Section 8.5: The Dot Product
If $\quad \vec{v}=a_{1} \vec{i}+b_{1} \vec{j} \quad$ and $\quad \vec{w}=a_{2} \vec{i}+b_{2} \vec{j}$
Then $\quad \vec{V} \cdot \vec{W}=$

Properties:

1) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
2) $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2} \quad\left[\|\vec{v}\|^{2}=a_{1}^{2}+b_{1}^{2}\right]$
3) $\overrightarrow{0} \cdot \vec{v}=0$

Ex: If $\vec{v}=2 \vec{i}+5 \vec{j}$ and $\vec{w}=4 \vec{i}-3 \vec{j}$
Find 1) $\vec{V} \cdot \vec{w}$, 2) $\vec{V} \cdot \vec{V}$, 3) $\vec{W} \cdot \vec{W}$
Theorem: Angle between vectors
If \vec{u} and \vec{v} are two nonzero vectors, the angle $\theta, 0 \leq \theta \leq \pi$ between \vec{u} and \vec{v} is determined by the formula

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}
$$

Notes:

1) \vec{v} and \vec{u} are parallel if $\theta=0$ or $\theta=\pi$ [i.e. $\vec{v}=\alpha \vec{u}$ one vector is scalar multiple of the other]
a) \vec{v} and \vec{u} are in the same direction if $\theta=0$
b) \vec{v} and \vec{u} are in the opposite direction if $\theta=\pi$
2) \vec{v} and \vec{u} are orthogonal if $\theta=\frac{\pi}{2}$

Theorem: Two nonzero vectors are orthogonal if and only if

$$
\vec{v} \cdot \vec{u}=0
$$

Ex: Find the angle between the give two vectors.

1) $\vec{v}=3 \vec{j} \quad, \quad \vec{w}=2 \vec{i}+2 \vec{j}$
2) $\vec{v}=5 \vec{i}-2 \vec{j}, \vec{w}=2 \vec{i}+5 \vec{j}$
3) $\vec{v}=\sqrt{3} \vec{i}-\sqrt{3} \vec{j} \quad, \quad \vec{w}=\sqrt{6} \vec{j}$

Ex: Determine if the given two vectors are parallel, orthogonal , or neither.

1) $\vec{v}=2 \vec{i}-\vec{j}, \quad \vec{w}=4 \vec{i}-2 \vec{j}$
2) $\vec{v}=3 \vec{i}-5 \vec{j}, \quad \vec{w}=-\frac{12}{7} \vec{i}+\frac{20}{7} \vec{j}$
3) $\vec{v}=4 \vec{i}-\vec{j}, \quad \vec{w}=2 \vec{i}+8 \vec{j}$
4) $\vec{v}=4 \vec{i}-3 \vec{j}, \quad \vec{w}=\vec{i}+2 \vec{j}$
5) $\vec{v}=8 \vec{i}-4 \vec{j}, \quad \vec{w}=-6 \vec{i}-12 \vec{j}$
6) $\vec{v}=\frac{1}{2} \vec{i}-3 \vec{j}, \quad \vec{w}=-\vec{i}+6 \vec{j}$

Ex: Determine m such that the two vectors are orthogonal.

1) $\vec{v}=4 m \vec{i}+\vec{j}, \quad \vec{u}=9 m \vec{i}-25 \vec{j}$
2) $\vec{v}=3 \vec{i}-2 \vec{j}, \vec{u}=4 \vec{i}+5 m \vec{j}$
3) $\vec{v}=(m-1) \vec{i}-3 \vec{j}, \quad \vec{u}=\vec{i}+m \vec{j}$

Projection of a Vector onto another Vector

Note:

Theorem: If \vec{V} and \vec{W} are two nonzero vectors, then the vector projection of \vec{V} onto \vec{w} is

$$
\operatorname{proj}_{\vec{w}} \vec{v}=\frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^{2}} \vec{w}
$$

The decomposition of \vec{v} into \vec{V}_{1} and \vec{V}_{2} where

$$
\vec{V}_{1} \text { is parallel to } \vec{W}
$$

And $\quad \vec{v}_{2}$ is orthogonal to $\vec{W} \quad$ is

$$
\vec{v}_{1}=\operatorname{proj}_{\vec{w}} \vec{v}=\frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^{2}} \vec{w}
$$

And $\quad \vec{v}_{2}=\vec{v}-\vec{v}_{1}$
Ex: Given the two vectors

1) $\vec{v}=2 \vec{i}-3 \vec{j}, \quad \vec{w}=\vec{i}-\vec{j}$
2) $\vec{v}=-\vec{i}+2 \vec{j}, \vec{w}=3 \vec{i}-\vec{j}$

Find: a) The projection of \vec{V} on \vec{w}; b) The projection of \vec{V} orthogonal to \vec{W}

Writing a Vector in terms of its magnitude and direction:

Work Done By Constant Force:
$W=\vec{F} \cdot A \vec{B}$
unit: ft-pound

Ex:

1) Find the work done by the force of 3 pounds acting in the direction $2 \vec{i}+\vec{j}$ in the moving an object 2 feet from $(0,0)$ to $(0,2)$.
2) Find the work done by the force of 1 pound acting in the direction $2 \vec{i}+2 \vec{j}$ in the moving an object 5 feet from $(0,0)$ to $(3,4)$.
