短课:流形上的优化

Short Course:Optimization on Manifolds

课程简介

黎曼流形上的优化, 也被称为黎曼优化, 其目标是优化一个定义在流形上的实值函数, 近年来这个领域的研究受到越来越多的关注。 许多的实际问题最终可以转化为定义在一个流形上的优化问题, 如信号分离, 机器学习, 推荐系统, 网络成分分析与分类, 计算机视觉与图形学等等。 很多问题本身的规模很大, 但是数据本身可能落在高维空间的低维流形上, 因此可以转化为流形上的优化问题。 在这门短课程中, 我们首先通过几个例子简要介绍黎曼优化考虑的问题; 之后介绍黎曼优化中的重要概念及定义; 并且通过讲解一些黎曼优化中重要的、 有代表性的算法来帮助理解黎曼优化中的各种概念和定义。最终通过具体的例子来说明如果将抽象的数学算法转化为可以实现的形式, 实现算法并比较它们的数值效果。

Abstract

Optimization on Riemannian mainfolds, also called Riemannian optimization, considers finding an optimum of a real-valued function defined on a Riemannian manifold. Riemannian optimization has been a topic of much interest over the past few years due to many important applications, e.g., blind source separation, computations on symmetric positive matrices, low-rank learning, graph similarity, community detection, and elastic shape analysis. In this short course, Riemannian optimization are first briefly introduced through a few applications. The concepts for Riemannian optimization are given and discussed. Moreover, a few representative algorithms are used to introduce the framework of Riemannian optimization from their most abstract formulations to practical implementations. A few concrete examples are also used to show the implementations and performance of the optimization algorithms.

课程信息 Course Information

主要参考文献 Main References

课程资料 Course Materials

ROPTLIB

课题 Project