Section 7.2: The Law of Sines

If none of the angles of a triangle is right angle. The triangle is called **Oblique.**

 $\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}$

<u>Ex</u>: In the triangle ABC, if $\alpha = 40^{\circ}$, $\beta = 60^{\circ}$, a = 4. Find b, c?

Ex: In the triangle ABC, if $\sin \beta = \frac{3}{4}$, b = 3, a = 2. Find $\sin \alpha$?

The Ambiguous Case:

$$I) \quad If \ x < y$$

- 1) $y\sin\theta < x \implies 2$ triangles
- 2) $y \sin \theta = x \implies 1$ triangle (right)
- 3) $y\sin\theta > x \implies$ No triangle

II) If $x \ge y \implies 1$ triangle

EX: How many triangles ABC can be constructed

1) with $b = 2\sqrt{2}$, c = 4, $\beta = 45^{\circ}$? 2) with a = 1, $b = \sqrt{3}$, $\alpha = 30^{\circ}$? 3) with $a = \sqrt{3}$, c = 1, $\gamma = 60^{\circ}$?

4) with a = 3 , b = 2 , $\alpha = 140^{\circ}$?

<u>Note:</u> In navigation and surveying, the direction or bearing from a point O to a point P equal to the acute angle θ between the ray OP and the Vertical

line through O, the North-South line

- 1- A point **P** on the level ground is 3 kilometers due north of a point **Q**. A runner proceeds in the direction $N 25^{\circ} E$ from **Q** to a point **R**, then from **R** to **P** in the direction $S 70^{\circ} W$. Find the distance run.
- 2- Consult the figure. To find the length of the span of a proposed ski lift from A to B to, a surveyor measures the angle DAB to be 25° and then walks off a distance of 1000 feet to C and measures the angle ACB to be 15°. What is the distance from A to B?

- 3- The angle of elevation of an airplane observed by two observers from two points A and B on level ground are 40° and 35° respectively. Point A and B are 1000 ft apart and the airplane is between the points, in the same vertical plane. a- How high is the airplane? b- Find the distance between the airplane and the observer at point A.
- 4- The angle of depression from a balloon to two points A and B on level ground are 52° and 28° respectively. Points A and B are 14 miles apart and the balloon is between the points, in the same vertical plane. Find the distance in miles between the balloon and the point A.