
PART 2 MODULE 4  
 
CATEGORICAL SYLLOGISMS AND DIAGRAMMING 
 
Consider the following argument: 
 
Some lawyers are judges.  Some judges are politicians.  Therefore, some 
lawyers are politicians. 
 
Although the premises and conclusion of this argument sound reasonable, 
and although the structure of the argument looks similar to transitive 
reasoning, this argument is invalid.   
 
In order to show that the argument is invalid, all we have to do is conceive 
of a situation in which the conclusion is false, while both premises are true. 
 In order to do so, it helps if we imagine a world with a small population of 
lawyers, judges and politicians.  Suppose there are only two lawyers, Alice 
and Bill, and that Bill is also a judge, but Alice isn't.  Suppose that in 
addition to Bill there is only one other judge, Carla, and Carla is also a 
politician, but Bill isn't a politician.  Finally, suppose there is one other 
politician, Don, who isn't a lawyer and isn't a politician.  In this conceivable 
world, some lawyers are judges (Bill), and some judges are politicians 
(Carla), but no lawyers are politicians.  Since it is possible to conceive of a 
situation in which the conclusion is false while both premises are true, this 
argument is invalid. 
 
The previous argument is an example of a CATEGORICAL 
SYLLOGISM, which is an argument involving two premises, both of which 
are categorical statements.  Categorical statements are statements of the 
form "all are...," "none are..." or "some are..."  A categorical statement of the 
form "all are..." is also called a positive universal statement.  A categorical 
statement of the form "none are..." is also called a negative universal 
statement.  A categorical statement of the form "some are..." or “some aren’t 
is also called an existential statement.  
 
In this discussion we are primarily concerned with categorical syllogisms in 
which at least one premise is an existential statement, because such 
arguments cannot be analyzed using the methods of Unit 2 Module 1. 
 



Existential statements 
 
A statement of the form "Some are...," such as "Some lawyers are judges," is 
conceptually quite different from a universal statement, in that it cannot be 
restated in terms of logical connectives in any way that is of practical use. 
 Whereas a positive universal statement such as "All cats are mammals" can 
be informally restated as "If __ is a cat, then __ is a mammal," and whereas 
a negative universal statement such as "No cats are dogs" can be restated as 
"If __ is a cat, then __ isn't a dog," it is not possible to make such a transition 
with an existential statement such as “Some mammals are predators.”  
 
This means that the techniques of Unit 2 Module 1, which are based on truth 
tables and logical connectives, are of no use for arguments involving the 
existential statement. 
 
Diagramming categorical statements 
 
There is an extensive literature on the topic of categorical syllogisms, dating 
back to medieval scholarship and earlier.  This includes an impressive body 
of special terminology, symbols, and characterizations of forms, which a 
student might encounter in a more intense study of the subject, such as in a 
history of philosophy course. 
 
This discussion will be limited to the presentation of a method of analyzing 
categorical syllogisms through the use of three-circle Venn diagrams.  This 
method is called diagramming.   
 
Individual statements are diagrammed as follows. 
 
1.  Use shading to diagram universal statements, by shading out any region 
that is known to contain no elements.  
 
2.  Use an "X" to diagram an existential statement.  If a region is known to 
contain at least one element, place an "X" in that region.  If it is uncertain 
which of two regions must contain the element(s), then place the "X" on the 
boundary between those two regions. 
 
3.  If a region contains no marking, then it is uncertain whether or not that 
region contains any elements. 
 



The marked Venn diagram below illustrates these ideas. 
 
 

 
 
Diagramming categorical syllogisms 
 
To test the validity of a categorical syllogism, follow these steps. 
 
1.  In order to be valid, a categorical syllogism must have at least one 
premise that is a universal statement.  If none of the premises is a universal 
statement, then the argument is invalid, and we are done.  The following 
steps assume that at least one premise is a universal statement. 
 
2.  Begin by diagramming the universal premise(s).  A universal statement 
will have the effect of shading (blotting out, so to speak) some region of the 
diagram, because a universal statement will always assert, directly or 
otherwise, that some region of the diagram has no elements. 
 
3. Confining your attention to the part of the diagram that is unshaded, 
diagram an existential premise by placing an "X" in a region of the diagram 
that is known to contain at least one element.  If it is uncertain which if two 
regions should contain the element(s), place the "X" on the boundary 
between those two regions. 
 



4. After diagramming the premises, if the diagram shows the conclusion of 
the argument to be true, then the argument is valid.  If the diagram shows the 
conclusion to be uncertain or false, then the argument is invalid. 
 
5.  If all the statements in the argument are universal statements, then the 
argument can be analyzed in terms of transitive reasoning or false chains 
(see Unit 2 Module 1), and so diagramming is unnecessary. 
 
6.  If the both  remises are universal statements but the conclusion is an 
existential statement, then the argument is invalid.  No diagram is necessary.  
You cannot deduce “some” from “all” or “none.” 
 
EXAMPLE A 
Use diagramming to test the validity of this argument: 
No terriers are timid.  Some bulldogs are terriers.  Therefore, some bulldogs 
are not timid. 
 
SOLUTION 
We will mark this three-circle Venn diagram, which shows the sets 
"terriers," "bulldogs" and "timid (things):" 
 

 
 
 
First, diagram the negative universal premise "No terriers are timid." 
 According to this premise, the overlap of those two sets contains no 
elements, so that part of the diagram is shaded, or "blotted out." 
 



 
 
Next, diagram the existential premise "Some bulldogs are terriers" by 
placing an "X" in the appropriate location in the unshaded portion of the 
diagram. 

 
 
 
Now that both premises have been diagrammed, check to see if the marked 
diagram shows the conclusion to be true. 



 
 
 
Because the marked diagram shows that the conclusion is true, the argument 
is valid.  
 
 
 
EXAMPLE B 
Use diagramming to test the validity of this argument. 
 
Some useful things are interesting.  All widgets are interesting.  Therefore, 
some widgets are useful. 
 
SOLUTION 
We can use this three-circle Venn diagram, shows the sets of widgets, 
interesting (things) and useful (things): 
 



 
 
 
Start by diagramming the universal premise, "All widgets are interesting." 

 
 
 
Next, diagram the existential premise, "Some useful things are interesting." 
 This means that there must be at least one element in the overlap of those 
two circles.  However, that overlap entails two regions, and it is uncertain as 
which of those two regions contains the element(s), so we place an "X" on 
their border. 



 
 
 
Now that we have diagrammed both premises, we check to see if the marked 
diagram shows the conclusion, "Some widgets are useful," to be true. 

 
 
 
 
The argument is invalid, because the diagram shows that, based on those 
premises, the conclusion is not certain.  That is, the “X” is not in the part of 
the diagram where “widgets” and “useful” intersect. 
 
 
 
 
 
 



 
 
   
 
 
 
 
   
EXAMPLE 2.4.1  
Test the validity of this argument:  
All elephants are huge creatures.  
Some huge creatures have tusks.  
Therefore, some elephants have tusks.  
 
 
 
 
EXAMPLE 2.4.1 SOLUTION  
Use shading to diagram the universal premise “All elephants are huge creatures.” 
Shading indicates that a region has no elements. 

Since “All elephants are huge,”
these regions, where elements 
aren’t huge,  contain no 
elements.

 
 
Next, use an “X” to diagram the existential premise “Some huge creatures have tusks.” 
 



Since “Some huge creatures 
have tusks,” there must be at 
least one element in the 
unshaded intersection of those 
two circles.  We don’t know 
which of these two regions 
contain the element(s), so we 
place an “X” on the border.

X

 
 
Now that both premises have been diagrammed, if the marked diagram shows that the 
conclusion is true, then the argument is valid.  If the marked diagram shows that the 
conclusion is false or uncertain, then the argument is invalid. 
 

X

In order for the conclusion 
“Some elephants have tusks” 
to be true, there must be at least
one element in the unshaded
intersection of those
two circles.  Since the diagram
shows that the conclusion is 
uncertain, the argument is invalid.

 
 
 
EXAMPLE 2.4.2  
Test the validity of the argument:  
All porpoises are intelligent. Some sea mammals are porpoises. Therefore, some sea 
mammals are intelligent.  
   
EXAMPLE 2.4.2 SOLUTION  
  
First use shading to diagram the universal premise. 
 



“All porpoises are 
intelligent,”
so these regions, where 
porpoises are not intelligent,
have no elements.

 
   
Next use an “X” to diagram the existential premise. 
 

“Some sea mammals are 
porpoises,” so there must be 
at least one element in the 
unshaded intersection of 
those two circles.

X

 
 
If the marked diagram shows that the conclusion is true, then the argument is valid.  If the 
marked diagram shows that the conclusion is uncertain or false, then the argument is 
invalid. 
 

Because there is an “X” in 
the unmarked intersection of 
“Sea mammals” and 
“Intelligent things,” the 
diagram shows that the 
conclusion, “Some sea 
mammals are intelligent,” is 
true.  The argument is valid.

X

 
 
EXAMPLE 2.4.3  



Test the validity of the argument:  
All cows like to chew. Some dairy animals don't like to chew.  
Therefore, some dairy animals aren't cows.  
 
 
 
 
 
 
 
 
 
 
 
   
 
   
EXAMPLE 2.4.4  
Test the validity of the argument:  
Some lawyers are judges. Some judges are politicians. Therefore, some lawyers are 
politicians.  
   
 
   
   
 
 
 
 
 
 
 
WORLD WIDE WEB NOTE 
For practice on arguments involving categorical syllogisms and diagramming, visit the 
companion website and try The CATEGORIZER. 
 
 
 
 
EXAMPLE 2.4.6  
Test the validity of each argument.  
A. Some fish are tasty. All fish can swim. Therefore, some tasty things can swim.  
B. Some doctors are dentists. Some dentists are surgeons. Therefore, some doctors are 
surgeons.  
C. All hogs are smelly. Some swine aren't hogs. Therefore, some swine aren't smelly.  



D. All burglars are criminals. Some thieves are criminals. Therefore, some burglars are 
thieves.  
E. Some food preparers aren't cooks. All chefs are cooks. Some food preparers aren't 
chefs.  
F.  No thieves are saintly.  Some congressmen are thieves.  Therefore, some congressmen 
aren’t saintly. 
   
   
   
EXAMPLE 2.4.7  
Consider these premises:  
All poodles are dogs. All dogs bark.  
 
We should easily recognize that a valid conclusion is "All poodles bark."  
 
Question: since "All poodles bark" is a valid conclusion, wouldn't "Some poodles bark" 
also be a valid conclusion? After all, "some" sounds like a softer condition than "all," so 
common sense suggests that "some A are B" should be a valid conclusion whenever "all 
A are B" is a valid conclusion.  
 
However, the answer to the question above is "no." In fact, "all" does not imply "some," 
due to this peculiarity of the word "all:" A statement like "All poodles bite" is true even if 
there were no poodles. In other words, if all of the poodles went extinct, the statement 
"All poodles bite" would still be (vacuously) true, but the statement "Some poodles bite" 
would be false (because "some poodles bites" means that there must be at least one 
poodle).  
 
This example gives rise to the following observation, which holds for all arguments.  
If every premise in an argument has the form "All are...," or “None are…” a valid 
conclusion will not have the form "Some are..." (unless a premise specifies that all of 
the sets in the argument are non-empty). 
 
 
PRACTICE EXERCISES 
1 - 18:  Test the validity of each argument. 
 
1.  All horses have hooves.  Some horses eat oats.  Therefore, some oat-eaters have 
hooves.   
 
2.  Some mammals are bats.  All bats can fly.  Thus, some mammals can fly. 
 
3.  No dogs can talk.  Some searchers are dogs.  Thus, some searchers can’t talk. 
 
4.  Some squirrels fly.  Some squirrels gather acorns.  Therefore, some acorn-gatherers 
fly. 
 



5.  Some scavengers eat road-kill.  All crows eat road-kill.  Therefore, all crows are 
scavengers. 
 
6.  All successful politicians are persuasive.  Some lawyers are persuasive.  Thus, some 
lawyers are successful politicians. 
 
7.  Some skaters drink Surge.  Some skaters drink Citra.  Therefore, some Surge drinkers 
are Citra drinkers.  
 
8.  All tattooers are body-artists.  Some tattooers drive Harleys.  Therefore, some body-
artists drive Harleys. 
 
9.  Some multiple-choice questions are tricky.  No easy questions are tricky.  Therefore, 
some multiple-choice questions are not easy. 
 
10.  Some snails live under rocks.   All snails are slimy.  Therefore, some things that live 
under rocks are slimy. 
 
11.  All primates are curious.  Some primates are carnivores.  Thus, some carnivores are 
curious. 
 
12.  All astronauts are bold.  Some pilots are not bold.  Therefore, some astronauts are not 
pilots. 
 
13.  Some ants are aggressive.  All ants are insects.  Therefore, some insects are 
aggressive. 
 
14.  All plumbers use monkey wrenches.  Some mechanics don’t use monkey wrenches.  
Hence, some mechanics aren’t plumbers. 
 
15.  All spies are secretive.  Some agents aren’t spies.  Therefore, some agents aren’t 
secretive. 
 
16.  Some poodles yap too much.  Some dogs are poodles.  Therefore, some dogs yap too 
much. 
 
17.  Some poodles are dogs.  All poodles yap too much.  Thus, some dogs yap too much. 
 
18.  All senators are politicians.  Some corrupt people aren’t politicians.  Therefore, some 
corrupt people aren’t senators. 
 
 
ANSWERS TO LINKED EXAMPLES 
EXAMPLE 2.4.3  Valid 
EXAMPLE 2.4.4  Invalid 
EXAMPLE 2.4.6  A.  Valid  B. Invalid   C. Invalid  



D. Invalid   E. Valid   F. Valid 
 
ANSWERS TO PRACTICE EXERCISES 
1.   Valid 2.  Valid 3.  Valid 4.   Invalid 5.   Invalid 6.   Invalid  
7.   Invalid 8.  Valid 9.  Valid 10.  Valid 11.  Valid 12.  Invalid 
13.  Valid 14.  Valid 15.  Invalid 16.  Invalid 17.  Valid 18. Valid 
 


