Prove: For any finite set S, if |S| = n, then S has 2^n subsets.

Proof by induction.

Let P(n) be the predicate “A set with cardinality n has 2^n subsets.

Basis step:
P(0) is true, because the set with cardinality 0 (the empty set) has 1 subset (itself) and $2^0 = 1$.

Inductive step

Prove P(k) → P(k+1)

That is, prove that if a set with k elements has 2^k subsets, then a set with k+1 elements has 2^{k+1} subsets.

Proof
Assume that for an arbitrary k, any set with cardinality k has 2^k subsets.

Let T be a set such that |T| = k+1.

Enumerate the elements of T: $T = \{e_1, e_2, ..., e_k, e_{k+1}\}$.

Let $S = \{e_1, e_2, ..., e_k\}$

Then |S| = k, so S has 2^k subsets, according to the inductive hypothesis.

Note that $T = S \cup \{e_{k+1}\}$, so every subset of S is also a subset of T.

Any subset of T either contains the element e_{k+1}, or it doesn't contain e_{k+1}.

If a subset of T doesn't contain e_{k+1}, then it is also a subset of S, and there are 2^k of those subsets.

On the other hand, if a subset of T does contain the element e_{k+1}, then that subset is formed by including e_{k+1} in one of the 2^k subsets of S, so T has 2^k subsets containing e_{k+1}.

We have shown that T has 2^k subsets containing e_{k+1}, and another 2^k subsets not containing e_{k+1}, so the total number of subsets of T is $2^k + 2^k = (2)2^k = 2^{k+1}$.