Part 2 Module 2 Extension: The Biconditional and the Exclusive Or

Two common sources of error in logic involve misusing conditional statements and misuing disjunctions.

A typical misuse of conditional statements is confusing a conditional with its converse or its inverse.

A typical misuse of disjunctions is failure to realize that "or" in logic is inclusive.

Another way of stating it is to say that a typical error in logic is confusing a conditional statement with a *biconditional* statement, and a second typical error is confusing a disjunction with an *exclusive disjunction*.

Biconditional statements

A **biconditional** statement is a statement of the form "p, if and only if q."

This is denoted $p \leftrightarrow q$, and is sometimes abbreviated "p iff q."

Definition: A biconditional statement is true, only when the two terms have the same value.

Exclusive disjunctions

An *exclusive disjunction*, more simply called an *exclusive or*, is a statement of the form "*p* or *q* (but not both)."

This is denoted $p \oplus q$, and is sometimes abbreviated "p xor q."

Definition: An exclusive or statement is true, only when exactly one of the two terms is true.

This truth table illustrates the definitions of the *biconditional* and *exclusive or* propositions.

p	q	$p \leftrightarrow q$	$p \oplus q$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	T	F

Exercises

1-3: Use a truth table to prove each of the following:

1.
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

2.
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (\sim p \rightarrow \sim q)$$

3.
$$\sim (p \leftrightarrow q) \equiv p \oplus q$$

4. Let p be the statement "Thomasville is the capitol of Georgia." Let q be the statement "Sopchoppy is the capitol of Florida."

Determine the truth values of:

a.
$$p \rightarrow q$$

b.
$$\neg p \rightarrow q$$

c.
$$p \leftrightarrow q$$

d.
$$\sim p \leftrightarrow q$$

e.
$$p \vee q$$

f.
$$\sim p \lor \sim q$$

g.
$$p \oplus q$$

h.
$$\sim p \oplus \sim q$$

Answers

1.

p	q	~p	~q	p⇔q	p→q	q→p	$(p\rightarrow q)\land (q\rightarrow p)$	
T	T	F	F	Т	Т	T	T	
T	F	F	T	F	F	T	F	
F	T	T	F	F	Т	F	F	
F	F	T	T	Т	Т	T	T	

2.

	p	q	~p	~q	p⇔q	p→q	~p→~q	$(p\rightarrow q)\land (\sim p\rightarrow \sim q)$	
•	Т	T	F	F	Т	Т	Т	T	
•	Т	F	F	T	F	F	T	F	
	F	T	T	F	F	Т	F	F	
	F	F	T	T	Т	Т	T	T	

3.

0.						
p	q	~p	~q	p⇔q	~ p⇔q	p⊕q
T	T	F	F	T	F	F
T	F	F	T	F	Т	T
F	T	T	F	F	T	T
F	F	Т	Т	T	F	F

4.

a.
$$p \rightarrow q$$
 T

b.
$$\neg p \rightarrow q$$
 F

c.
$$p \leftrightarrow q$$
 T

d.
$$\sim p \leftrightarrow q$$
 F

e.
$$p \vee q$$
 F

f.
$$\sim p \lor \sim q$$
 T

g.
$$p \oplus q$$
 F

h.
$$\sim p \oplus \sim q \mathbf{F}$$