΩM − PΩX‖2F .

Rm×nr is the set of m-by-n matrices with rank r. It is known to be a
Riemannian manifold.
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Application: Phase Retrieval Problem

The Phase Retrieval problem concerns recovering a signal given the
modulus of its linear transform, e.g., the Fourier transform.

It is important in many applications, e.g., X-ray crystallography
imaging [Har93];

A cost function in the PhaseLift [CSV13] framework is:

min
X≥0
‖b2 − diag(ZXZ∗)‖22 + κtrace (X) ,

where b is the measurements, Z is the linear operator, and κ is a
positive constant.

The desired minimizer has rank one.
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Application: Phase Retrieval Problem

This motivates us to consider the optimization problem

min
X≥0

H(X) (1)

and the desired minimizer has low rank.

It is known that {X ∈ Cn×n|X ≥ 0, rank(X)is fixed} is a manifold.

Problem (1) can be solved by combining Riemannnian optimization
with rank adaptive mechanism [JBAS10, ZHG+15]
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More Applications

Large-scale Generalized Symmetric Eigenvalue Problem and SVD

Blind source separation on both Orthogonal group and Oblique
manifold

Low-rank approximate solution symmetric positive definite Lyapanov
AXM +MXA = C

Best low-rank approximation to a tensor

Rotation synchronization

Graph similarity and community detection

Low rank approximation to role model problem

Wen Huang Université catholique de Louvain
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Comparison with Constrained Optimization

All iterates on the manifold

Convergence properties of unconstrained optimization algorithms

No need to consider Lagrange multipliers or penalty functions

Exploit the structure of the constrained set

M
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk + ∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:

Steepest descent: xk+1 = xk − αk∇f(xk)

Newton’s method: xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk)

Trust region method: ∆xk is set by optimizing a local model.

Riemannian Manifolds Provide

Riemannian concepts describing
directions and movement on the
manifold

Riemannian analogues for gradient
and Hessian

xk xk + dk
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Riemannian gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in TxM
satisfying ∀η ∈ TxM , the directional derivative

D f(x)[η] = 〈grad f(x), η〉

and grad f(x) is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
TxM to TxM defined as

Hess f(x) : TxM → TxM : η → ∇ηgrad f,

where ∇ is the affine connection.

Wen Huang Université catholique de Louvain
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Retractions

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk

(αkηk)

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx(tη)

TxM
x

η

Rx(η)

M
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Generic Riemannian Optimization Algorithm

1. At iterate x ∈M
2. Find η ∈ TxM which satisfies certain condition.

3. Choose new iterate x+ = Rx(η).

4. Goto step 1.

A suitable setting

This paradigm is sufficient for describing many optimization methods.

Tx0M
Tx1M

Tx2M

η2

x0

x3
η1

x1 = Rx0(η0)

η0 x2
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Categories of Riemannian optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and Rx(tη) to define line

Steepest decent

Newton

Local model-based: series of flat space problems

Riemannian trust region Newton (RTR)

Riemannian adaptive cubic overestimation (RACO)

Wen Huang Université catholique de Louvain
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Categories of Riemannian optimization methods

Elements required for optimizing a cost function (M, g):

an representation for points x on M , for tangent spaces TxM , and
for the inner products gx(·, ·) on TxM ;

choice of a retraction Rx : TxM →M ;

formulas for f(x), grad f(x) and Hess f(x) (or its action);

Computational and storage efficiency;

Wen Huang Université catholique de Louvain
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Categories of Riemannian optimization methods

Retraction and transport-based: information from multiple tangent spaces

Conjugate gradient: multiple tangent vectors

Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function (M, g):

formulas for combining information from multiple tangent spaces.

Wen Huang Université catholique de Louvain
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Vector Transports

Vector Transport

Vector transport: Transport a tangent
vector from one tangent space to
another

Tηxξx, denotes transport of ξx to
tangent space of Rx(ηx). R is a
retraction associated with T
Isometric vector transport TS preserve
the length of tangent vector

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure: Vector transport.
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Retraction/Transport-based Riemannian Optimization

Benefits

Increased generality does not compromise the important theory

Less expensive than or similar to previous approaches

May provide theory to explain behavior of algorithms specifically
developed for a particular application – or closely related ones

Possible Problems

May be inefficient compared to algorithms that exploit application
details

Wen Huang Université catholique de Louvain
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Some History of Optimization On Manifolds (I)

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”. Rosen (1961) essentially anticipated this but was not
explicit in his Gradient Projection Algorithm.

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Steepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics. On Riemannian
submanifolds of Rn.

Smith (1993-94), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential mapping; parallel
translation.
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Some History of Optimization On Manifolds (II)

The “pragmatic era” begins:

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expxη is replaced by a projective
update π(x+ η), the projection of the point x+ η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.

Absil, Mahony, Sepulchre (2007) Nonlinear conjugate gradient using
retractions.
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Some History of Optimization On Manifolds (III)

Theory, efficiency, and library design improve dramatically:

Absil, Baker, Gallivan (2004-07), Theory and implementations of
Riemannian Trust Region method. Retraction-based approach. Matrix
manifold problems, software repository

http://www.math.fsu.edu/~cbaker/GenRTR

Anasazi Eigenproblem package in Trilinos Library at Sandia National
Laboratory

Absil, Gallivan, Qi (2007-10), Basic theory and implementations of
Riemannian BFGS and Riemannian Adaptive Cubic Overestimation.
Parallel translation and Exponential map theory, Retraction and vector
transport empirical evidence.

Wen Huang Université catholique de Louvain
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Some History of Optimization On Manifolds (IV)

Ring and With (2012), combination of differentiated retraction and
isometric vector transport for convergence analysis of RBFGS

Absil, Gallivan, Huang (2009-2015), Complete theory of Riemannian
Quasi-Newton and related transport/retraction conditions, Riemannian
SR1 with trust-region, RBFGS on partly smooth problems, A C++
library: http://www.math.fsu.edu/~whuang2/ROPTLIB

Sato, Iwai (2013-2015), Global convergence analysis using the
differentiated retraction for Riemannian conjugate gradient methods

Many people Application interests start to increase noticeably

Wen Huang Université catholique de Louvain
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Current UCL/FSU Methods

Riemannian Steepest Descent

Riemannian Trust Region Newton: global, quadratic convergence

Riemannian Broyden Family : global (convex), superlinear
convergence

Riemannian Trust Region SR1: global, (d+ 1)−superlinear
convergence

For large problems

Limited memory RTRSR1
Limited memory RBFGS

Riemannian conjugate gradient (much more work to do on local
analysis)

A library is available at www.math.fsu.edu/~whuang2/ROPTLIB

Wen Huang Université catholique de Louvain
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Current/Future Work on Riemannian methods

Manifold and inequality constraints

Discretization of infinite dimensional manifolds and the
convergence/accuracy of the approximate minimizers – specific to a
problem and extracting general conclusions

Partly smooth cost functions on Riemannian manifold

Wen Huang Université catholique de Louvain
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PhaseLift Framework

A cost function in the PhaseLift [CSV13] framework is:

min
X∈Cn×n,X≥0

‖b2 − diag(ZXZ∗)‖22 + κtrace (X) ;

A desired minimizer has rank one;

This motivates us to consider the optimization problem

min
X∈Cn×n,X≥0

H(X)

and the desired minimizer is low rank.

Wen Huang Université catholique de Louvain
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Optimization on Hermitian Positive Semidefinite Matrices

Optimization on Hermitian Positive Semidefinite Matrices

min
X∈Cn×n,X≥0

H(X)

Suppose the rank of desired minimizer r∗ is at most p.

The domain {X ∈ Cn×n|X ≥ 0} can be replaced by Dp, where
Dp = {X ∈ Cn×n|X ≥ 0, rank(X) ≤ p}.
An alternate cost function can be used:

Fp : Cn×p → R : Yp 7→ H(YpY
∗
p ).

Choosing p > 1 yields computational and theoretical benefits.

This idea is not new and has been discussed in [BM03] and
[JBAS10] for real positive semidefinite matrix constraints.

Wen Huang Université catholique de Louvain
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Optimization on Hermitian Positive Semidefinite Matrices

First Order Optimality Condition

Theorem

If Y ∗p ∈ Cn×p is a rank deficient minimizer of Fp, then YpY
∗
p is a

stationary point of H.
In addition, if H is a convex cost function, YpY

∗
p is a global minimizer of

H.

The real version of the optimality condition is given in [JBAS10].

Wen Huang Université catholique de Louvain
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Optimization Framework

Optimization Framework

Equivalence: if YpY
∗
p = ỸpỸ

∗
p , then Fp(Yp) = Fp(Ỹp);

Quotient manifolds are used to remove the equivalence:

Equivalent class of Yr ∈ Cn×r∗ is [Yr] = {YrOr|Or ∈ Or}, where
1 ≤ r ≤ p, Cn×r∗ denotes the n-by-r complex noncompact Stiefel
manifold and Or denote the r-by-r complex rotation group;
A fixed rank quotient manifold Cn×r∗ /Or = {[Yr]|Yr ∈ Cn×r∗ },
1 ≤ r ≤ p;

Function on a fixed rank manifold is

fr : Cn×r∗ /Or → R : [Yr] 7→ Fr(Yr) = H(YrY
∗
r );

Optimize the cost function fr and update r if necessary;

A similar approach is used in [JBAS10] for real problems;

Wen Huang Université catholique de Louvain
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Optimization Framework

Update Rank Strategy

Most of work is to choose a upper bound k for the rank and
optimize over Cn×k or Rn×k.

Increasing rank by a constant [JBAS10, UV14]

Descent
Globally converge

Dynamically search for a suitable rank [ZHG+15]

Not descent
Globally converge

Wen Huang Université catholique de Louvain
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Optimization Framework

Compare with a Convex Programming Solver

Compare with convex programming

FISTA [BT09] in Matlab library TFOCS [BCG11];
X can be too large to be handled by the solver;
A low rank version of FISTA is used, denoted by LR-FISTA;
The approach is used in [CESV13, CSV13];
Works in practice but no theoretical results.

Wen Huang Université catholique de Louvain
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Optimization Framework

Comparisons

Table: n1 = n2 = 64; n = n1n2 = 4096. k denotes the upper bound of the
low-rank approximation in LR-FISTA. ] represents the number of iterations
reach the maximum. The relative mean-square error (RMSE) is
mina:|a|=1 ‖ax− x∗‖2/‖x∗‖2.

noiseless
Algorithm 1

LR-FISTA (k)
1 2 4 8 16

iter 124 1022 377 601 1554 2000]

nf 129 2212 804 1278 3360 4322
ng 124 1106 402 639 1680 2161
ff 4.62−12 8.18−12 4.50−11 4.64−12 1.54−11 1.27−9

RMSE 6.34−6 1.01−5 1.74−5 1.46−5 1.10−4 2.56−3

t 2.12 1.272 5.251 9.351 3.482 6.862

Algorithm 1 is faster and gives smaller RMSE.

Wen Huang Université catholique de Louvain
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Optimization Framework

The Gold Ball Data

 

 

min

max

Figure: Image of the absolute value of the 256-by-256 complex-valued image.
n = 65536. The pixel values correspond to the complex transmission
coefficients of a collection of gold balls embedded in a medium.

Thank Stefano Marchesini at Lawrence Berkeley Notional Laboratory for providing the gold balls data set and granting permission to use it.
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Optimization Framework

The Gold Ball Data

A set of binary masks contains a mask that is all 1 (which yields the
original image) and several other masks comprising elements that are 0 or
1 with equal probability.

Table: RMSE and computational time (second) results with varying number
and types of masks are shown in format RMSE/TIME. ] represents the
computational time reaching 1 hour, i.e., 3.63 seconds.

Algorithm 1 LR-FISTA

SNR (dB) 20 40 inf 20 40 inf

6 Gaussian 8.32−3/4.301 8.32−5/4.501 3.12−6/4.191 8.32−3/] 3.12−4/] 3.12−4/]

6 binary 7.23−1/7.902 1.29−1/4.242 1.09−1/4.422 8.24−1/] 4.98−1/] 4.98−1/]

32 binary 2.21−1/6.842 3.02−3/7.362 2.57−3/6.542 6.07−1/] 5.82−1/] 5.78−1/]

Wen Huang Université catholique de Louvain
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Optimization Framework

The Gold Ball Data

6 Gaussian masks, SNR: Inf

10 times error

6 Binary masks, SNR: Inf

10 times error

32 Binary masks, SNR: Inf

10 times error

Figure: Reconstructions via PhaseLift with varying number and types of masks.
For the same number and types of masks, the reconstructions of noiseless
measurements are shown. The error is shown in the images by magnifying 10
times.
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Optimization Framework

The Gold Ball Data

6 Gaussian masks, SNR: 20

10 times error

6 Binary masks, SNR: 20

10 times error

32 Binary masks, SNR: 20

10 times error

Figure: Reconstructions via PhaseLift with varying number and types of masks.
For the same number and types of masks, the reconstructions of noisy
measurements with SNR 20 are shown. The error is shown in the images by
magnifying 10 times.

Wen Huang Université catholique de Louvain
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Summary

Introduced the framework of Riemannian optimization and the
state-of-the-art Riemannian algorithms

Used applications to show the importance of Riemannian
optimization

Showed the performance of Riemannian optimization by using an
optimization problem in the PhaseLift framework

Wen Huang Université catholique de Louvain
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Thanks!
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