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Riemannian Optimization

Problem: Given f (x) :M→ R, solve

min
x∈M

f (x)

where M is a Riemannian manifold.

M

R
f
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Examples of Manifolds

Sphere Ellipsoid

Stiefel manifold: St(p, n) = {X ∈ Rn×p|X T X = Ip}
Grassmann manifold: Set of all p-dimensional subspaces of Rn

Set of fixed rank m-by-n matrices

And many more

Wen Huang Riemannian BFGS methods and its Applications
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Riemannian Manifolds

Roughly, a Riemannian manifold M is a smooth set with a
smoothly-varying inner product on the tangent spaces.

M

x

ξ

η

R

〈η, ξ〉x
TxM
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Applications

Two applications are used to demonstrate the importances of the
Riemannian optimization:

Independent component analysis [CS93]

Matrix completion problem [Van12]

Geometric mean of symmetric positive definite matrices
[ALM04, JVV12, CS15]

Elastic shape analysis of curves [SKJJ11, HGSA15]
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Application: Independent Component Analysis

People 1

People p

People 2

Microphone 1

Microphone n

Microphone 2

s(t) ∈ Rp

IC 1

IC p

IC 2

x(t) ∈ Rn

Cocktail party problem

ICA

Observed signal is x(t) = As(t)

One approach:

Assumption: E{s(t)s(t + τ)} is diagonal for all τ
Cτ (x) := E{x(t)x(x + τ)T} = AE{s(t)s(t + τ)T}AT

Wen Huang Riemannian BFGS methods and its Applications



9/55

Introduction
Line Search-based Optimization Framework

Riemannian BFGS methods
Experiments

Summary

Problem Statement
Motivations

Application: Independent Component Analysis

Minimize joint diagonalization cost function on the Stiefel manifold
[TI06]:

f : St(p, n)→ R : V 7→
N∑

i=1

‖V T Ci V − diag(V T Ci V )‖2
F .

C1, . . . ,CN are covariance matrices and
St(p, n) = {X ∈ Rn×p|X T X = Ip}.

Wen Huang Riemannian BFGS methods and its Applications
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Application: Matrix Completion Problem

Matrix completion problem

User 1

User 2

User m

Movie 1 Movie 2 Movie n

Rate matrix M

1

53

4

4

5 3

15

2

The matrix M is sparse

The goal: complete the matrix M

Wen Huang Riemannian BFGS methods and its Applications
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Application: Matrix Completion Problem

movies meta-user meta-movie
a11 a14

a24

a33

a41

a52 a53

 =


b11 b12

b21 b22

b31 b32

b41 b42

b51 b52


(

c11 c12 c13 c14

c21 c22 c23 c24

)

Minimize the cost function

f : Rm×n
r → R : X 7→ f (X ) = ‖PΩM − PΩX‖2

F .

Rm×n
r is the set of m-by-n matrices with rank r . It is known to be a

Riemannian manifold.
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Application: Geometric Mean of Symmetric Positive
Definite (SPD) Matrices

Computing the mean of a population of SPD matrices is important in
medical imaging, image processing, radar signal processing, and elasticity.
The desired properties are given in the ALM1 list, some of which are

if A1, . . . ,Ak commute, then G (A1, . . . ,Ak ) = (A1 . . .Ak )
1
k ;

G (Aπ(1), . . . ,Aπ(k)) = G (A1, . . . ,Ak ), with π a permutation of
(1, . . . , k);

G (A1, . . . ,Ak ) = G
(
A−1

1 , . . .A−1
k

)−1
;

det G (A1, . . . ,Ak ) = (det A1 . . . det Ak )
1
k ;

where A1, . . . ,Ak are SPD matrices, and G (·, . . . , ·) denotes the
geometric mean of arguments.

1T. Ando, C.-K. Li, and R. Mathias, Geometric means, Linear Algebra and Its
Applications, 385:305-334, 2004

Wen Huang Riemannian BFGS methods and its Applications
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Application: Geometric Mean of Symmetric Positive
Definite Matrices

One geometric mean is the Karcher mean of the manifold of SPD
matrices with the affine invariant metric, i.e.,

G (A1, . . . ,Ak ) = arg min
X∈Sn

+

1

2k

k∑
i=1

dist2(X ,Ai ),

where dist(X ,Y ) = ‖ log(X−1/2YX−1/2)‖F is the distance under the
Riemannian metric

g(ηX , ξX ) = trace(ηX X−1ξX X−1).

Wen Huang Riemannian BFGS methods and its Applications
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Application: Elastic Shape Analysis of Curves

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Classification
[LKS+12, HGSA15]

Face recognition
[DBS+13]
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Application: Elastic Shape Analysis of Curves

Elastic shape analysis invariants:

Rescaling

Translation

Rotation

Reparametrization

The shape space is a quotient space

Figure: All are the same shape.
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Application: Elastic Shape Analysis of Curves

shape 1 shape 2

q1

q̃2

q2

[q1] [q2]

Optimization problem minq2∈[q2] dist(q1, q2) is defined on a
Riemannian manifold

Computation of a geodesic between two shapes

Computation of Karcher mean of a population of shapes

Wen Huang Riemannian BFGS methods and its Applications
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More Applications

Large-scale Generalized Symmetric Eigenvalue Problem and SVD

Blind source separation on both Orthogonal group and Oblique
manifold

Low-rank approximate solution symmetric positive definite Lyapanov
AXM + MXA = C

Best low-rank approximation to a tensor

Rotation synchronization

Graph similarity and community detection

Low rank approximation to role model problem

Wen Huang Riemannian BFGS methods and its Applications
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Comparison with Constrained Optimization

All iterates on the manifold

Convergence properties of unconstrained optimization algorithms

No need to consider Lagrange multipliers or penalty functions

Exploit the structure of the constrained set

M

Wen Huang Riemannian BFGS methods and its Applications
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Iterations on the Manifold

Consider the following generic update for a Euclidean line search-based
optimization algorithm:

xk+1 = xk + αk dk = xk − αkB−1
k ∇f (xk ).

This iteration is implemented in numerous ways, e.g.:

Steepest descent: Bk = id;

Newton’s method: Bk = ∇2f (xk ).

Objects

Direction: dk

Gradient: ∇f (xk )

Hessian: ∇2f (xk )

Addition: +

xk xk + dk

Wen Huang Riemannian BFGS methods and its Applications
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Riemannian Gradient and Riemannian Hessian

Definition

The Riemannian gradient of f at x is the unique tangent vector in Tx M
satisfying ∀η ∈ Tx M, the directional derivative

D f (x)[η] = 〈grad f (x), η〉

and grad f (x) is the direction of steepest ascent.

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from
Tx M to Tx M defined as

Hess f (x) : Tx M → Tx M : η → ∇η grad f ,

where ∇ is the affine connection.

Wen Huang Riemannian BFGS methods and its Applications
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Retractions

Euclidean Riemannian
xk+1 = xk + αk dk xk+1 = Rxk

(αkηk )

Definition

A retraction is a mapping R from TM to M
satisfying the following:

R is continuously differentiable

Rx (0) = x

DRx (0)[η] = η

maps tangent vectors back to the manifold

defines curves in a direction

η

x Rx (tη)

TxM
x

η

Rx (η)

M

Wen Huang Riemannian BFGS methods and its Applications
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Riemannian Line Search-based Methods

Riemannian Optimization Algorithm

1. At iterate x ∈ M

2. Find η ∈ Tx M which satisfies certain condition.

3. Choose new iterate x+ = Rx (αη).

4. Goto step 1.

Riemannian steepest descent [AMS08]: η = − grad f (x)

Riemannian Newton [AMS08]: η = −Hess f (x)−1 grad f (x)

Wen Huang Riemannian BFGS methods and its Applications



23/55

Introduction
Line Search-based Optimization Framework

Riemannian BFGS methods
Experiments

Summary

Secant Condition
BFGS update
Riemannian BFGS methods with line search

Quasi-Newton Methods

Motivations:

Steepest descent: Bk = id

Converge slowly

Newton method: Bk = Hess f (xk )

Require the Hessian which may be expensive or unavailable
Search direction may not be descent

Quasi-Newton methods: Bk is obtained by a recursive formula.

Use gradient to approximate the action of the Hessian and therefore
accelerate the convergent rate
Provide an approach to produce descent direction

Among the quasi-Newton methods, only the BFGS method is considered
in this talk.

Wen Huang Riemannian BFGS methods and its Applications
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Existing Riemannian BFGS methods

Euclidean BFGS search direction:

dk = −B−1
k grad f (xk ),

where Bk+1 = Bk − Bk sk sT
k Bk

sT
k Bk sk

+
yk y T

k

y T
k sk

, sk = xk+1 − xk , and

yk = grad f (xk+1)− grad f (xk ).

Existing Riemannian BFGS methods

Brace and Manton [BM06] / Savas and Lim [SL10]: Riemannian
BFGS methods, Grassmann manifold
Qi [Qi11]: geodesic
Ring and Wirth [RW12] / Huang et. al. [HGA15]: retraction

Wen Huang Riemannian BFGS methods and its Applications
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Secant Condition

An 1 dimension example to show the idea of secant condition.

f(x) = x4
gradf(x) = 4x3

gradf(x) = 4x3

xkxk+1

update of Newton method

gradf(x) = 4x3

xk−1xk+1

update of Secant idea

xk

Newton: xk+1 = xk − (Hess f (xk ))−1 grad f (xk )

Secant: xk+1 = xk − B−1
k grad f (xk ),

Bk (xk − xk−1) = grad f (xk )− grad f (xk−1)

Wen Huang Riemannian BFGS methods and its Applications
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Euclidean and Riemannian Secant Conditions

Secant condition provides us an idea to approximate the action of
Hessian.

Euclidean:

grad f (xk+1)− grad f (xk ) = Bk+1(xk+1 − xk ).

Riemannian:

xk+1 − xk can be replaced by R−1
xk

(xk+1)
grad f (xk+1) and grad f (xk ) are on different tangent space. A
method of comparing tangent vectors in different tangent space is
required.

Wen Huang Riemannian BFGS methods and its Applications
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Vector Transports

Vector Transport

Vector transport: Transport a tangent
vector from one tangent space to
another

Tηx ξx , denotes transport of ξx to
tangent space of Rx (ηx ). R is a
retraction associated with T
Isometric vector transport TS preserve
the length of tangent vector

x

M

TxM

ηx

Rx(ηx)

ξx

Tηx
ξx

Figure: Vector transport.
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Riemannian Secant Conditions

In the Riemannian setting, a naive secant condition is

grad f (xk+1)− Tξk
grad f (xk ) = Bk+1Tξk

ξk ,

where ξk = R−1
xk

(xk+1).

It is not clear whether this secant condition is sufficient to give a
well-defined and convergent Riemannian BFGS method.

Wen Huang Riemannian BFGS methods and its Applications
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Riemannian Secant Conditions

The Euclidean secant condition can be written as

yk = Bk+1sk or y T
k = sT

k Bk+1

where yk = grad f (xk+1)− grad f (xk ) and sk = xk+1 − xk .

Riemannian secant condition can be

yk = Bk+1sk or y[k = s[kBk+1,

where η[x : TxM→ R : ξx 7→ gx (ηx , ξx ).

yk ? and sk ?

Three Riemannian BFGS secant conditions are discussed
[Qi11, RW12, HGA15]

Wen Huang Riemannian BFGS methods and its Applications
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Riemannian Secant Conditions

The secant condition of Qi [Qi11] uses

yk = Bk+1sk

and chooses

yk = grad f (xk+1)− P1←0
γk

grad f (xk ) and sk = (P1←0
γk

Exp−1
xk

xk+1),

where Exp is a particular retraction, called the exponential mapping and
P is a particular vector transport, called the parallel translation.

Wen Huang Riemannian BFGS methods and its Applications
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Riemannian Secant Conditions

The secant condition of Ring and Wirth [RW12] uses

y[k = s[kBk+1

and chooses

y[k = (grad f (xk+1)[TRξk
− grad f (xk )[)T −1

Sξk
and s[k = (TSξk

ξk )[

where ξk = R−1
xk

(xk+1) and TR is differentiated retraction of R, i.e.,

TRηx
ζx = d

dt Rx (ηx + tζx )|t=0.

Wen Huang Riemannian BFGS methods and its Applications
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Riemannian Secant Conditions

In [HGA15], we use
yk = Bk+1sk

and choose

yk = grad f (xk+1)/βk − TSξk
grad f (xk ) and sk = TSξk

ξk ,

where ξk = R−1
xk

(xk+1) and βk = ‖ξk‖/‖TRξk
ξk‖, and TS is an isometric

vector transport that satisfies TSξξ = βTRξξ.

Wen Huang Riemannian BFGS methods and its Applications
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Euclidean BFGS

min
B
‖B−1 − B−1

k ‖WH

s.t. B = BT ,Bsk = yk

where WH is any positive definite matrix satisfying WH sk = yk and

‖A‖WH
= ‖W 1/2

H AW
1/2
H ‖F .

The solution is

Bk+1 = Bk −
Bk sk sT

k Bk

sT
k Bk sk

+
yk y T

k

y T
k sk

.

This is called Broyden-Fletcher-Goldfarb-Shanno(BFGS) update.

Wen Huang Riemannian BFGS methods and its Applications
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Riemannian BFGS

min
B
‖B−1 − B̃−1

k ‖WH

s.t. B is a self-adjoint operator,Bsk = yk

where B̃k = TSξk
◦ Bk ◦ T −1

Sξk
, WH is any positive definite matrix satisfying

WHsk = yk , ‖A‖WH = ‖W 1/2
H G 1/2AG−1/2WH1/2‖F , and G is the matrix

expression of the metric.

The solution is

Bk+1 = B̃k −
B̃ksk (B̃ksk )[

s[k B̃ksk

+
yky

[
k

y[ksk

.

Wen Huang Riemannian BFGS methods and its Applications
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Line Search Riemannian BFGS method

(1) Given initial x0 and self-adjoint positive definite B0. Let k = 0.

(2) Obtain search direction by ηk = −B−1
k grad f (xk )

(3) Set next iterate xk+1 = Rxk
(αkηk ), where αk is set to satisfy the

Wolfe conditions

f (xk+1) ≤ f (xk ) + c1αk g(grad f (xk ), ηk ), (1)

d

dt
f (Rxk

(tηk ))|t=αk
≥ c2

d

dt
f (Rxk

(tηk )|t=0. (2)

where 0 < c1 < 0.5 < c2 < 1.

(4) Use update formula to obtain Bk+1.

(5) If not converge, then k ← k + 1 and go to Step 2.

Wen Huang Riemannian BFGS methods and its Applications
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Convergence rate

1 Converges superlinearly:

lim
k→∞

dist(xk+1, x
∗)

dist(xk , x∗)
= 0

2 Step size αk = 1 satisfies the Wolfe conditions eventually.

xk

x∗

−Hessf(xk)gradf(xk)

O(dist(xk, x
∗)2)

−gradf(xk)

O(dist(xk, x
∗))

−B−1
k gradf(xk)

o(dist(xk, x
∗))

Wen Huang Riemannian BFGS methods and its Applications
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Limited-memory RBFGS

Riemannian BFGS requires computing B̃k = TSξk
◦ Bk ◦ T −1

Sξk
.

Explicit form of TS may not exist.

Even though it exists, matrix multiplications or matrix-vector
multiplications may be needed.

Limited-memory

Similar to Euclidean case, it requires less memory.

It avoids the requirement of explicit form of TS .

Wen Huang Riemannian BFGS methods and its Applications
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Construct TS

How to construct TS satisfying the locking condition

TSξξ = βTRξξ, β =
‖ξ‖
‖TRξξ‖

,

for all ξ ∈ TxM.

Method 1: Modifying an existing isometric vector transport

Method 2: Construct TS when a smooth function of building
orthonormal basis of tangent space is known.

Both ideas use Householder reflection twice.

Method 3: Given an isometric vector transport TS , a retraction is
obtained by solving d

dt Rx (tηx ) = TStηx
ηx . In some cases, the closed

form of the solution exists.

Wen Huang Riemannian BFGS methods and its Applications



39/55

Introduction
Line Search-based Optimization Framework

Riemannian BFGS methods
Experiments

Summary

The Joint Diagonalization Problem
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The Joint Diagonalization Problem

The compact Stiefel manifold: St(p, n) = {X ∈ Rn×p|X T X = Ip}.
The joint diagonalization problem in independent component
analysis (JD) [TCA09]

f : St(p, n)→ R : X 7→ f (X ) = −
N∑

i=1

‖ diag(X T Ci X )‖2
F ,

where Ci are known symmetric matrices and diag(M) is a vector
formed by diagonal entries of a matrix M.

Wen Huang Riemannian BFGS methods and its Applications
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Implementations

(JD) The Ci matrices are selected as
Ci = diag(n, n − 1, . . . , 1) + 0.1(Ri + RT

i ), where the elements of
Ri ∈ Rn×n are independently drawn from the standard normal
distribution.

The line search algorithm is [DS83, Algorithm A6.3.1mod]. c1 and
c2 in the Wolfe conditions are 10−4 and 0.999.

Stopping criterion requires norm of final gradient over the norm of
initial gradient to be less than 10−7.

Wen Huang Riemannian BFGS methods and its Applications
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The Joint Diagonalization Problem
Shape Analysis

Parameters

n = 12, p = 6.

Retraction: RX (η) = qf(X + η), where qf denotes the Q factor of
the QR decomposition with nonnegative elements on the diagonal of
R.

Vector transport:

Vector transport by parallelization (essentially an identity).
Use Householder reflection twice.

Wen Huang Riemannian BFGS methods and its Applications
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Comparisons of RBFGS methods in [RW12] and [HGA15]

Table: An average of 100 random runs of RWRBFGS and RBFGS.

N Method iter nf ng nV t (millisecond)
128 RBFGS 99 113 100 198 21.55
128 RWRBFGS 104 121 107 209 20.16
256 RBFGS 101 115 102 201 34.47
256 RWRBFGS 106 125 110 215 34.57
512 RBFGS 102 117 103 204 62.82
512 RWRBFGS 106 125 110 215 62.80

N: # of covariance matrices

iter: # of iterations

nf: # of function evaluations

ng: # of gradient evaluations

nV: # of vector transport

t: the computational time
RBFGS in [HGA15] relaxes the requirement of differentiated retraction
without losing efficiency.
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The Joint Diagonalization Problem
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Elastic Shape Analysis of Curves

Elastic shape analysis invariants

Rescaling
Translation
Rotation
Reparameterization (difficult) Figure: All are the same shape.

geodesic without reparameterization

geodesic with reparameterization
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The Joint Diagonalization Problem
Shape Analysis

Best Rotation and Reparameterization

(O∗, γ∗) = argmin
(O,γ)∈SO(n)×Γ

distln (q1,O(q2, γ)),

where SO(n) is the orthogonal group and Γ is the set of absolutely
continuous bijection from S1 to S1.

[q1] [q2]

q1

q̃2

Updating O and γ

q2

Wen Huang Riemannian BFGS methods and its Applications
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The Joint Diagonalization Problem
Shape Analysis

Optimization Algorithms

Coordinate Descent Method: Optimize rotation and
reparameterization alternately.

Rotation: Procrustes problem solved using SVD

Reparameterization: O(N) runs of Dynamic programming (DP) with
slope constraints, where N is the number of points in the curves

Complexity is O(N3) per iteration.

Riemannian Method

Domain: SO(n)× R× SL2

, where SL2

is the unit sphere in L2.

Complexity is O(N) per iteration.

A global minimizer is desired

Wen Huang Riemannian BFGS methods and its Applications
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The Joint Diagonalization Problem
Shape Analysis

Examples (by Limited-memory Riemannian BFGS Method)

Figure: Applying best rotation and reparameterization to one of the curves.
The colors indicate corresponding points on the two curves.
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Data Sets

Flavia leaf dataset [WBX+07]

1907 images of leaves

32 species

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

MPEG-7 dataset [Uni]

1400 binary images

70 clusters

1 2 3 4 5 6 7
8

9 10
11 12

13
14

15 16 17 18
19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

43
44

45 46 47 48 49 50
51 52 53 54 55

56

57
58 59 60 61

62
63 64 65 66 67 68 69

70

Boundary curves: bwboundaries function in Matlab

100 points in R2 used for each boundary
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The Joint Diagonalization Problem
Shape Analysis

Known γ−1
T (t) = (t + sin(2πt))/(4π)

Figure: Apply random rotation and given γ−1
T to a given shape to obtain the

second shape. For the tested 1020 shapes, coordinate descent method may not
find a global minimizer.
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The Joint Diagonalization Problem
Shape Analysis

One Nearest Neighbor Results

The 1NN metric, µ, computes the percentage of points whose
nearest neighbor are in the same cluster, i.e.,

µ =
1

n

n∑
i=1

C (i), C (i) =


1 if point i and its nearest neighbor

are in the same cluster;

0 otherwise.

tave(F) 1NN(F) tave(M) 1NN(M)
Riemannian LBFGS 0.088 89.51% 0.181 97.79%
Coordinate descent 0.897 87.52% 0.908 96.79%
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Summary

Introduced the framework of Riemannian optimization and the
state-of-the-art Riemannian algorithms

Used applications to show the importance of Riemannian
optimization

Used two experiments to show the numerical performance of
Riemannian algorithms.
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Thank you

Thank you!
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