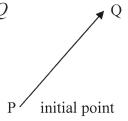
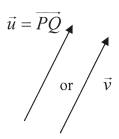
Section 8.4: Vectors

I) Area, Volume, Distance, Temperature ... have magnitude only (scalar quantities)

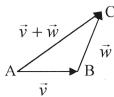
terminal point

- II) Velocity, Force both have magnitude and direction represent by <u>directed line segment</u> which is called <u>vector</u>.
- 1) We write \overrightarrow{PQ}



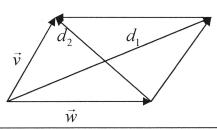


- 2)Length of \overrightarrow{PQ} is $\left\|\overrightarrow{PQ}\right\|$ or $\left\|\overrightarrow{u}\right\|$
- 3) Vectors with the same magnitude and direction are equivalent $\vec{u} = \vec{v}$
- 4) Zero Vectors $\vec{0}$ (i.e. magnitude is zero)
- 5)



$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$
 (adding)

- 6) Commutative and associative laws will apply.
- 7) $\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$
- 8) $\vec{v} + (-\vec{v}) = \vec{0}$
- 9)

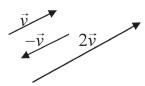


Find d_1 and d_2 ?

Multiplying vectors by numbers:

If $\alpha = real \ number \implies \alpha \vec{v}$ is a vector whose magnitude $\|\alpha \vec{v}\| = |\alpha| \|\vec{v}\|$

- a) Direction same as \vec{v} if $\alpha > 0$
- b) Direction opposite to \vec{v} if $\alpha < 0$
- c) $\alpha \vec{v}$ scalar multiple of \vec{v}



Theorem: Properties of $\|\vec{v}\|$

 $\alpha = scalar$

a)
$$\|\vec{v}\| \ge 0$$

b)
$$\|\vec{v}\| = 0 \iff \vec{v} = 0$$

$$c) \quad \left\| -\vec{v} \right\| = \left\| \vec{v} \right\|$$

d)
$$\|\alpha \vec{v}\| = |\alpha| \|\vec{v}\|$$

Note: A vector \vec{u} for which $\|\vec{u}\| = 1$ is called a unit vector.

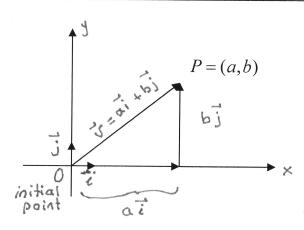
Representing vectors in the plane:

Two unit vectors;

One Parallel to x-axis called \vec{i}

One Parallel to y-axis called \vec{j}

$$\vec{v} = a\vec{i} + b\vec{j}$$



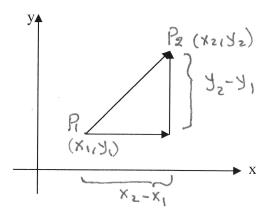
a and b are called components of the vector \vec{v}

a is in the direction \vec{i}

b is in the direction \vec{j}

Theorem: Suppose the \vec{v} is a vector with the initial point $P_1 = (x_1, y_1)$ not necessarily the origin, and the terminal point $P_2 = (x_2, y_2)$. If $\vec{v} = \overrightarrow{P_1 P_2}$ then \vec{v} is equal to the position vector

$$\vec{v} = (x_2 - x_1)\vec{i} + (y_2 - y_1)\vec{j}$$



 \underline{EX} : If P = (-3,2) and Q = (6,5) find 1) \overrightarrow{PQ} , 2) \overrightarrow{QP}

Theorem:

If
$$\vec{v} = a_1 \vec{i} + b_1 \vec{j}$$
 and $\vec{w} = a_2 \vec{i} + b_2 \vec{j}$
Then $\vec{v} = \vec{w} \iff a_1 = a_2$ and $b_1 = b_2$

Notes:

1)
$$\|\vec{v}\| = \sqrt{a_1^2 + b_1^2}$$

2)
$$\vec{v} + \vec{w} = (a_1 + a_2)\vec{i} + (b_1 + b_2)\vec{j}$$

3)
$$\alpha \vec{v} = (\alpha a_1)\vec{i} + (\alpha b_1)\vec{j}$$

EX: If
$$\vec{v} = 3\vec{i} - \vec{j}$$
 and $\vec{w} = -2\vec{i} + 3\vec{j}$

Find 1)
$$\vec{v} - \vec{w}$$
, 2) $||2\vec{w} - \vec{v}||$, 3) $||2\vec{v} - 3\vec{w}||$, 4) $||2\vec{w}|| - ||\vec{v}||$

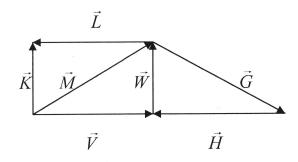
Theorem: Unit Vector in direction of \vec{v}

For nonzero vector \vec{v} , the vector $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$ is the unit vector that has the same direction as \vec{v}

EX: Find the unit vector having the same direction as \vec{v}

1)
$$\vec{v} = 2\vec{i} - \vec{j}$$
 , 2) $\vec{v} = -5\vec{i} + 12\vec{j}$

EX: Use the figure below to answer True or False



1)
$$\vec{V} + \vec{W} + \vec{L} = \vec{K}$$

$$2)\vec{H} + \vec{G} = \vec{M} - \vec{V}$$