2.3. Continuity

Definition 2.3.1 (Intuitive idea used in algebra based on graphing). A function, f, is continuous on the interval (a, b) if the graph of $y=f(x)$ can be drawn over the interval (a, b) without lifting your pencil.

Definition 2.3.2 (The carefully thought-out calculus version based on limits).
(1) A function, f, is continuous at $x=a$ if \qquad
(2) A function, f, is continuous on the interval (a, b) if f is continuous at every value in (a, b).
(3) A function, f, is left continuous (or continuous from the left) at $x=a$
\qquad
(4) A function, f, is right continuous (or continuous from the right) at

$$
x=a \text { if }
$$

(5) A function, f, is continuous on the interval $[a, b]$ if f is continuous at every value in $(a, b), f$ is right continuous at a and f is left continuous at b.
(6) A function, f, is discontinuous at $x=a$ if

Remarks 2.3.1.

(1) Use what you know about functions from algebra. Polynomials are continuous everywhere and rational functions are discontinuous when the denominator is 0.
(2) If a is NOT is the domain of f then f is CANNOT be continuous at that value.
(3) Usually, one looks for the domain and discontinuities to determine where a function is continuous.

Example 2.3.1. Determine the discontinuities and the intervals on which f is continuous.

Example 2.3.2. Where is $f(x)=\frac{x+1}{x^{2}-x-2}$ continuous?
(1) None of these
(2) $(-\infty, \infty)$
(3) $(-\infty, 2) \cup(2, \infty)$
(4) $(-\infty,-1) \cup(-1, \infty)$
(5) $(-\infty,-1) \cup(-1,2) \cup(2, \infty)$

Example 2.3.3. Evaluate the problems below given the graph of $f(x)$:

(1) $f(2)=$
(2) $f(4)=$
(3) $f(-1)=$
(10) $\lim _{x \rightarrow 4} f(x)=$
(4) $f(-3)=$
(11) $\lim _{x \rightarrow-3} f(x)=$
(5) $\lim _{x \rightarrow 2^{-}} f(x)=$
(12) $\lim _{x \rightarrow-1^{-}} f(x)=$
(6) $\lim _{x \rightarrow 2^{+}} f(x)=$
(13) $\lim _{x \rightarrow-1^{+}} f(x)=$
(7) $\lim _{x \rightarrow 2} f(x)=$
(14) $\lim _{x \rightarrow-1} f(x)=$

