3.1. The Constant e and Continuous Compound Interest

Definition 3.1.1. Recall from 1.5: An ______ is a function of the form $f(x) = a^x$ where a is a real number with a > 0 and $a \neq 0$.

Remark 3.1.1. We will primarily deal with the exponential function $f(x) = e^x$.

Recall from section 1.6: The functions $\ln x$ and e^x are inverses of each other.

Example 3.1.1. Simplify $e^{\ln 3 + \ln 4}$

Example 3.1.2. Simplify $\ln(e^2e^{-5})$

Interest Continuously Compounded

The ______, *A*, is amount in account at the end of given time period of an account.

The ______ or _____, P, is the amount initially deposited.

The _____ or _____, r, is the rate for the full year in decimal form.

t is the number of years the account is held.

FORMULA for A:

Section 3.1

Example 3.1.3. If \$4,765 is invested at 9.8% compounded continuously, what is the amount in 5 years?

- $(1) \frac{4765}{e^{0.49}}$
- (2) 4765 $e^{4.9}$
- (3) 4765 $e^{0.49}$
- $(4) \frac{4765}{e^{4.9}}$
- (5) none of these

Example 3.1.4. What continuously compounded interest rate will double an investment in 8 years?

- $(1) \ln \frac{1}{4}$
- $(2) \ln 4$
- $(3) \frac{\ln 2}{8}$
- $(4) \frac{\ln 8}{2}$
- (5) none of these

Example 3.1.5. What interest rate, compounded continuously, will take an investment of \$10,000 to \$40,000 in 5 years?

Example 3.1.6. How long will it take \$85,000 to grow to \$100,000 at 7% annual interest compounded continuously?