Prove: if \(a, m \) are integers, \(m > 0 \), and \(\text{GCD}(a, m) = 1 \), then there exists an integer \(a' \) such the \(a \cdot a' \equiv 1 \pmod{m} \).

Proof
Since \(\text{GCD}(a, m) = 1 \), there are integers \(s, t \) such that \(sa + tm = 1 \).
Let \(a' = s \).

Then
\[
a \cdot a' + tm = 1
\]
so
\[
a \cdot a' - 1 = -tm
\]

This shows that \(m \mid (a \cdot a' - 1) \), so, according to the definition of modular congruence, \(a \cdot a' \equiv 1 \pmod{m} \).