3.1. The Constant e and Continuous Compound Interest

Definition 3.1.1. Recall from 1.5: An \qquad is a function of the form $f(x)=a^{x}$ where a is a real number with $a>0$ and $a \neq 0$.

Remark 3.1.1. We will primarily deal with the exponential function $f(x)=e^{x}$.

Recall from section 1.6: The functions $\ln x$ and e^{x} are inverses of each other.

Example 3.1.1. Simplify $e^{\ln 3+\ln 4}$

Example 3.1.2. Simplify $\ln \left(e^{2} e^{-} 5\right)$

Interest Continuously Compounded

The \qquad , A, is amount in account at the end of given time period of an account.

The \qquad or \qquad , P, is the amount initially deposited.

The \qquad or \qquad ,
r, is the rate for the full year in decimal form.
t is the number of years the account is held.
FORMULA for A :

Example 3.1.3. If $\$ 4,765$ is invested at 9.8% compounded continuously, what is the amount in 5 years?
(1) $\frac{4765}{e^{0.49}}$
(2) $4765 e^{4.9}$
(3) $4765 e^{0.49}$
(4) $\frac{4765}{e^{4.9}}$
(5) none of these

Example 3.1.4. What continuously compounded interest rate will double an investment in 8 years?
(1) $\ln \frac{1}{4}$
(2) $\ln 4$
(3) $\frac{\ln 2}{8}$
(4) $\frac{\ln 8}{2}$
(5) none of these

Example 3.1.5. What interest rate, compounded continuously, will take an investment of $\$ 10,000$ to $\$ 40,000$ in 5 years?

Example 3.1.6. How long will it take $\$ 85,000$ to grow to $\$ 100,000$ at 7% annual interest compounded continuously?

