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Riemannian Optimization

Problem: Given f(x) : M → R, solve

min
x∈M

f(x)

where M is a Riemannian manifold.

M

R
f
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Examples of Manifolds

Sphere Ellipsoid

Stiefel manifold: St(p, n) = {X ∈ Rn×p|XTX = Ip}
Grassmann manifold: Set of all p-dimensional subspaces of Rn

Set of fixed rank m-by-n matrices

And many more

Wen Huang Xiamen University
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Riemannian Manifolds

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x
TxM
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Applications

Four applications are used to demonstrate the importances of the
Riemannian optimization:

Independent component analysis [CS93]

Matrix completion problem [Van13]

Geometric mean of symmetric positive definite matrices
[ALM04, JVV12, CS17]

Elastic shape analysis of curves [SKJJ11, HGSA15]
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Application: Independent Component Analysis

People 1

People p

People 2

Microphone 1

Microphone n

Microphone 2

s(t) ∈ Rp

IC 1

IC p

IC 2

x(t) ∈ Rn

Cocktail party problem

ICA

Observed signal is x(t) = As(t)

One approach:

Assumption: E{s(t)s(t+ τ)} is diagonal for all τ
Cτ (x) := E{x(t)x(x+ τ)T } = AE{s(t)s(t+ τ)T }AT
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Application: Independent Component Analysis

Minimize joint diagonalization cost function on the Stiefel manifold
[TI06]:

f : St(p, n) → R : V 󰀁→
N󰁛

i=1

󰀂V TCiV − diag(V TCiV )󰀂2F .

C1, . . . , CN are covariance matrices and
St(p, n) = {X ∈ Rn×p|XTX = Ip}.

Wen Huang Xiamen University



8/46

Introduction Motivations Optimization History Shape Analysis Summary

Application: Matrix Completion Problem

Matrix completion problem

User 1

User 2

User m

Movie 1 Movie 2 Movie n

Rate matrix M

1

53

4

4

5 3

15

2

The matrix M is sparse

The goal: complete the matrix M
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Application: Matrix Completion Problem

movies meta-user meta-movie
󰀳

󰁅󰁅󰁅󰁅󰁃

a11 a14
a24

a33
a41

a52 a53

󰀴

󰁆󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁅󰁃

b11 b12
b21 b22
b31 b32
b41 b42
b51 b52

󰀴

󰁆󰁆󰁆󰁆󰁄

󰀕
c11 c12 c13 c14
c21 c22 c23 c24

󰀖

Minimize the cost function

f : Rm×n
r → R : X 󰀁→ f(X) = 󰀂PΩM − PΩX󰀂2F .

Rm×n
r is the set of m-by-n matrices with rank r. It is known to be a

Riemannian manifold.
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Application: Geometric Mean of Symmetric Positive
Definite (SPD) Matrices

Computing the mean of a population of SPD matrices is important in
medical imaging, image processing, radar signal processing, and elasticity.
The desired properties are given in the ALM1 list, some of which are

if A1, . . . , Ak commute, then G(A1, . . . , Ak) = (A1 . . . Ak)
1
k ;

G(Aπ(1), . . . , Aπ(k)) = G(A1, . . . , Ak), with π a permutation of
(1, . . . , k);

G(A1, . . . , Ak) = G
󰀃
A−1

1 , . . . A−1
k

󰀄−1
;

detG(A1, . . . , Ak) = (detA1 . . . detAk)
1
k ;

where A1, . . . , Ak are SPD matrices, and G(·, . . . , ·) denotes the
geometric mean of arguments.

1T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004
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Application: Geometric Mean of Symmetric Positive
Definite Matrices

One geometric mean is the Karcher mean of the manifold of SPD
matrices with the affine invariant metric, i.e.,

G(A1, . . . , Ak) = arg min
X∈Sn

+

1

2k

k󰁛

i=1

dist2(X,Ai),

where dist(X,Y ) = 󰀂 log(X−1/2Y X−1/2)󰀂F is the distance under the
Riemannian metric

g(ηX , ξX) = trace(ηXX−1ξXX−1).
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Application: Elastic Shape Analysis of Curves

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Classification
[LKS+12, HGSA15]

Face recognition
[DBS+13]
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Application: Elastic Shape Analysis of Curves

Elastic shape analysis invariants:

Rescaling

Translation

Rotation

Reparametrization

The shape space is a quotient space

Figure: All are the same shape.
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Application: Elastic Shape Analysis of Curves

shape 1 shape 2

q1

q̃2

q2

[q1] [q2]

Optimization problem minq2∈[q2] dist(q1, q2) is defined on a
Riemannian manifold

Computation of a geodesic between two shapes

Computation of Karcher mean of a population of shapes
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More Applications

Large-scale Generalized Symmetric Eigenvalue Problem and SVD

Blind source separation on both Orthogonal group and Oblique
manifold

Low-rank approximate solution symmetric positive definite Lyapanov
AXM +MXA = C

Best low-rank approximation to a tensor

Rotation synchronization

Graph similarity and community detection

Low rank approximation to role model problem

Wen Huang Xiamen University
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Comparison with Constrained Optimization

All iterates on the manifold

Convergence properties of unconstrained optimization algorithms

No need to consider Lagrange multipliers or penalty functions

Exploit the structure of the constrained set

M
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Iterations on the Manifold

Consider the following generic update for an iterative Euclidean
optimization algorithm:

xk+1 = xk +∆xk = xk + αksk .

This iteration is implemented in numerous ways, e.g.:

Steepest descent: xk+1 = xk − αk∇f(xk)

Newton’s method: xk+1 = xk −
󰀅
∇2f(xk)

󰀆−1 ∇f(xk)

Trust region method: ∆xk is set by optimizing a local model.

Objects

Direction/movement: sk/∆xk

Gradient: ∇f(xk)

Hessian: ∇2f(xk)

Addition: +

xk xk + dk

Wen Huang Xiamen University
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Riemannian gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in TxM
satisfying ∀η ∈ TxM , the directional derivative

D f(x)[η] = 〈grad f(x), η〉

and grad f(x) is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
TxM to TxM defined as

Hess f(x) : TxM → TxM : η → ∇ηgrad f,

where ∇ is the affine connection.
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Retractions

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk

(αkηk)

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx(tη)

TxM
x

η

Rx(η)

M
Wen Huang Xiamen University
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Categories of Riemannian optimization methods

Retraction-based: local information only

Line search-based: use local tangent vector and Rx(tη) to define line

Steepest decent

Newton

Local model-based: series of flat space problems

Riemannian trust region Newton (RTR)

Riemannian adaptive cubic overestimation (RACO)
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Generic Riemannian Optimization Algorithm

1. At iterate x ∈ M

2. Find η ∈ TxM which satisfies certain condition.

3. Choose new iterate x+ = Rx(η).

4. Goto step 1.

A suitable setting

This paradigm is sufficient for describing many optimization methods.

Tx0M
Tx1M

Tx2M

η2

x0

x3

η1

x1 = Rx0(η0)

η0 x2
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Categories of Riemannian optimization methods

Elements required for optimizing a cost function (M, g):

an representation for points x on M , for tangent spaces TxM , and
for the inner products gx(·, ·) on TxM ;

choice of a retraction Rx : TxM → M ;

formulas for f(x), grad f(x) and Hess f(x) (or its action);

Computational and storage efficiency;

Wen Huang Xiamen University
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Categories of Riemannian optimization methods

Retraction and transport-based: information from multiple tangent spaces

Conjugate gradient: multiple tangent vectors

Quasi-Newton e.g. Riemannian BFGS: transport operators between
tangent spaces

Additional element required for optimizing a cost function (M, g):

formulas for combining information from multiple tangent spaces.

Wen Huang Xiamen University
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Vector Transports

Vector Transport

Vector transport: Transport a tangent
vector from one tangent space to
another

Tηx
ξx, denotes transport of ξx to

tangent space of Rx(ηx). R is a
retraction associated with T

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure: Vector transport.
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Retraction/Transport-based Riemannian Optimization

Benefits

Increased generality does not compromise the important theory

Less expensive than or similar to previous approaches

May provide theory to explain behavior of algorithms specifically
developed for a particular application – or closely related ones

Possible Problems

May be inefficient compared to algorithms that exploit application
details

Wen Huang Xiamen University
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Some History of Optimization On Manifolds (I)

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”. Rosen (1961) essentially anticipated this but was not
explicit in his Gradient Projection Algorithm.

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Steepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics. On Riemannian
submanifolds of Rn.

Smith (1993-94), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential mapping; parallel
translation.
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Some History of Optimization On Manifolds (II)

The “pragmatic era” begins:

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expxη is replaced by a projective
update π(x+ η), the projection of the point x+ η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.
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Some History of Optimization On Manifolds (III)

Theory, efficiency, and library design improve dramatically:

Absil, Baker, Gallivan (2004-07), Theory and implementations of
Riemannian Trust Region method. Retraction-based approach. Matrix
manifold problems, software repository
http://www.math.fsu.edu/~cbaker/GenRTR

Anasazi Eigenproblem package in Trilinos Library at Sandia National
Laboratory

Ring and With (2012), combination of differentiated retraction and
isometric vector transport for convergence analysis of RBFGS

Absil, Gallivan, Huang (2009-2018), Complete theory of Riemannian
Quasi-Newton and related transport/retraction conditions, Riemannian
SR1 with trust-region, RBFGS on partly smooth problems, A C++
library: http://www.math.fsu.edu/ whuang2/ROPTLIB

Wen Huang Xiamen University

http://www.math.fsu.edu/~cbaker/GenRTR


29/46

Introduction Motivations Optimization History Shape Analysis Summary

Some History of Optimization On Manifolds (IV)

Absil, Mahony, Sepulchre (2007) Nonlinear conjugate gradient using
retractions.

Ring and With (2012), Global convergence analysis for Fletcher-Reeves
Riemannian nonlinear CG method with the strong wolfe conditions under
a strong assumption.

Sato, Iwai (2013-2015), Global convergence analysis for Fletcher-Reeves
type Riemannian nonlinear CG method with the strong wolfe conditions
under a mild assumption; and global convergence for Dai-Yuan type
Riemannian nonlinear CG method with the weak wolfe conditions under
mild assumptions.

Zhu (2017), Global convergence for Riemannian version of Dai’s
nonmonotone nonlinear CG method.
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Some History of Optimization On Manifolds (V)

Bonnabel (2011), Riemannian stochastic gradient descent method.

Sato, Kasai, Mishra(2017), Riemannian stochastic gradient descent
method using variance reduction or quasi-Newton.

Becigneul, Ganea(2018), Riemannian versions of ADAM, ADAGRAD,
and AMSGRAD for geodesically convex functions.

Zhang, Sra(2016-2018), Riemannian first-order methods for geodesically
convex optimization.

Liu, Boumal(2019), Riemannian optimization with constraints.

Many people Application interests start to increase noticeably

Wen Huang Xiamen University
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Some History of Optimization On Manifolds (VI)

Hosseini, Grohs, Huang, Uschmajew, Boumal, (2015-2016),
Lipschitz-continuous functions on Riemannian manifolds

Zhang, Sra(2016-2018), Riemannian first-order methods for geodesically
convex optimization.

Bento, Ferreira, Melo(2017), Riemannian proximal point method for
geodesically convex optimization.

Chen, Ma, So, Zhang(2018), Riemannian proximal gradient method.

Many people Application interests start to increase noticeably
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Riemannian Optimization Libraries

Riemannian optimization libraries for general problems:

Boumal, Mishra, Absil, Sepulchre(2014)
Manopt (Matlab library)

Townsend, Koep, Weichwald (2016)
Pymanopt (Python version of manopt)

Huang, Absil, Gallivan, Hand (2018)
ROPTLIB (C++ library, interfaces to Matlab and Julia)

Martin, Raim, Huang, Adragni(2018)
ManifoldOptim (R wrapper of ROPTLIB)

Meghwanshi, Jawanpuria, Kunchukuttan, Kasai, Mishra (2018)
McTorch (Riemannian optimization for deep learning)
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Elastic Shape Analysis of Curves

Joint work with:

Pierre-Antoine Absil, Professor of
Mathematical Engineering,
Université catholique de Louvain

Kyle A. Gallivan, Professor of Mathematics,
Florida State University

Anuj Srivastava, Professor of Statistics,
Florida State University

Yaqing You, Ph.D candidate in Applied and
Computational Mathematics,
Florida State University
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Elastic Shape Analysis of Curves

Elastic shape analysis invariants

Rescaling
Translation
Rotation
Reparameterization (difficult) Figure: All are the same shape.

geodesic without reparameterization

geodesic with reparameterization

Wen Huang Xiamen University
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Best Rotation and Reparameterization

(O∗, γ∗) = argmin
(O,γ)∈SO(n)×Γ

distln(q1, O(q2, γ)),

where SO(n) is the orthogonal group and Γ is the set of absolutely
continuous bijection from S1 to S1.

[q1] [q2]

q1

q̃2

Updating O and γ

q2

Wen Huang Xiamen University
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Optimization Algorithms

Coordinate Descent Method: Optimize rotation and
reparameterization alternately.

Rotation: Procrustes problem solved using SVD

Reparameterization: O(N) runs of Dynamic programming (DP) with
slope constraints, where N is the number of points in the curves

Complexity is O(N3) per iteration.

Riemannian Method

Domain: SO(n)× R× SL2

, where SL2

is the unit sphere in L2.

Complexity is O(N) per iteration.

A global minimizer is desired

Wen Huang Xiamen University
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Examples (by Riemannian methods)

Figure: Applying best rotation and reparameterization to one of the curves.
The colors indicate corresponding points on the two curves.
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Data Sets

Flavia leaf dataset [WBX+07]

1907 images of leaves

32 species

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

MPEG-7 dataset [Uni]

1400 binary images

70 clusters

1 2 3 4 5 6 7
8

9 10 11 12
13

14

15 16 17 18
19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

43
44 45 46 47 48 49 50 51 52 53 54 55

56

57
58 59 60 61

62 63 64 65 66 67 68 69 70

Boundary curves: bwboundaries function in Matlab

100 points in R2 used for each boundary

Wen Huang Xiamen University



39/46

Introduction Motivations Optimization History Shape Analysis Summary

Known γ−1
T (t) = (t+ sin(2πt))/(4π)

Figure: Apply random rotation and given γ−1
T to a given shape to obtain the

second shape. For the tested 1020 shapes, coordinate descent method may not
find a global minimizer.Wen Huang Xiamen University
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One Nearest Neighbor Results

The 1NN metric, µ, computes the percentage of points whose
nearest neighbor are in the same cluster, i.e.,

µ =
1

n

n󰁛

i=1

C(i), C(i) =

󰀻
󰁁󰀿

󰁁󰀽

1 if point i and its nearest neighbor

are in the same cluster;

0 otherwise.

tave(F) 1NN(F) tave(M) 1NN(M)
Riemannian methods 0.088 89.51% 0.181 97.79%
Coordinate descent 0.897 87.52% 0.908 96.79%
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Geodesic

The energy function is

E : Pq1,[q2] → R : α 󰀁→ 1

2

󰁝 1

0

〈α̇(τ), α̇(τ)〉 dτ,

where Pq1,[q2] denotes the set of paths connecting q1 and q ∈ [q2].

Wen Huang Xiamen University



42/46

Introduction Motivations Optimization History Shape Analysis Summary

Karcher Mean

The Karcher mean of shapes [qi], i = 1, 2, . . . , N is defined to be the
minimizer of the cost function

[q∗] = argmin[q]
1

2N

N󰁛

i=1

dist2([q], [qi]).

Wen Huang Xiamen University
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Summary

Introduced the framework of Riemannian optimization and the
state-of-the-art Riemannian algorithms

Used applications to show the importance of Riemannian
optimization

Introduced the framework of elastic shape analysis of curves and
showed the performance of Riemannian optimization in this
application

Wen Huang Xiamen University



44/46

Introduction Motivations Optimization History Shape Analysis Summary

Thanks!
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