2.1. Introduction to Limits

Definition 2.1.1 (Intuitive Definition). The limit of $f(x)$, as x approaches a, equals L means that as x gets arbitrarily close to the value a (but not actually equal to a), the value of $f(x)$ gets close to the value L. This is also written

$$
\lim _{x \rightarrow a} f(x)=L
$$

Remark 2.1.1. Note, the limit has nothing to do with the y-value at $x=a$, but rather the behavior of the graph as we approach $x=a$ from both sides of $x=a$.

Example 2.1.1. Given the graph of $y=f(x)$ below

(1) Find $f(a)$ for $a=-2,0,1,2$.
(2) Find $\lim _{x \rightarrow a} f(x)$ for $a=-2,0,1,2$.

Left and Right Limits

Definition 2.1.2. The limit of $f(x)$, as x approaches a from the left, equals L means that as x gets arbitrarily close to the value a $A N D x<a$, the value of $f(x)$ gets close to the value L. This is also written

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

Definition 2.1.3. The limit of $f(x)$, as x approaches a from the right, equals L means that as x gets arbitrarily close to the value a $A N D x>a$, the value of $f(x)$ gets close to the value L. This is also written

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

Theorem 2.1.1. $\lim _{x \rightarrow a} f(x)=L$ if and only if

Example 2.1.2. Given the graph of $y=f(x)$ below

(1) Find $\lim _{x \rightarrow a^{-}} f(x)$ for $a=-6,-4,-2,5,7$.
(2) Find $\lim _{x \rightarrow a^{+}} f(x)$ for $a=-6,-4,-2,5,7$.
(3) Find $f(a)$ for $a=-6,-4,-2,5,7$.

Theorem 2.1.2 (Limit Laws). If c is a constant and all limits involved exist (are real numbers), then
(1) $\lim _{x \rightarrow a}[f(x)+g(x)]=$
(2) $\lim _{x \rightarrow a}[f(x)-g(x)]=$
(3) $\lim _{x \rightarrow a}[c f(x)]=$
(4) $\lim _{x \rightarrow a}[f(x) g(x)]=$
(5) $\lim _{x \rightarrow a}[f(x) / g(x)]=$
(6) $\lim _{x \rightarrow a}[f(x)]^{n}=$
(7) If f is a function that you know from previous experience is "continuous" (for example, polynomials) at $x=a, \lim _{x \rightarrow a} f(x)=$

Example 2.1.3. Evaluate $\lim _{x \rightarrow-1}(3 x+5)$

Example 2.1.4. Evaluate $\lim _{x \rightarrow 8}-5$

Example 2.1.5. Find $\lim _{x \rightarrow 0} 5 x\left(x^{2}+3\right)$

Example 2.1.6. Find $\lim _{x \rightarrow-1 / 4} \frac{16 x^{2}+1}{2-8 x}$

Example 2.1.7. Find $\lim _{x \rightarrow 5} \sqrt[4]{3(47-4 x)}$

Example 2.1.8. Find $\lim _{x \rightarrow-2} \frac{g(x)-2 f(x)}{3 g(x)}$, if $\lim _{x \rightarrow-2} f(x)=4$ and $\lim _{x \rightarrow-2} g(x)=-1$

What if $f(x)$ is not continuous at $x=a ?$
Example 2.1.9. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

Definition 2.1.4. $\lim _{x \rightarrow a} f(x)=\frac{0}{0}$ is an indeterminant form

Remark 2.1.2. $\lim _{x \rightarrow a} f(x)=\frac{n}{0}$ where $n \neq 0$ is NOT an indeterminant form. The steps to solving each of these limits will be different.

Example 2.1.10. $\lim _{x \rightarrow 2} \frac{x^{2}+4}{x-2}$

Steps to Finding Limits of (non-piecewise) Functions:
(1) Always plug in the value $x=a$ in the function first!
(2) If step 1 gives you a real number, you have found the limit!
(3) If step 1 gives you the indeterminant form $\frac{0}{0}$, then $f(x)$ is a rational function and you have to simplify the function by factoring the polynomial in the numerator and denominator of $f(x)$ and canceling the common factor $(x-a)$.
(4) If step 1 gives you the non-indeterminant form $\frac{n}{0}, n \neq 0$, then the limit does not exist (we will work further on this case in section 2.2)

Example 2.1.11. Find $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-x-6}$

Example 2.1.12. Find $\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-2 x-8}$

Definition 2.1.5. The limit of a difference quotient is

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Example 2.1.13. Find $\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{2}-(x+h)\right]-\left[3 x^{2}-x\right]}{h}$

Example 2.1.14. If $f(x)=4 x-5$, find the following limit of the different quotient:

$$
\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h}
$$

Limits of Piecewise Functions

Example 2.1.15. f is given by

$$
f(x)= \begin{cases}-1 & \text { if } x<-2 \\ 2 x+3 & \text { if }-2 \leq x \leq 1 \\ x^{2} & \text { if } x>1\end{cases}
$$

(1) Evaluate $\lim _{x \rightarrow 0} f(x)$
(2) Evaluate $\lim _{x \rightarrow 1^{-}} f(x)$
(3) Evaluate $\lim _{x \rightarrow 1^{+}} f(x)$
(4) Evaluate $\lim _{x \rightarrow 1} f(x)$
(5) Evaluate $f(1)$
(6) Evaluate $\lim _{x \rightarrow-2} f(x)$

Example 2.1.16. Find $\lim _{x \rightarrow 2^{+}} \frac{|2-x|}{2-x}$

Example 2.1.17. Find $\lim _{x \rightarrow 2^{-}} \frac{|2-x|}{2-x}$

Example 2.1.18. Find $\lim _{x \rightarrow 2} \frac{|2-x|}{2-x}$

