Write a proof by contraposition of proposition stated below, using only the definition of odd/even number.
If \(n \in \mathbb{Z} \), and \(n^2 \) is even, then \(n \) is even.

Proof
Let \(n \) be any arbitrarily chosen integer and suppose \(n \) is odd.
Then \(\exists k \in \mathbb{Z} \) such that \(n = 2k + 1 \).
Then \(n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \).
Thus \(n^2 = 2b + 1 \) where \(b = 2k^2 + 2k \), so \(n^2 \) is odd.
We have shown that if the conclusion is false, then the hypothesis is false.
This completes the proof by contraposition.