Section 8.4: Vectors

I) Area, Volume, Distance, Temperature ... have magnitude only (scalar quantities)
II) Velocity, Force both have magnitude and direction represent by directed line segment which is called vector.

1) We write $\overrightarrow{P Q}$

2) Length of $\overrightarrow{P Q}$ is $\|\overrightarrow{P Q}\|$ or $\|\vec{u}\|$
3) Vectors with the same magnitude and direction are equivalent $\vec{u}=\vec{v}$
4) Zero Vectors $\overrightarrow{0} \quad$ (ie. magnitude is zero)
5)

6) Commutative and associative laws will apply.
7) $\vec{v}+\overrightarrow{0}=\overrightarrow{0}+\vec{v}=\vec{v}$
8) $\vec{v}+(-\vec{v})=\overrightarrow{0}$
9)

Find d_{1} and d_{2} ?

Multiplying vectors by numbers:
If $\alpha=$ real number $\Rightarrow \alpha \vec{v}$ is a vector whose magnitude $\|\alpha \vec{v}\|=|\alpha|\|\vec{v}\|$
a) Direction same as \vec{v} if $\alpha>0$
b) Direction opposite to \vec{v} if $\alpha<0$
c) $\alpha \vec{v}$ scalar multiple of \vec{v}

Theorem: Properties of $\|\vec{v}\|$
$\alpha=$ scalar
a) $\|\vec{v}\| \geq 0$
b) $\|\vec{v}\|=0 \Leftrightarrow \vec{v}=0$
c) $\|-\vec{v}\|=\|\vec{v}\|$
d) $\|\alpha \vec{v}\|=|\alpha|\|\vec{v}\|$

Note: A vector \vec{u} for which $\|\vec{u}\|=1$ is called a unit vector.
Representing vectors in the plane:
Two unit vectors;

One Parallel to x -axis called \vec{i}
One Parallel to y-axis called \vec{j}
$\vec{v}=a \vec{i}+b \vec{j}$

a and b are called components of the vector \vec{v}
a is in the direction \vec{i}
b is in the direction \vec{j}

Theorem: Suppose the \vec{v} is a vector with the initial point $P_{1}=\left(x_{1}, y_{1}\right)$ not necessarily the origin, and the terminal point $P_{2}=\left(x_{2}, y_{2}\right)$. If $\vec{v}=\overrightarrow{P_{1} P_{2}}$ then \vec{v} is equal to the position vector
$\vec{v}=\left(x_{2}-x_{1}\right) \vec{i}+\left(y_{2}-y_{1}\right) \vec{j}$

EX: If $P=(-3,2)$ and $Q=(6,5)$ find 1) $\overrightarrow{P Q}$, 2) $\overrightarrow{Q P}$

Theorem:

$$
\text { If } \vec{v}=a_{1} \vec{i}+b_{1} \vec{j} \quad \text { and } \quad \vec{w}=a_{2} \vec{i}+b_{2} \vec{j}
$$

Then $\vec{v}=\vec{w} \Leftrightarrow a_{1}=a_{2}$ and $b_{1}=b_{2}$

Notes:

1) $\|\vec{v}\|=\sqrt{a_{1}^{2}+b_{1}{ }^{2}}$
2) $\vec{v}+\vec{w}=\left(a_{1}+a_{2}\right) \vec{i}+\left(b_{1}+b_{2}\right) \vec{j}$
3) $\alpha \vec{v}=\left(\alpha a_{1}\right) \vec{i}+\left(\alpha b_{1}\right) \vec{j}$

EX: If $\vec{v}=3 \vec{i}-\vec{j}$ and $\vec{w}=-2 \vec{i}+3 \vec{j}$
Find 1) $\vec{v}-\vec{w}$, 2) $\|2 \vec{w}-\vec{v}\|$, 3) $\|2 \vec{v}-3 \vec{w}\|$, 4) $\|2 \vec{w}\|-\|\vec{v}\|$

Theorem: Unit Vector in direction of $\overrightarrow{\vec{v}}$
For nonzero vector \vec{v}, the vector $\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}$ is the unit vector that has the same direction as \vec{v}
EX: Find the unit vector having the same direction as \vec{v}

1) $\vec{v}=2 \vec{i}-\vec{j}$
2) $\vec{v}=-5 \vec{i}+12 \vec{j}$

EX: Use the figure below to answer True or False

1) $\vec{V}+\vec{W}+\vec{L}=\vec{K}$
2) $\vec{H}+\vec{G}=\vec{M}-\vec{V}$
