Section 7.2: The Law of Sines

If none of the angles of a triangle is right angle. The triangle is called
Oblique.

To Solve Oblique Triangle:

Case I :

SAA or ASA

Case II:

SSA (angle opposite to one of the sides)

Use law of Sine

Law Of Sines:

$\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin \gamma}{c}$
Ex: In the triangle ABC , if $\alpha=40^{\circ}, \beta=60^{\circ}, a=4$. Find b, c ?
Ex: In the triangle ABC , if $\sin \beta=\frac{3}{4}, b=3, a=2$. Find $\sin \alpha$?

The Ambiguous Case:

I) If $x<y$

1) $y \sin \theta<x \Rightarrow 2$ triangles
2) $y \sin \theta=x \Rightarrow 1$ triangle (right)
3) $y \sin \theta>x \Rightarrow$ No triangle
II) If $x \geq y \Rightarrow 1$ triangle

EX: How many triangles ABC can be constructed

1) with $b=2 \sqrt{2}, c=4, \beta=45^{\circ}$?
2) with $a=1, b=\sqrt{3}, \quad \alpha=30^{\circ}$?
3) with $a=\sqrt{3}, c=1, \quad \gamma=60^{\circ}$?
4) with $a=3, b=2, \alpha=140^{\circ}$?

Note: In navigation and surveying, the direction or bearing from a point O to a point P equal to the acute angle θ between the ray OP and the Vertical
line through O , the North-South line

1- A point \mathbf{P} on the level ground is 3 kilometers due north of a point \mathbf{Q}. A runner proceeds in the direction $N 25^{\circ} E$ from \mathbf{Q} to a point \mathbf{R}, then from \mathbf{R} to \mathbf{P} in the direction $S 70^{\circ} \mathrm{W}$. Find the distance run.

2- Consult the figure. To find the length of the span of a proposed ski lift from A to B to, a surveyor measures the angle DAB to be 25° and then walks off a distance of 1000 feet to C and measures the angle ACB to be 15°. What is the distance from A to B ?

3- The angle of elevation of an airplane observed by two observers from two points A and B on level ground are 40° and 35° respectively. Point A and B are 1000 ft apart and the airplane is between the points, in the same vertical plane. a- How high is the airplane? b- Find the distance between the airplane and the observer at point A .

4- The angle of depression from a balloon to two points A and B on level ground are 52° and 28° respectively. Points A and B are 14 miles apart and the balloon is between the points, in the same vertical plane. Find the distance in miles between the balloon and the point A .

