Chapter 5: Angles and Arcs

5.1: Angles: Set of points determined by two rays.

Notes:

1) One unit of measurement for angles is the degree.
2) Angle in standard position obtained by one complete revolution in the counterclockwise direction has measure 360 degree (written 360°)
3) A right angle is a 90° and equal to $\frac{1}{4}$ revolution
4) A straight angle is a 180° and equal to $\frac{1}{2}$ revolution
5) Quadrantal angles: $90^{\circ}, 180^{\circ}, 270^{\circ}, \ldots \ldots$
6) $1^{\circ}=\frac{1}{360}$ revolution

EX: Draw each angle
a) 60°,
, b) -45°
c) 225°
, d) -210°
, e) 405°

Radian: A central angle has a measure 1 radian if it intercepts an arc with length equal to the radius of the circle.

Notes:

1) 2π radian $=1$ revolution $=360^{\circ}$
2) π radian $=180^{\circ}$
3) 1 radian $=\left(\frac{180}{\pi}\right)^{\circ} \approx 57.2958^{\circ}$
4) $1^{\circ}=\frac{\pi}{180}$ radian ≈ 0.0174533 radian

Notes:

1) To change radians to degree, multiply by $\frac{180}{\pi}$
2) To change degrees to radian, multiply by $\frac{\pi}{180}$

EX: Convert the following angles to degree measures
a) $-\frac{\pi}{3} \mathrm{rad}$.
b) $\frac{3 \pi}{4} \mathrm{rad}$.
c) $-\frac{5 \pi}{6} \mathrm{rad}$.

EX: Convert the following angles to radian measures
a) 210°
b) -405°

Arc Length Formula:

If an arc of length S on a circle of radius r subtends a central angle of radian measure θ then

$$
S=r \theta
$$

EX: Arc Length:

1) A central angle θ is subtended by an arc 10 cm long on a circle of diameter 8 cm . Find the measure of θ in a) radian b) degree
2) Find S given $r=3 \mathrm{ft}, \quad \theta=\frac{7 \pi}{2}$
3) Find S given $r=5 \mathrm{ft}, \quad \theta=144^{\circ}$
4) Find the number of radians in $\frac{3}{8}$ revolution
5) A bike has wheels that are 28 inches in diameter. How far does the bike move as wheels roll through an angle of 15°

Area of a Circular Sector:

$$
A=\frac{1}{2} r^{2} \theta
$$

$r=$ radius
$\theta=$ central angle measures in radians.

EX: Area of a circular Sector:

1) If $\theta=50^{\circ}, r=8 m$
Find
a) S
b) A
2) Find the area of a sector of a circle of diameter 8 ft formed by an angle of 30°
3) Find the area of a circular sector with central angle $1 / 4$ revolution if the length of intercepted arc is $\frac{4 \pi}{3}$ centimeters.
4) The area of a sector of a circle with radius 3 centimeters is $\frac{3 \pi^{2}}{4}$ square centimeters. Find the length of The intercepted arc in centimeters.

Circular Motion:

If an object moves in a circular path, two speeds are involved.

1) The rate at which distance is traveled along the circle, called linear speed V
2) The rate at which the object revolves about the center of the circle, called angular speed w

$V=$	(length/time)
$W=$	(radian/time)

Also $v=$

Notes:

1) The time units in V and W must be the same
2) The linar units used in V and r must be the same

Ex:

1) A wheel is rotating at 200 revolutions per minute. Find the angular speed in radians per minute
2) An object is traveling around a circle with a radius of 2 m . If in 20 seconds the object travels 5 m , what is its angular speed? what is its linear speed?
3) A rock is spinning at 180 rpm at the end of a 2 -foot rope. Find the rock's linear speed (in $\mathrm{ft} / \mathrm{min}$).
4) The windshield wiper of a car is 18 inches long. How many inches will the tip of the wiper move during $\frac{1}{3}$ revolution.
5) A pendulum swings through an angle of 15° each second. If the pendulum is 20 inches long, how many inches does its tip move each second?
6) Find the radius (in feet) of a circle, if a central angle of 95° subtends a 95 foot arc.
