Section 8.5: The Dot Product

If $\vec{v} = a_1 \vec{i} + b_1 \vec{j}$ and $\vec{w} = a_2 \vec{i} + b_2 \vec{j}$

Then $\vec{v} \cdot \vec{w} =$

Properties:

- 1) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ 2) $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$ $[||\vec{v}||^2 = a_1^2 + b_1^2]$ 3) $\vec{0} \cdot \vec{v} = 0$
- **Ex:** If $\vec{v} = 2\vec{i} + 5\vec{j}$ and $\vec{w} = 4\vec{i} 3\vec{j}$ Find 1) $\vec{v} \cdot \vec{w}$, 2) $\vec{v} \cdot \vec{v}$, 3) $\vec{w} \cdot \vec{w}$

Theorem: Angle between vectors

If \vec{u} and \vec{v} are two nonzero vectors, the angle θ , $0 \le \theta \le \pi$ between \vec{u} and \vec{v} is determined by the formula

Notes:

1) \vec{v} and \vec{u} are parallel if $\theta = 0$ or $\theta = \pi$ [i.e. $\vec{v} = \alpha \vec{u}$ one vector is scalar multiple of the other]

- a) \vec{v} and \vec{u} are in the same direction if $\theta = 0$
- b) \vec{v} and \vec{u} are in the opposite direction if $\theta = \pi$
- 2) \vec{v} and \vec{u} are orthogonal if $\theta = \frac{\pi}{2}$

<u>Theorem:</u> Two nonzero vectors are orthogonal if and only if $\vec{v} \cdot \vec{u} = 0$

Ex: Find the angle between the give two vectors.

1)
$$\vec{v} = 3 \vec{j}$$
, $\vec{w} = 2 \vec{i} + 2 \vec{j}$
2) $\vec{v} = 5 \vec{i} - 2 \vec{j}$, $\vec{w} = 2 \vec{i} + 5 \vec{j}$
3) $\vec{v} = \sqrt{3} \vec{i} - \sqrt{3} \vec{j}$, $\vec{w} = \sqrt{6} \vec{j}$

Ex: Determine if the given two vectors are parallel, orthogonal , or neither.

1)
$$\vec{v} = 2i - j$$
, $\vec{w} = 4i - 2j$
2) $\vec{v} = 3\vec{i} - 5\vec{j}$, $\vec{w} = -\frac{12}{7}\vec{i} + \frac{20}{7}\vec{j}$
3) $\vec{v} = 4\vec{i} - \vec{j}$, $\vec{w} = 2\vec{i} + 8\vec{j}$
4) $\vec{v} = 4\vec{i} - 3\vec{j}$, $\vec{w} = \vec{i} + 2\vec{j}$
5) $\vec{v} = 8\vec{i} - 4\vec{j}$, $\vec{w} = -6\vec{i} - 12\vec{j}$
6) $\vec{v} = \frac{1}{2}\vec{i} - 3\vec{j}$, $\vec{w} = -\vec{i} + 6\vec{j}$

Ex: Determine m such that the two vectors are orthogonal.

1)
$$\vec{v} = 4m \vec{i} + \vec{j}$$
, $\vec{u} = 9m \vec{i} - 25 \vec{j}$
2) $\vec{v} = 3\vec{i} - 2\vec{j}$, $\vec{u} = 4\vec{i} + 5m \vec{j}$
3) $\vec{v} = (m-1)\vec{i} - 3\vec{j}$, $\vec{u} = \vec{i} + m \vec{j}$

Projection of a Vector onto another Vector

Note:

<u>Theorem</u>: If \vec{v} and \vec{w} are two nonzero vectors, then the vector projection of \vec{v} onto \vec{w} is

$$proj_{\vec{w}} \vec{v} = \frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^2} \vec{w}$$

The decomposition of \vec{v} into \vec{v}_1 and \vec{v}_2 where

 \vec{v}_1 is parallel to \vec{w} And \vec{v}_2 is orthogonal to \vec{w} is

$$\vec{v}_{1} = proj_{\vec{w}} \ \vec{v} = \frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^{2}} \vec{w}$$
$$\vec{v}_{1} = \vec{v} - \vec{v}$$

And $v_2 = v - v_1$

Ex: Given the two vectors

1) $\vec{v} = 2\vec{i} - 3\vec{j}$, $\vec{w} = \vec{i} - \vec{j}$ 2) $\vec{v} = -\vec{i} + 2\vec{j}$, $\vec{w} = 3\vec{i} - \vec{j}$

Find: a) The projection of \vec{v} on \vec{w} ; b) The projection of \vec{v} orthogonal to \vec{w}

Writing a Vector in terms of its magnitude and direction:

B

$W = \vec{F} \cdot A \vec{B}$

unit: ft-pound

Ex:

- 1) Find the work done by the force of 3 pounds acting in the direction $2\vec{i} + \vec{j}$ in the moving an object 2 feet from (0,0) to (0,2).
- 2) Find the work done by the force of 1 pound acting in the direction $2\vec{i}+\vec{2j}$ in the moving an object 5 feet from (0,0) to (3,4).